1
|
Liu Y, Liu W, Wu T. TIGIT: Will it be the next star therapeutic target like PD-1 in hematological malignancies? Crit Rev Oncol Hematol 2024; 204:104495. [PMID: 39236904 DOI: 10.1016/j.critrevonc.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
Research on the mechanism and application of checkpoint inhibitory receptors in hematologic diseases has progressed rapidly. However, in the treatment of relapserefractory (R/R) hematologic malignancies and anti-programmed cell death protein 1 (PD-1), patients who are resistant to anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are in urgent need of alternative therapeutic targets. T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) has a broad prospect as an inhibitory receptor like PD-1, but its more specific mechanism of action and application in hematologic diseases still need to be further studied. In this review, we discuss the mechanism of TIGIT pathway, combined effects with other immune checkpoints, immune-related therapy, the impact of TIGIT on hematopoietic stem cell transplantation (HSCT) and the tumor microenvironment (TME) provides a potential therapeutic target for hematologic malignancies.
Collapse
Affiliation(s)
- Yang Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Wenhui Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Tao Wu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| |
Collapse
|
2
|
Zha C, Yang X, Yang J, Zhang Y, Huang R. Immunosuppressive microenvironment in acute myeloid leukemia: overview, therapeutic targets and corresponding strategies. Ann Hematol 2024:10.1007/s00277-024-06117-9. [PMID: 39607487 DOI: 10.1007/s00277-024-06117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Similar to other malignancies, immune dysregulation is a key feature of acute myeloid leukemia (AML), manifesting as suppressed anti-leukemia immune cells, immune evasion by leukemia blasts, and disease progression. Various immunosuppressive factors within the AML microenvironment contribute to the weakening of host immune responses and the efficacy of cellular immunotherapy. To address these challenges, strategies targeting immunosuppressive elements within the AML microenvironment aim to bolster host or adoptive immune effector cells, ultimately enhancing leukemia treatment. Additionally, the off-target effects of certain targeted drugs (venetoclax, sorafenib, ivosidenib, etc.) may also positively impact anti-AML immunity and immunotherapy. This review provides an overview of the immunosuppressive factors present in AML microenvironment and the strategies developed to rescue immune cells from immunosuppression. We also outline how targeted agents can alter the immune landscape in AML patients, and discuss the potential of targeted drugs to benefit host anti-leukemia immunity and immunotherapy for AML.
Collapse
Affiliation(s)
- Chenyu Zha
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujie Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Murakami K, Ganguly S. The Nectin family ligands, PVRL2 and PVR, in cancer immunology and immunotherapy. Front Immunol 2024; 15:1441730. [PMID: 39156900 PMCID: PMC11327090 DOI: 10.3389/fimmu.2024.1441730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
In recent years, immunotherapy has emerged as a crucial component of cancer treatment. However, its efficacy remains limited across various cancer types, highlighting unmet needs. Poliovirus receptor-related 2 (PVRL2) and Poliovirus receptor (PVR) are members of the Nectin and Nectin-like Molecules family, known for their role as cell-cell adhesion molecules. With the development of immunotherapy, their involvement in tumor immune mechanisms as immune checkpoint factors has garnered significant attention. PVRL2 and PVR are predominantly expressed on tumor cells and antigen-presenting cells, binding to PVRIG and TIGIT, respectively, which are primarily found on T and NK cells, thereby suppressing antitumor immunity. Notably, gynecological cancers such as ovarian and endometrial cancers exhibit high expression levels of PVRL2 and PVR, with similar trends observed in various other solid and hematologic tumors. Targeting these immune checkpoint pathways offers a promising therapeutic avenue, potentially in combination with existing treatments. However, the immunomodulatory mechanism involving these bindings, known as the DNAM-1 axis, is complex, underscoring the importance of understanding it for developing novel therapies. This article comprehensively reviews the immunomodulatory mechanisms centered on PVRL2 and PVR, elucidating their implications for various cancer types.
