1
|
Zhao B, Yin J, Ding L, Luo J, Luo J, Mu J, Pan S, Du J, Zhong Y, Zhang L, Liu L. SPAG6 regulates cell proliferation and apoptosis via TGF-β/Smad signal pathway in adult B-cell acute lymphoblastic leukemia. Int J Hematol 2024; 119:119-129. [PMID: 38147275 DOI: 10.1007/s12185-023-03684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023]
Abstract
Adult B-cell acute lymphoblastic leukemia (B-ALL) prognosis remains unsatisfactory, and searching for new therapeutic targets is crucial for improving patient prognosis. Sperm-associated antigen 6 (SPAG6), a member of the cancer-testis antigen family, plays an important role in tumors, especially hematologic tumors; however, it is unknown whether SPAG6 plays a role in adult B-ALL. In this study, we demonstrated for the first time that SPAG6 expression was up-regulated in the bone marrow of adult B-ALL patients compared to healthy donors, and expression was significantly reduced in patients who achieved complete remission (CR) after treatment. In addition, patients with high SPAG6 expression were older (≥ 35 years; P = 0.015), had elevated white blood cell counts (WBC > 30 × 109/L; P = 0.021), and a low rate of CR (P = 0.036). We explored the SPAG6 effect on cell function by lentiviral transfection of adult B-ALL cell lines BALL-1 and NALM-6, and discovered that knocking down SPAG6 significantly inhibited cell proliferation and promoted apoptosis. We identified that SPAG6 knockdown might regulate cell proliferation and apoptosis via the transforming growth factor-β (TGF-β)/Smad signaling pathway.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jiaxiu Yin
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Li Ding
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jie Luo
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jing Luo
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jiao Mu
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Shirui Pan
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Juan Du
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yirui Zhong
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
| | - Linyi Zhang
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
| | - Lin Liu
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
2
|
Ding L, Luo J, Du J, Zhao B, Luo J, Pan S, Zhang L, Yan X, Li J, Liu L. Upregulated SPAG6 correlates with increased STAT1 and is associated with reduced sensitivity of interferon-α response in BCR::ABL1 negative myeloproliferative neoplasms. Cancer Sci 2023; 114:4445-4458. [PMID: 37681349 PMCID: PMC10637088 DOI: 10.1111/cas.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Sperm-associated antigen 6 (SPAG6) has been identified as an oncogene or tumor suppressor in various types of human cancer. However, the role of SPAG6 in BCR::ABL1 negative myeloproliferative neoplasms (MPNs) remains unclear. Herein, we found that SPAG6 was upregulated at the mRNA level in primary MPN cells and MPN-derived leukemia cell lines. The SPAG6 protein was primarily located in the cytoplasm around the nucleus and positively correlated with β-tubulin expression. In vitro, forced expression of SPAG6 increased cell clone formation and promoted G1 to S cell cycle progression. Downregulation of SPAG6 promoted apoptosis, reduced G1 to S phase transition, and impaired cell proliferation and cytokine release accompanied by downregulated signal transducer and activator of transcription 1 (STAT1) expression. Furthermore, the inhibitory effect of interferon-α (INF-α) on the primary MPN cells with high SPAG6 expression was decreased. Downregulation of SPAG6 enhanced STAT1 induction, thus enhancing the proapoptotic and cell cycle arrest effects of INF-α both in vitro and in vivo. Finally, a decrease in SPAG6 protein expression was noted when the STAT1 signaling was blocked. Chromatin immunoprecipitation assays indicated that STAT1 protein could bind to the SPAG6 promoter, while the dual-luciferase reporter assay indicated that STAT1 could promote the expression of SPAG6. Our results substantiate the relationship between upregulated SPAG6, increased STAT1, and reduced sensitivity to INF-α response in MPN.
Collapse
Affiliation(s)
- Li Ding
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of HematologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Jie Luo
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Juan Du
- Department of HematologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Beibei Zhao
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jin Luo
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shirui Pan
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Linyi Zhang
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xinyu Yan
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Junnan Li
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lin Liu
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|