1
|
Wasson MCD, Venkatesh J, Cahill HF, McLean ME, Dean CA, Marcato P. LncRNAs exhibit subtype-specific expression, survival associations, and cancer-promoting effects in breast cancer. Gene 2024; 901:148165. [PMID: 38219875 DOI: 10.1016/j.gene.2024.148165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in cancer progression, influencing processes such as invasion, metastasis, and drug resistance. Their reported cell type-dependent expression patterns suggest the potential for specialized functions in specific contexts. In breast cancer, lncRNA expression has been associated with different subtypes, highlighting their relevance in disease heterogeneity. However, our understanding of lncRNA function within breast cancer subtypes remains limited, warranting further investigation. We conducted a comprehensive analysis using the TANRIC dataset derived from the TCGA-BRCA cohort, profiling the expression, patient survival associations and immune cell type correlations of 12,727 lncRNAs across subtypes. Our findings revealed subtype-specific associations of lncRNAs with patient survival, tumor infiltrating lymphocytes and other immune cells. Targeting of lncRNAs exhibiting subtype-specific survival associations and expression in a panel of breast cancer cells demonstrated a selective reduction in cell proliferation within their associated subtype, supporting subtype-specific functions of certain lncRNAs. Characterization of HER2 + -specific lncRNA LINC01269 and TNBC-specific lncRNA AL078604.2 showed nuclear localization and altered expression of hundreds of genes enriched in cancer-promoting processes, including apoptosis, cell proliferation and immune cell regulation. This work emphasizes the importance of considering the heterogeneity of breast cancer subtypes and the need for subtype-specific analyses to fully uncover the relevance and potential impact of lncRNAs. Collectively, these findings demonstrate the contribution of lncRNAs to the distinct molecular, prognostic, and cellular composition of breast cancer subtypes.
Collapse
Affiliation(s)
| | | | - Hannah F Cahill
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Meghan E McLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Cheryl A Dean
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada; Nova Scotia Health Authority, Halifax, NS B3H1V8, Canada.
| |
Collapse
|
2
|
Liu Y, Zhang L, Lei X, Yin X, Liu S. Development of an immunogenic cell death prognostic signature for predicting clinical outcome and immune infiltration characterization in stomach adenocarcinoma. Aging (Albany NY) 2023; 15:11389-11411. [PMID: 37862109 PMCID: PMC10637829 DOI: 10.18632/aging.205132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
Stomach adenocarcinoma (STAD) is a common gastric histological cancer type with a high mortality rate. Immunogenic cell death (ICD) plays a key factor during carcinogenesis progress, whereas the prognostic value and role of ICD-related genes (ICDRGs) in STAD remain unclear. The MSigDB database collecting ICDRGs were selected by univariate Cox regression analysis and LASSO algorithm to establish a novel risk model. The Kaplan-Meier survival analysis indicated a significant difference of OS rate of patients by risk score stratification. ESTIMATE, CIBERSORT, and single sample gene set enrichment analysis (ssGSEA) algorithms were conducted to estimate the immune infiltration landscape by risk stratification. Subgroup analysis and tumor mutation burden analysis were also analyzed to identify characteristics between groups. Differences in therapeutic responsiveness to chemotherapeutic drugs and targeted drugs were also analyzed between high-risk group and low-risk group. The impact of one ICDRG, GPX1, on the proliferation, migration and invasiveness of was confirmed by in vitro experiments in GC cells to test the reliability of bioinformatics results. This study gives evidence of the involvement of ICD process in STAD and provides a new perspective for further accurate assessment of prognosis and therapeutic efficacy in STAD patients. Stomach adenocarcinoma (STAD) is a common gastric histological cancer type with a high mortality rate. Immunogenic cell death (ICD) plays a key factor during carcinogenesis progress, whereas the prognostic value and role of ICD-related genes (ICDRGs) in STAD remains unclear. The MSigDB database collected ICDRGs were selected by univariate Cox regression analysis and LASSO algorithm to establish a novel risk model. The Kaplan-Meier survival analysis indicated a significant difference of OS rate of patients by risk score stratification. ESTIMATE, CIBERSORT, and single sample gene set enrichment analysis (ssGSEA) algorithms were conducted to estimate the immune infiltration landscape by risk stratification. Subgroup analysis and tumor mutation burden analysis were also analyzed to identify characteristics between groups. Differences in therapeutic responsiveness to chemotherapeutic drugs and targeted drugs were also analyzed between high-risk group and low-risk group. The impact of one ICDRG, GPX1, on the proliferation, migration and invasiveness of was confirmed by in vitro experiments in GC cells to test the reliability of bioinformatics results. This study gives evidence of the involvement of ICD process in STAD and provides a new perspective for further accurate assessment of prognosis and therapeutic efficacy in STAD patients.
