1
|
Lv W, Chen Y, Hong W, Lan L, Chen J, Guo F, Zou X. Biomimetic Gd-Metal-Organic Framework Radiosensitizer for Near-Infrared Fluorescence Imaging-Guided Radiotherapy toward Nasopharyngeal Carcinoma. ACS OMEGA 2024; 9:38272-38283. [PMID: 39281913 PMCID: PMC11391537 DOI: 10.1021/acsomega.4c06191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024]
Abstract
Radiotherapy (RT) is recognized as a primary treatment modality for Nasopharyngeal carcinoma (NPC). However, enhancing RT's targeting accuracy and selectivity remains a significant challenge. In this study, we present an innovative radiosensitizer, Gd-metal-organic framework (MOF)-based nanocarrier coated with indocyanine green (ICG) and red blood cell membrane (RBCM), designed to bypass immune clearance and achieve prolonged circulation within the bloodstream. This design significantly enhances tumor localization and systemic circulation, as evidenced by in vivo analyses. The strategic accumulation of the Gd-MOF-ICG nanocarrier at the tumor site facilitates precise tumor localization and sensitization to RT, leveraging the RBCM camouflage to enhance the tumor uptake potential. Our comprehensive study introduces a potent approach for optimizing RT in NPC treatment through this advanced theranostic nanoplatform, which combines material science with biomedical engineering to augment the effectiveness of RT and underscores the significance of precision in cancer therapy. This strategy offers a promising avenue for clinical application and further research in targeted cancer treatments.
Collapse
Affiliation(s)
- Wenlong Lv
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yanbin Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Wencong Hong
- Department of Comprehensive Oncology, The Hospital of Nanan City, Nanan 362300, China
| | - Linzhen Lan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jun Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Feibao Guo
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xi Zou
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| |
Collapse
|
2
|
He S, Luo C, Shi F, Zhou J, Shang L. The Emerging Role of Ferroptosis in EBV-Associated Cancer: Implications for Cancer Therapy. BIOLOGY 2024; 13:543. [PMID: 39056735 PMCID: PMC11274159 DOI: 10.3390/biology13070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Ferroptosis is a novel and iron-dependent form of programmed cell death, which has been implicated in the pathogenesis of various human cancers. EBV is a well-recognized oncogenic virus that controls multiple signaling pathways within the host cell, including ferroptosis signaling. Recent studies show that inducing ferroptosis could be an efficient therapeutic strategy for EBV-associated tumors. This review will firstly describe the mechanism of ferroptosis, then summarize EBV infection and EBV-associated tumors, as well as the crosstalk between EBV infection and the ferroptosis signaling pathway, and finally discuss the role and potential application of ferroptosis-related reagents in EBV-associated tumors.
Collapse
Affiliation(s)
- Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Cheng Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| |
Collapse
|
3
|
Guo L, Wang Z, Fu Y, Wu S, Zhu Y, Yuan J, Liu Y. MiR-122-5p regulates erastin-induced ferroptosis via CS in nasopharyngeal carcinoma. Sci Rep 2024; 14:10019. [PMID: 38693171 PMCID: PMC11063070 DOI: 10.1038/s41598-024-59080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/07/2024] [Indexed: 05/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor that occurs in the nasopharynx. Although advances in detection and treatment have improved the prognosis of NPC the treatment of advanced NPC remains challenging. Here, we explored the effect of microRNA (miR)-122-5p on erastin-induced ferroptosis in NPC cells and the role of ferroptosis in the development of NPC. The effect of miR-122-5p silencing and overexpression and the effect of citrate synthase on erastin-induced lipid peroxidation in NPC cells was analyzed by measuring the amounts of malondialdehyde, Fe2+, glutathione, and reactive oxygen species and the morphological alterations of mitochondria. The malignant biological behavior of NPC cells was examined by cell counting kit-8, EDU, colony formation, Transwell, and wound healing assays. The effects of miR-122-5p on cell proliferation and migration associated with ferroptosis were examined in vivo in a mouse model of NPC generated by subcutaneous injection of NPC cells. We found that erastin induced ferroptosis in NPC cells. miR-122-5p overexpression inhibited CS, thereby promoting erastin-induced ferroptosis in NPC cells and decreasing NPC cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Liqing Guo