Collapse
Affiliation(s)
| | - Sudipto Ganguly
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Seel K, Schirrmann RL, Stowitschek D, Ioseliani T, Roiter L, Knierim A, André MC. Blockade of the TIGIT-CD155/CD112 axis enhances functionality of NK-92 but not cytokine-induced memory-like NK cells toward CD155-expressing acute myeloid leukemia. Cancer Immunol Immunother 2024; 73:180. [PMID: 38967649 PMCID: PMC11226419 DOI: 10.1007/s00262-024-03766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
TIGIT is an alternative checkpoint receptor (CR) whose inhibition promotes Graft-versus-Leukemia effects of NK cells. Given the significant immune-permissiveness of NK cells circulating in acute myeloid leukemia (AML) patients, we asked whether adoptive transfer of activated NK cells would benefit from additional TIGIT-blockade. Hence, we characterized cytokine-induced memory-like (CIML)-NK cells and NK cell lines for the expression of inhibitory CRs. In addition, we analyzed the transcription of CR ligands in AML patients (CCLE and Beat AML 2.0 cohort) in silico and evaluated the efficacy of CR blockade using in vitro cytotoxicity assays, CD69, CD107a and IFN-γ expression. Alternative but not classical CRs were abundantly expressed on healthy donor NK cells and even further upregulated on CIML-NK cells. In line with our finding that CD155, one important TIGIT-ligand, is reliably expressed on AMLs, we show improved killing of CD155+-AML blasts by NK-92 but interestingly not CIML-NK cells in the presence of TIGIT-blockade. Additionally, our in silico data (n = 671) show that poor prognosis AML patients rather displayed a CD86low CD112/CD155high phenotype, whereas patients with a better outcome rather exhibited a CD86high CD112/CD155low phenotype. Collectively, our data evidence that the complex CR ligand expression profile on AML blasts may be one explanation for the intrinsic NK cell exhaustion observed in AML patients which might be overcome with adoptive NK-92 transfer in combination with TIGIT-blockade.
Collapse
Affiliation(s)
- Katharina Seel
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Ronja Larissa Schirrmann
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Daniel Stowitschek
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Tamar Ioseliani
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Lea Roiter
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Alina Knierim
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Maya C André
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany.
- Division of Respiratory and Critical Care Medicine, University Children`s Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Wu JW, Liu Y, Dai XJ, Liu HM, Zheng YC, Liu HM. CD155 as an emerging target in tumor immunotherapy. Int Immunopharmacol 2024; 131:111896. [PMID: 38518596 DOI: 10.1016/j.intimp.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
6
|
Li Z, Ma R, Tang H, Guo J, Shah Z, Zhang J, Liu N, Cao S, Marcucci G, Artis D, Caligiuri MA, Yu J. Therapeutic application of human type 2 innate lymphoid cells via induction of granzyme B-mediated tumor cell death. Cell 2024; 187:624-641.e23. [PMID: 38211590 PMCID: PMC11442011 DOI: 10.1016/j.cell.2023.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
The therapeutic potential for human type 2 innate lymphoid cells (ILC2s) has been underexplored. Although not observed in mouse ILC2s, we found that human ILC2s secrete granzyme B (GZMB) and directly lyse tumor cells by inducing pyroptosis and/or apoptosis, which is governed by a DNAM-1-CD112/CD155 interaction that inactivates the negative regulator FOXO1. Over time, the high surface density expression of CD155 in acute myeloid leukemia cells impairs the expression of DNAM-1 and GZMB, thus allowing for immune evasion. We describe a reliable platform capable of up to 2,000-fold expansion of human ILC2s within 4 weeks, whose molecular and cellular ILC2 profiles were validated by single-cell RNA sequencing. In both leukemia and solid tumor models, exogenously administered expanded human ILC2s show significant antitumor effects in vivo. Collectively, we demonstrate previously unreported properties of human ILC2s and identify this innate immune cell subset as a member of the cytolytic immune effector cell family.
