1
|
Yoshida C, Kadota K, Yamada K, Fujimoto S, Ibuki E, Ishikawa R, Haba R, Yajima T. CD44v6 downregulation as a prognostic factor for distant recurrence in resected stage I lung adenocarcinomas. Clin Exp Med 2023; 23:5191-5200. [PMID: 37743425 DOI: 10.1007/s10238-023-01185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
CD44 and CD44 variant isoforms have been reported as contributing factors to cancer progression. In this study, we aimed to assess whether CD44 and its variant isoforms were correlated with the prognostic factors for distant metastasis in stage I lung adenocarcinomas using tissue microarray and immunohistochemistry. In this single-center retrospective study, we analyzed the data of 490 patients with stage I lung adenocarcinoma resected between 1999 and 2016. We constructed tissue microarrays and performed immunohistochemistry for CD44s, CD44v6, and CD44v9. The risk of disease recurrence and its associations with clinicopathological risk factors were assessed. CD44v6 expression was significantly associated with recurrence. Patients with CD44v6-negative tumors had a significantly increased risk of developing distant recurrence than patients with CD44v6-positive tumors (5-year cumulative incidence of recurrence (CIR), 10.7% vs. 4.6%; P = 0.009). However, CD44v6-negative tumors were not associated with an increased risk of locoregional recurrence compared to CD44v6-positive tumors (5-year CIR, 6.0% vs. 4.0%; P = 0.39). The overall survival (OS) of patients with CD44v6-negative tumors was significantly lower than that of patients with CD44v6-positive tumors (5-year OS: 87% vs. 94%, P = 0.016). CD44v6-negative tumors were also associated with invasive tumor size and lymphovascular invasion. Even in stage I disease, tumors with negative-CD44v6 expression had more distant recurrences than those with positive-CD44v6 expression and were associated with poor prognosis in resected stage I lung adenocarcinomas. Thus, CD44v6 downregulation may be a prognostic factor for distant metastasis in stage I lung adenocarcinomas.
Collapse
Affiliation(s)
- Chihiro Yoshida
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of General Thoracic Surgery, Kochi Health Sciences Center, Kochi, Japan
| | - Kyuichi Kadota
- Department of Pathology, Faculty of Medicine, Shimane University, Shimane, Japan.
| | - Kaede Yamada
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Syusuke Fujimoto
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Emi Ibuki
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ryou Ishikawa
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Reiji Haba
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toshiki Yajima
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
2
|
Mortensen ACL, Berglund H, Segerström L, Walle M, Hofström C, Persson H, Nygren PÅ, Nilvebrant J, Frejd FY, Nestor M. Selection, characterization and in vivo evaluation of novel CD44v6-targeting antibodies for targeted molecular radiotherapy. Sci Rep 2023; 13:20648. [PMID: 38001360 PMCID: PMC10673843 DOI: 10.1038/s41598-023-47891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular radiotherapy combines the advantages of systemic administration of highly specific antibodies or peptides and the localized potency of ionizing radiation. A potential target for molecular radiotherapy is the cell surface antigen CD44v6, which is overexpressed in numerous cancers, with limited expression in normal tissues. The aim of the present study was to generate and characterize a panel of human anti-CD44v6 antibodies and identify a suitable candidate for future use in molecular radiotherapy of CD44v6-expressing cancers. Binders were first isolated from large synthetic phage display libraries containing human scFv and Fab antibody fragments. The antibodies were extensively analyzed through in vitro investigations of binding kinetics, affinity, off-target binding, and cell binding. Lead candidates were further subjected to in vivo biodistribution studies in mice bearing anaplastic thyroid cancer xenografts that express high levels of CD44v6. Additionally, antigen-dependent tumor uptake of the lead candidate was verified in additional xenograft models with varying levels of target expression. Interestingly, although only small differences were observed among the top antibody candidates in vitro, significant differences in tumor uptake and retention were uncovered in in vivo experiments. A high-affinity anti-CD44v6 lead drug candidate was identified, mAb UU-40, which exhibited favorable target binding properties and in vivo distribution. In conclusion, a panel of human anti-CD44v6 antibodies was successfully generated and characterized in this study. Through comprehensive evaluation, mAb UU-40 was identified as a promising lead candidate for future molecular radiotherapy of CD44v6-expressing cancers due to its high affinity, excellent target binding properties, and desirable in vivo distribution characteristics.
Collapse
Affiliation(s)
- A C L Mortensen
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden.
| | - H Berglund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - L Segerström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - M Walle
- Drug Discovery and Development Platform, Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - C Hofström
- Drug Discovery and Development Platform, Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - H Persson
- Drug Discovery and Development Platform, Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - P-Å Nygren
- Drug Discovery and Development Platform, Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - J Nilvebrant
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - F Y Frejd
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - M Nestor
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Nibhondhratana P, Watcharadetwittaya S, Sa-ngiamwibool P. CD44v6 Expression in Gastroenteropancreatic Neuroendocrine Neoplasms: Clinicopathological Correlation and Prognosis. Pathol Res Pract 2022; 240:154213. [DOI: 10.1016/j.prp.2022.154213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
4
|
Sánchez-Díez M, Alegría-Aravena N, López-Montes M, Quiroz-Troncoso J, González-Martos R, Menéndez-Rey A, Sánchez-Sánchez JL, Pastor JM, Ramírez-Castillejo C. Implication of Different Tumor Biomarkers in Drug Resistance and Invasiveness in Primary and Metastatic Colorectal Cancer Cell Lines. Biomedicines 2022; 10:1083. [PMID: 35625820 PMCID: PMC9139065 DOI: 10.3390/biomedicines10051083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Protein expression profiles are directly related to the different properties of cells and are conditioned by the cellular niche. As an example, they are the cause of the characteristic cell plasticity, epithelium-mesenchymal transition (EMT), and drug resistance of cancer cells. This article characterizes ten biomarkers related to these features in three human colorectal cancer cell lines: SW-480, SW-620, and DLD-1, evaluated by flow cytometry; and in turn, resistance to oxaliplatin is studied through dose-response trials. The main biomarkers present in the three studied lines correspond to EpCAM, CD-133, and AC-133, with the latter two in low proportions in the DLD-1 line. The biomarker CD166 is present in greater amounts in SW-620 and DLD-1 compared to SW-480. Finally, DLD-1 shows high values of Trop2, which may explain the aggressiveness and resistance of these cells to oxaliplatin treatments, as EpCAM is also highly expressed. Exposure to oxaliplatin slows cell growth but also helps generate resistance to the treatment. In conclusion, the response of the cell lines is variable, due to their genetic variability, which will condition protein expression and cell growth. Further analyses in this area will provide important information for better understanding of patients' cellular response and how to prevent resistance.
Collapse
Affiliation(s)
- Marta Sánchez-Díez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Nicolás Alegría-Aravena
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
| | - Marta López-Montes
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
| | - Josefa Quiroz-Troncoso
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Raquel González-Martos
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Adrián Menéndez-Rey
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
| | | | - Juan Manuel Pastor
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Carmen Ramírez-Castillejo
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- ETSIAAB, Departamento Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, IdISSC, 28040 Madrid, Spain
| |
Collapse
|