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Zhi Wang
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Yanpeng Fu
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Shuhong Wu
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Yaqiong Zhu
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Jiasheng Yuan
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Yuehui Liu
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
4
|
Luo X, Gong Y, Jiang Q, Wang Q, Li S, Liu L. Isoquercitrin promotes ferroptosis and oxidative stress in nasopharyngeal carcinoma via the AMPK/NF-κB pathway. J Biochem Mol Toxicol 2024; 38:e23542. [PMID: 37712196 DOI: 10.1002/jbt.23542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Isoquercitrin has been discovered with various biological properties, including anticancer, anti-inflammation, antioxidation, and neuroprotection. The aim of this study is to explore the efficacy of isoquercitrin in nasopharyngeal carcinoma (NPC) and to disclose its potential regulating mechanisms. CNE1 and HNE1 cells were treated with various concentrations of isoquercitrin. Ferrostatin-1 (Fer-1, a ferroptosis inhibitor) and alpha-lipoic acid (ALA, an activator of the AMP-activated protein kinase [AMPK] pathway) treatments were conducted to verify the effects of isoquercitrin, respectively. Cell viability, proliferation, reactive oxygen species (ROS) generation, and lipid peroxidation were determined, respectively. GPX4 expression and ferroptosis- and pathway-related protein expression were measured. A xenograft tumor model was constructed by subcutaneously inoculating CNE1 cells into the middle groin of each mouse. We found that the IC50 values of CNE1 and HNE1 cells were 392.45 and 411.38 μM, respectively. CNE1 and HNE1 viability and proliferation were both markedly reduced with the increasing concentration of isoquercitrin. ROS generation and lipid peroxidation were both enhanced with declined ferroptosis-related markers under isoquercitrin treatment. The nuclear factor kappa B (NF-κB) pathway, the AMPK pathway, and the interleukin (IL)-1β expression were all markedly suppressed by isoquercitrin. Moreover, isoquercitrin restrained the tumor growth and enhanced lipid peroxidation and ferroptosis in vivo. Interestingly, both Fer-1 and ALA treatments distinctly offset isoquercitrin-induced effects in vitro and in vivo. These findings indicated that isoquercitrin might enhance oxidative stress and ferroptosis in NPC via AMPK/NF-κB p65 inhibition.
Collapse
Affiliation(s)
- Xinggu Luo
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Yongqian Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Qin Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Songtao Li
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Lijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
5
|
Wu Y, Jia Q, Tang Q, Deng H, He Y, Tang F. Berberine-mediated Ferroptosis through System Xc -/GSH/GPX4 Axis Inhibits Metastasis of Nasopharyngeal Carcinoma. J Cancer 2024; 15:685-698. [PMID: 38213727 PMCID: PMC10777030 DOI: 10.7150/jca.90574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that is highly prevalent in Southeast China, and its metastasis remains an unresolved clinical problem. Ferroptosis, a type of nonapoptotic cell death, is a critical pathway in tumor metastasis. Berberine (BBR), a plant alkaloid, has been explored as a potential anti-NPC metastatic agent; however, the underlying mechanisms are unknown. Here, we showed that BBR exerted its anti-metastasis role by inhibiting system Xc-/GSH/GPX4 axis-driven ferroptosis. The present study demonstrated for the first time that BBR induced ferroptosis in NPC cells by increasing reactive oxygen species, lipid peroxidation and cellular Fe2+ and that the ferroptosis inhibitors Ferrostatin-1 and Deferoxamine mesylate rescued BBR-induced NPC cell death. Moreover, the ferroptotic characteristics of BBR-treated NPC cells were observed using transmission electron microscopy. Mechanistically, system Xc- (SLC7A11 and SLC3A2) and GSH levels were found to be suppressed after treatment with BBR. We demonstrated that the system Xc-/GSH/GPX4 axis was a critical mediator of BBR-induced ferroptosis. Furthermore, GPX4, a key inhibitor of lipid peroxidation, was greatly suppressed by BBR at both protein and mRNA levels. Molecular docking results showed a strong interaction between GPX4 and BBR. Notably, GPX4 overexpression reversed the effect of BBR-induced ferroptosis in NPC cells. Finally, BBR-mediated inhibition of NPC metastasis was validated in vivo using a mouse model. Taken together, our data suggest that BBR induced ferroptosis of NPC cells via suppressing the system Xc-/GSH/GPX4 axis, provides new insights into the mechanism of BBR anti-NPC metastasis.