Collapse
Affiliation(s)
- Zhenlong Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Rui Ma
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Hejun Tang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jiamin Guo
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| | - Zahir Shah
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Ningyuan Liu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Shuai Cao
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematologic Malignancies Research Institute, Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
7
|
Barshidi A, Ardeshiri K, Ebrahimi F, Alian F, Shekarchi AA, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of exhausted natural killer cells in the immunopathogenesis and treatment of leukemia. Cell Commun Signal 2024; 22:59. [PMID: 38254135 PMCID: PMC10802000 DOI: 10.1186/s12964-023-01428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
The immune responses to cancer cells involve both innate and acquired immune cells. In the meantime, the most attention has been drawn to the adaptive immune cells, especially T cells, while, it is now well known that the innate immune cells, especially natural killer (NK) cells, play a vital role in defending against malignancies. While the immune cells are trying to eliminate malignant cells, cancer cells try to prevent the function of these cells and suppress immune responses. The suppression of NK cells in various cancers can lead to the induction of an exhausted phenotype in NK cells, which will impair their function. Recent studies have shown that the occurrence of this phenotype in various types of leukemic malignancies can affect the prognosis of the disease, and targeting these cells may be considered a new immunotherapy method in the treatment of leukemia. Therefore, a detailed study of exhausted NK cells in leukemic diseases can help both to understand the mechanisms of leukemia progression and to design new treatment methods by creating a deeper understanding of these cells. Here, we will comprehensively review the immunobiology of exhausted NK cells and their role in various leukemic malignancies. Video Abstract.
Collapse
Affiliation(s)
- Asal Barshidi
- Department of Biological Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran
| | - Keivan Ardeshiri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Sauerer T, Velázquez GF, Schmid C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: immune escape mechanisms and current implications for therapy. Mol Cancer 2023; 22:180. [PMID: 37951964 PMCID: PMC10640763 DOI: 10.1186/s12943-023-01889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the expansion of immature myeloid cells in the bone marrow (BM) and peripheral blood (PB) resulting in failure of normal hematopoiesis and life-threating cytopenia. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an established therapy with curative potential. Nevertheless, post-transplant relapse is common and associated with poor prognosis, representing the major cause of death after allo-HCT. The occurrence of relapse after initially successful allo-HCT indicates that the donor immune system is first able to control the leukemia, which at a later stage develops evasion strategies to escape from immune surveillance. In this review we first provide a comprehensive overview of current knowledge regarding immune escape in AML after allo-HCT, including dysregulated HLA, alterations in immune checkpoints and changes leading to an immunosuppressive tumor microenvironment. In the second part, we draw the line from bench to bedside and elucidate to what extend immune escape mechanisms of relapsed AML are yet exploited in treatment strategies. Finally, we give an outlook how new emerging technologies could help to improve the therapy for these patients, and elucidate potential new treatment options.
Collapse
Affiliation(s)
- Tatjana Sauerer
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Giuliano Filippini Velázquez
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany.