Collapse
Affiliation(s)
- Ye Liu
- Department of Intensive Care Unit, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Lijia Zhang
- Ethics Committee Office, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Xue Lei
- Department of Clinical Specialty of Integrated Traditional Chinese and Western Medicine, Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Xinyu Yin
- Department of Clinical Specialty of Integrated Traditional Chinese and Western Medicine, Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Songjiang Liu
- Department of Oncology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
3
|
Ni Q, Li X, Huang H, Ge Z. Decreased expression of SCARA5 predicts a poor prognosis in melanoma using bioinformatics analysis. Front Oncol 2023; 13:1015358. [PMID: 37035142 PMCID: PMC10079878 DOI: 10.3389/fonc.2023.1015358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Background It has been established that the scavenger receptor class A member 5 (SCARA5) functions as a tumor suppressor gene in various cancer types. To our knowledge, no comprehensive study has hitherto investigated the expression and function of SCARA5 in melanoma. This study aimed to determine the association between SCARA5 and melanoma. Methods Analysis of SCARA5 mRNA expression was performed using The Cancer Genome Atlas (TCGA) data sets. To evaluate the clinical significance of SCARA5, the clinical data of 93 patients with melanoma were collected. The role of SCARA5 expression in prognosis was also analyzed. In this study, survival was evaluated by Kaplan-Meier analysis and compared using the log-rank test. Univariate and multivariate Cox proportional hazard regression analyses were used to identify independent predictors. The Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and gene set enrichment analysis (GSEA) were used to perform gene set functional annotations. Protein-protein interaction (PPI) networks were constructed to illustrate gene-gene interactions. The Tumor IMmune Estimation Resource (TIMER) database was used to explore the association between SCARA5 and immune infiltration levels. Results The results showed that the SCARA5 mRNA expression in melanoma was significantly lower than in adjacent normal skin tissue (p < 0.001). Moreover, decreased expression of SCARA5 in melanoma correlated with the tumor, node, and metastasis (TNM) stage and recurrence (p < 0.05). The overall survival (OS) was significantly higher in melanoma with high SCARA5 expression compared with low SCARA5 expression (p < 0.001). During univariate analysis, SCARA5 expression, tumor (T) stage, node (N) stage, metastasis (M) stage, and recurrence correlated with OS (p < 0.05). Further multivariate Cox regression analysis showed that SCARA5 expression (p = 0.012) could be an independent prognostic factor for OS in cutaneous malignant melanoma. GSEA analysis showed that SCARA5 was significantly enriched in various pathways, such as response to developmental biology and response to antimicrobial peptides. Correlation analysis showed a positive correlation with CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (p < 0.05), and a negative correlation with tumor purity (p < 0.05). Conclusion SCARA5 has significant potential as a prognostic biomarker and as a promising therapeutic target in melanoma. Furthermore, SCARA5 expression in melanoma is related to the level of immune infiltration.
Collapse
Affiliation(s)
- Qinggan Ni
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Burns and Plastic Surgery, Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, China
| | - Xia Li
- Department of General Medicine, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zili Ge
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Zili Ge,
| |
Collapse
|
4
|
Zhou W, Xu X, Cen Y, Chen J. The role of lncRNAs in the tumor microenvironment and immunotherapy of melanoma. Front Immunol 2022; 13:1085766. [PMID: 36601121 PMCID: PMC9806239 DOI: 10.3389/fimmu.2022.1085766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is one of the most lethal tumors with highly aggressive and metastatic properties. Although immunotherapy and targeted therapy have certain therapeutic effects in melanoma, a significant proportion of patients still have drug resistance after treatment. Recent studies have shown that long noncoding RNAs (lncRNAs) are widely recognized as regulatory factors in cancer. They can regulate numerous cellular processes, including cell proliferation, metastasis, epithelial-mesenchymal transition (EMT) progression and the immune microenvironment. The role of lncRNAs in malignant tumors has received much attention, whereas the relationship between lncRNAs and melanoma requires further investigation. Our review summarizes tumor suppressive and oncogenic lncRNAs closely related to the occurrence and development of melanoma. We summarize the role of lncRNAs in the immune microenvironment, immunotherapy and targeted therapy to provide new targets and therapeutic methods for clinical treatment.