Collapse
Affiliation(s)
- Yao Wu
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha 410013, China
| | - Qunying Jia
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha 410013, China
| | - Qi Tang
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Hongyu Deng
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha 410013, China
| | - Yingchun He
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Faqing Tang
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha 410013, China
| |
Collapse
|
6
|
胡 桐, 勾 文, 任 中, 刘 改, 李 祎, 左 代, 侯 文. [Icaritin increases radiosensitivity of nasopharyngeal carcinoma cells by regulating iron death]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1665-1673. [PMID: 37933641 PMCID: PMC10630213 DOI: 10.12122/j.issn.1673-4254.2023.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To explore the radiosensitizing effect of icaritin on nasopharyngeal carcinoma (NPC) cells and the underlying mechanism. METHODS MTT assay and clonal formation assay were used to evaluate the effect of icaritin on proliferation of human NPC HONE1 and HNE1 cells. The effects of icaritin treatment, γ-ray radiation, or both on production of reactive oxygen species (ROS), cell cycle distribution and apoptosis of the NPC cells were assessed using flow cytometry. The expressions of DNA damage markers γ-H2AX, cycle-related proteins CDC25C, p-CDC25C and cyclin B1, and ferroptosis markers ACSL4 and GXP4 were detected using Western blotting. A nude mouse model bearing subcutaneous HONE1 cell xenograft was used to observe the effect of icaritin and radiation on tumor growth. RESULTS Icaritin dose-dependently inhibited the viability of the NPC cells and enhanced the inhibitory effect of radiation on cell proliferation. Flow cytometry and Western blotting showed that icaritin treatment prior to radiation significantly promoted ROS production and γ-H2AX expression in the NPC cells (P<0.001). Compared with radiation exposure alone, the combined treatment caused cell cycle arrest in G2 phase, down-regulated CDC25C and cyclin B1 expression, and up-regulated p-CDC25C expression in the cells (P<0.01), resulting also in increased cell apoptosis, enhanced expression of ferroptosis protein ACSL4 and lowered expression of GXP4 (P<0.001). In the tumor-bearing mice, icaritin treatment, compared with radiation alone, significantly reduced the tumor growth rate and decreased tumor weight (P<0.001). CONCLUSION Icaritin can enhance radiosensitivity of NPC cells both in vitro and in nude mice possibly by enhancing ROS production to promote iron death of the cells.
Collapse
Affiliation(s)
- 桐 胡
- 中国医学科学院放射医学研究所天津市放射医学与分子核医学重点实验室,天津 300192Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
- 沈阳药科大学生命科学与生物制药学院,辽宁 沈阳 110016School of Life Sciences and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - 文峰 勾
- 中国医学科学院放射医学研究所天津市放射医学与分子核医学重点实验室,天津 300192Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - 中昊 任
- 中国医学科学院放射医学研究所天津市放射医学与分子核医学重点实验室,天津 300192Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
- 沈阳药科大学生命科学与生物制药学院,辽宁 沈阳 110016School of Life Sciences and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - 改廷 刘
- 中国医学科学院放射医学研究所天津市放射医学与分子核医学重点实验室,天津 300192Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - 祎亮 李
- 中国医学科学院放射医学研究所天津市放射医学与分子核医学重点实验室,天津 300192Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - 代英 左
- 沈阳药科大学生命科学与生物制药学院,辽宁 沈阳 110016School of Life Sciences and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - 文彬 侯
- 中国医学科学院放射医学研究所天津市放射医学与分子核医学重点实验室,天津 300192Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| |
Collapse
|
7
|