| |
Collapse
|
9
|
Guo X, Yu S, Ren X, Li L. Immune checkpoints represent a promising breakthrough in targeted therapy and prognosis of myelodysplastic syndrome. Heliyon 2023; 9:e19222. [PMID: 37810157 PMCID: PMC10558320 DOI: 10.1016/j.heliyon.2023.e19222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a hematological malignancy of undetermined etiology, possibly linked to chromosomal structural alterations, genetic mutations, presentation and carcinogenicity of variant antigens on cell surface, and the generation of pro-inflammatory microenvironment in the bone marrow. Current drugs are unable to cure this disease, and therefore, decreasing the survival and proliferation of malignant cells to delay disease progression and extend the survival time of patients becomes the primary approach to management. In recent years, the immune system has received increasing attention for its potential role in the occurrence and development of MDS, leading to the emergence of immunoregulation as a viable treatment option. The current review provides a brief overview of pathogenesis of MDS and current treatment principles. In the meantime, the significance of immune proteins in treatment and prognosis of MDS is also discussed.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| | - Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| |
Collapse
|
10
|
Ma L, Ma J, Sun X, Liu H. Bispecific anti-CD3×anti-CD155 antibody mediates T-cell immunotherapy in human haematologic malignancies. Invest New Drugs 2023:10.1007/s10637-023-01367-2. [PMID: 37198354 DOI: 10.1007/s10637-023-01367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
T cells are important components in the cell-mediated antitumour response. In recent years, bispecific antibodies (Bi-Abs) have become promising treatments because of their ability to recruit T cells that kill tumours. Here, we demonstrate that CD155 is expressed in a wide range of human haematologic tumours and report on the ability of the bispecific antibody anti-CD3 x anti-CD155 (CD155Bi-Ab) to activate T cells targeting malignant haematologic cells. The specific cytolytic effect of T cells armed with CD155Bi-Ab was evaluated by quantitative luciferase assay, and the results showed that the cytolytic effect of these cells was accompanied by an increase in the level of the cell-killing mediator perforin. Moreover, compared with their unarmed T-cell counterparts, CD155Bi-Ab-armed T cells induced significant cytotoxicity in CD155-positive haematologic tumour cells, as indicated by lactate dehydrogenase assays, and these results were accompanied by increased granzyme B secretion. Furthermore, CD155Bi-Ab-armed T cells produced more T-cell-derived cytokines, including TNF-α, IFN-γ, and IL-2. In conclusion, CD155Bi-Ab enhances the ability of T cells to kill haematologic tumour cells, and therefore, CD155 may serve as a novel target for immunotherapy against haematologic malignancies.
Collapse
Affiliation(s)
- Li Ma
- Department of Pathology, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Juan Ma
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xin Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- College of Basic Medical Science, Peking University Health Science Center, Beijing, 100191, China
| | - Honggang Liu
- Department of Pathology, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
11
|
Wang Y, Huang D, Liu L, Wang A, Gao Y, Lin H. Research Progress of B-Cell Lymphoma/Leukemia-2 Inhibitor Combined with Azacytidine in the Targeted Therapy of Acute Myeloid Leukemia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3992224. [PMID: 36254240 PMCID: PMC9569197 DOI: 10.1155/2022/3992224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Objective To investigate the efficacy and safety of azacytidine and B-cell lymphoma/leukemia-2 inhibitors in the treatment of patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Methods The clinical data of 31 patients with AML/MDS who were clearly diagnosed with AML/MDS were analyzed from 2018.10 to 2021.02, and the total amount of azacyclonol and B-cell lymphoma/leukemia-2 inhibitor was used for single or combined chemotherapy, with a total amount of 75 mg/m2 ∗7 d, divided into 7-10 days of continuous subcutaneous injection, every 28-30 days for a course of treatment. Overall response rate (ORR), median survival, poor response, and genetic mutations were observed. Results A total of 104 courses of treatment were completed in 31 patients, the median course was 3 (1-12), and 6 patients who did not complete 2 courses of treatment were not counted in the statistics. After 2 courses, ORR was 72.0%, CRES was 2 (8.0%), mCR was 16 (64.0%), disease stable was 5 (20.0%), treatment failures were 2 (8.0%), mortality was 40.0%, and median survival time was >5 months. Single-agent and combined ORR was 64.3% and 81.8%, respectively, with median survival of 7.25 and 9 months; ORR for MDS and AML was 66.7% and 76.9%, respectively, median survival of 8 and 11 months was 66.7% and 80.0% of ORRs at 260 and V60 years, respectively, and median survival of 7 and 11.5 months; MDS-EB-1. The ORR of MDS-EB-2 was 75.0% and 62.5%, respectively, with median survival times of 11.5 and 6.5 months. During 2 courses and 4 courses, the rate of transfusion dependence was 64.0% and 55.5%, respectively. Fifteen cases were detected by second-generation sequencing, and the results were 14 cases of combined gene mutations. Conclusion Azacytidine and B-cell lymphoma/leukemia-2 inhibitors have good efficacy and high safety in the treatment of AML and MDS, and the combined treatment is better than that of monotherapy, but the side effects of combination therapy are large.