Chen P, Wang D, Xiao T, Gu W, Yang H, Yang M, Wang H. ACSL4 promotes ferroptosis and M1 macrophage polarization to regulate the tumorigenesis of nasopharyngeal carcinoma. Int Immunopharmacol 2023; 122:110629. [PMID: 37451020 DOI: 10.1016/j.intimp.2023.110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a head and neck malignant tumor with a high incidence and recurrence rate. The crosstalk between ferroptosis and tumor-associated macrophages (TAMs) is thought to have major implications in interfering with cancers. We intended to explore the effect of acyl-CoA synthetase long-chain family member 4 (ACSL4) on the pathogenesis of NPC via ferroptosis and TAMs. METHODS Differential genes in NPC patients were analyzed using publicly available databases, and the ferroptosis-related gene ACSL4 was identified. Expression of ACSL4 in NPC cell lines and xenografted mice was examined. Colony formation, cell proliferation, migration, and invasion were assessed. The abundance of epithelial-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin, and Vimentin) was confirmed. Lipid peroxidation levels and related markers were measured. Clophosome was administered to determine the role of TAMs in NPC mice. RESULTS Low levels of ACSL4 were observed in NPC patients and CNE-2 and 5-8F cells. Erastin (a ferroptosis inducer) and ACSL4 increased lipid peroxidation, decreased cell viability, colony formation, cell proliferation, migration and invasion, and inhibited EMT. Moreover, Erastin and ACSL4 promoted M2 to M1 macrophage polarization. The effects of erastin and ACSL4 were additive. Ferrostatin-1, an inhibitor of ferroptosis, exerted the opposite effect and reversed the beneficial effects of ACSL4 overexpression. In xenograft mice, ACSL4 and clophosome hindered the growth of NPC, and extra clophosome slightly enhanced the antitumor effect of ACSL4. CONCLUSION Our findings indicated that ACSL4 inhibited the pathogenesis of NPC, at least through crosstalk between ferroptosis and macrophages, providing potential direction for NPC therapy.
Collapse
Affiliation(s)
- Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Wangning Gu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Hongmin Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China.
| |
Collapse
|
8
|
The amino acid transporter SLC7A11-mediated crosstalk implicated in cancer therapy and the tumor microenvironment. Biochem Pharmacol 2022; 205:115241. [PMID: 36084707 DOI: 10.1016/j.bcp.2022.115241] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 01/17/2023]
Abstract
The solute carrier family 7 member 11 (SLC7A11), an amino acid transporter protein is frequently overexpressed in human malignancies. The expression and activity of SLC7A11 is finely regulated by oncogenes and tumor suppressors in tumor cells through various mechanisms and is highly specific for cystine and glutamate. Cystine is mainly transported intracellularly by SLC7A11 in the tumor microenvironment (TME) and is involved in GSH synthesis, which leads to ferroptosis resistance in tumor cells and promotes tumorigenesis and progression. The downregulation of SLC7A11 presents a unique drug discovery opportunity for ferroptosis-related diseases. Experimental work has shown that the combination of targeting SLC7A11 and tumor immunotherapy triggers ferroptosis more potently. Moreover, immunotargeting of SLC7A11 increases the chemosensitivity of cancer stem cells to doxorubicin, suggesting that it may act as an adjuvant to chemotherapy. Thus, SLC7A11 could be a promising target to overcome resistance mechanisms in conventional cancer treatments. This review provides an overview of the regulatory network of SLC7A11 in the TME and progress in the development of SLC7A11 inhibitors. In addition, we summarize the cytotoxic effects of blocking SLC7A11 in cancer cells, cancer stem cells and immune cells.
Collapse
|
9
|
Liu Z, He J, Hu X. Ferroptosis regulators related scoring system by Gaussian finite mixture model to predict prognosis and immunotherapy efficacy in nasopharyngeal carcinoma. Front Genet 2022; 13:975190. [PMID: 36118882 PMCID: PMC9479336 DOI: 10.3389/fgene.2022.975190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The role of ferroptosis in tumor progression and metastasis has been demonstrated. Nonetheless, potential biological function of ferroptosis regulatory pattern in nasopharyngeal carcinoma (NPC) remains unknown. Ferroptosis regulatory patterns of nasopharyngeal carcinoma samples were evaluated based on 113 ferroptosis regulators and three distinct ferroptosis subtypes were determined by unsupervised clustering. The ferroptosis score (FEP score) was identified to quantify ferroptosis patterns within individual tumors by Gaussian finite mixture model and systematically correlated with representative tumor characteristics. Subtype 1 and subtype 3 were consistent with immune activated phenotype, while subtype 2 was consistent with immune suppressed phenotype. High ferroptosis score, characterized by immune activation and suppression of mRNA based stemness index (mRNAsi) and Epstein-Barr virus (EBV) genes, indicated an immune activated tumor microenvironment (TME) phenotype, with better progression free survival (PFS) and lower risk of recurrence and metastasis. Low ferroptosis score, characterized by activation of Wnt and NF-κB signaling pathways and lack of effective immune infiltration, indicated an immune suppressed tumor microenvironment phenotype and poorer survival. High ferroptosis score was also correlated to enhanced response to immunotherapy, and was confirmed to correlate with therapeutic advantages and clinical benefits in an anti-programmed cell death 1 ligand 1 (PD-L1) immunotherapy cohort. As ferroptosis played a crucial role in the tumor microenvironment’s diversity, assessing the ferroptosis pattern within individual tumor with ferroptosis score could enhance our understanding of tumor microenvironment infiltration characterization and help develop more effective immunotherapy.
Collapse
Affiliation(s)
- Zijian Liu
- Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlan He
- Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaolin Hu,
| |
Collapse
|
10
|
ARPC1A is regulated by STAT3 to inhibit ferroptosis and promote prostate cancer progression. Hum Cell 2022; 35:1591-1601. [DOI: 10.1007/s13577-022-00754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
11
|
Zhou JC, Wu B, Zhang JJ, Zhang W. Lupeol triggers oxidative stress, ferroptosis, apoptosis and restrains inflammation in nasopharyngeal carcinoma via AMPK/NF-κB pathway. Immunopharmacol Immunotoxicol 2022; 44:621-631. [PMID: 35486494 DOI: 10.1080/08923973.2022.2072328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Nasopharyngeal carcinoma is a malignant tumor with high incidence in Asia. This study investigated the anti-tumor capacities of lupeol in nasopharyngeal carcinoma. METHODS CCK-8 assay was employed to select the suitable concentration and intervention time of lupeol in 5-8F and CNE1 cells. The anti-cancer impacts of lupeol were evaluated by flow cytometry, ROS generation, western blotting, ELISA, iron assay, lipid peroxidation, mitochondrial membrane potential (MMP), TUNEL, and immunohistochemistry assays. Additionally, levels of AMPK/NF-κB pathway-related proteins were tested by western blotting. RESULTS Cell viability was notably decreased after administration of lupeol ≧ 20 μM. 20 μM and 40 μM lupeol induced cell apoptosis, enhanced oxidative stress and restrained immune response in nasopharyngeal carcinoma cells to some extent, as evidenced by the elevation of apoptotic rate, Bax and cleaved caspase-3 expression, ROS production and malondialdehyde level, and reduction of levels of Bcl-2, MMP, superoxide dismutase, TNF-α, IL-6 and IL-1β. Also, lupeol promoted the iron secretion and lipid peroxidation, the effects of which were reversed by ferroptosis inhibitor (Fer-1). The inhibitory impacts of lupeol at the doses of 20 μM and 40 μM on glutathione and GPX4 levels were observed. Importantly, lupeol significantly elevated AMPKα phosphorylation, and reduced the levels of p-IκBα and nuclear NF-κB p65. Rescue assay stated that siAMPK could neutralize the above impacts of lupeol. Moreover, lupeol suppressed tumorigenesis of xenografts in nude mice. CONCLUSION Lupeol exerted the anti-cancer impacts by inducing oxidative stress, ferroptosis and apoptosis, and suppressing inflammation via the AMPK/NF-κB pathway in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jing-Chun Zhou
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University. The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Bin Wu
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University. The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jing-Jing Zhang
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Zhang
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University. The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|