Collapse
Affiliation(s)
- Yanyu Wang
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Dan Huang
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Lejia Liu
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Aixin Wang
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Yuan Gao
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Huan Lin
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| |
Collapse
|
12
|
Valeri A, García-Ortiz A, Castellano E, Córdoba L, Maroto-Martín E, Encinas J, Leivas A, Río P, Martínez-López J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022; 13:953849. [PMID: 35990652 PMCID: PMC9381932 DOI: 10.3389/fimmu.2022.953849] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the impressive results of autologous CAR-T cell therapy in refractory B lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer, faster, and cost-effective approach with no signs of severe toxicities as described for CAR-T cells. Permanently scrutinized for its efficacy, recent promising data in CAR-NK clinical trials point out the achievement of deep, high-quality responses, thus confirming its potential clinical use. Although CAR-NK cell therapy is not significantly affected by the loss or downregulation of its CAR tumor target, as in the case of CAR-T cell, a plethora of common additional tumor intrinsic or extrinsic mechanisms that could also disable NK cell function have been described. Therefore, considering lessons learned from CAR-T cell therapy, the emergence of CAR-NK cell therapy resistance can also be envisioned. In this review we highlight the processes that could be involved in its development, focusing on cytokine addiction and potential fratricide during manufacturing, poor tumor trafficking, exhaustion within the tumor microenvironment (TME), and NK cell short in vivo persistence on account of the limited expansion, replicative senescence, and rejection by patient’s immune system after lymphodepletion recovery. Finally, we outline new actively explored alternatives to overcome these resistance mechanisms, with a special emphasis on CRISPR/Cas9 mediated genetic engineering approaches, a promising platform to optimize CAR-NK cell function to eradicate refractory cancers.
Collapse
Affiliation(s)
- Antonio Valeri
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eva Castellano
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Maroto-Martín
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jessica Encinas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Leivas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Joaquín Martínez-López,
| |
Collapse
|
13
|
Role of Biomarkers in FLT3 AML. Cancers (Basel) 2022; 14:cancers14051164. [PMID: 35267471 PMCID: PMC8909069 DOI: 10.3390/cancers14051164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Genetically heterogeneous disorder acute myeloid leukemia (AML) is marked by recurring mutations in FLT3. Current FLT3 inhibitors and other emerging inhibitors have helped in the improvement of the quality of standard of care therapies; however, the overall survival of the patients remains static. This is due to numerous mutations in FLT3, which causes resistance against these FLT3 inhibitors. For effective treatment of AML patients, alternative approaches are required to overcome this resistance. Here, we will summarize the biomarkers for FLT3 inhibitors in AML, as well as the alternative measures to overcome resistance to the current therapies. Abstract Acute myeloid leukemia is a disease characterized by uncontrolled proliferation of clonal myeloid blast cells that are incapable of maturation to leukocytes. AML is the most common leukemia in adults and remains a highly fatal disease with a five-year survival rate of 24%. More than 50% of AML patients have mutations in the FLT3 gene, rendering FLT3 an attractive target for small-molecule inhibition. Currently, there are several FLT3 inhibitors in the clinic, and others remain in clinical trials. However, these inhibitors face challenges due to lack of efficacy against several FLT3 mutants. Therefore, the identification of biomarkers is vital to stratify AML patients and target AML patient population with a particular FLT3 mutation. Additionally, there is an unmet need to identify alternative approaches to combat the resistance to FLT3 inhibitors. Here, we summarize the current knowledge on the utilization of diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for FLT3-mutated AML. The resistance mechanisms to various FLT3 inhibitors and alternative approaches to combat this resistance are also discussed and presented.
Collapse
|