Collapse
|
5
|
Yang X, Wang X, Sun X, Xiao M, Fan L, Su Y, Xue L, Luo S, Hou S, Wang H. Construction of five cuproptosis-related lncRNA signature for predicting prognosis and immune activity in skin cutaneous melanoma. Front Genet 2022; 13:972899. [PMID: 36160015 PMCID: PMC9490379 DOI: 10.3389/fgene.2022.972899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cuproptosis is a newly discovered new mechanism of programmed cell death, and its unique pathway to regulate cell death is thought to have a unique role in understanding cancer progression and guiding cancer therapy. However, this regulation has not been studied in SKCM at present. In this study, data on Skin Cutaneous Melanoma (SKCM) patients were downloaded from the TCGA database. We screened the genes related to cuproptosis from the published papers and confirmed the lncRNAs related to them. We applied Univariate/multivariate and LASSO Cox regression algorithms, and finally identified 5 cuproptosis-related lncRNAs for constructing prognosis prediction models (VIM-AS1, AC012443.2, MALINC1, AL354696.2, HSD11B1-AS1). The reliability and validity test of the model indicated that the model could well distinguish the prognosis and survival of SKCM patients. Next, immune microenvironment, immunotherapy analysis, and functional enrichment analysis were also performed. In conclusion, this study is the first analysis based on cuproptosis-related lncRNAs in SKCM and aims to open up new directions for SKCM therapy.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Xiaojing Yang, ; Huiping Wang,
| | - Xing Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinti Sun
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Xiao
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Liyun Fan
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunwei Su
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Xue
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Suju Luo
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuping Hou
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Xiaojing Yang, ; Huiping Wang,
| |
Collapse
|
6
|
Chen Y, Yi X, Sun N, Guo W, Li C. Epigenetics Regulates Antitumor Immunity in Melanoma. Front Immunol 2022; 13:868786. [PMID: 35693795 PMCID: PMC9174518 DOI: 10.3389/fimmu.2022.868786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Melanoma is the most malignant skin cancer, which originates from epidermal melanocytes, with increasing worldwide incidence. The escape of immune surveillance is a hallmark of the tumor, which is manifested by the imbalance between the enhanced immune evasion of tumor cells and the impaired antitumor capacity of infiltrating immune cells. According to this notion, the invigoration of the exhausted immune cells by immune checkpoint blockades has gained encouraging outcomes in eliminating tumor cells and significantly prolonged the survival of patients, particularly in melanoma. Epigenetics is a pivotal non-genomic modulatory paradigm referring to heritable changes in gene expression without altering genome sequence, including DNA methylation, histone modification, non-coding RNAs, and m6A RNA methylation. Accumulating evidence has demonstrated how the dysregulation of epigenetics regulates multiple biological behaviors of tumor cells and contributes to carcinogenesis and tumor progression in melanoma. Nevertheless, the linkage between epigenetics and antitumor immunity, as well as its implication in melanoma immunotherapy, remains elusive. In this review, we first introduce the epidemiology, clinical characteristics, and therapeutic innovations of melanoma. Then, the tumor microenvironment and the functions of different types of infiltrating immune cells are discussed, with an emphasis on their involvement in antitumor immunity in melanoma. Subsequently, we systemically summarize the linkage between epigenetics and antitumor immunity in melanoma, from the perspective of distinct paradigms of epigenetics. Ultimately, the progression of the clinical trials regarding epigenetics-based melanoma immunotherapy is introduced.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ningyue Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Shan B, Qu S, Lv S, Fan D, Wang S. YY1-induced long non-coding RNA small nucleolar RNA host gene 8 promotes the tumorigenesis of melanoma via the microRNA-656-3p/SERPINE1 mRNA binding protein 1 axis. Bioengineered 2022; 13:4832-4843. [PMID: 35156513 PMCID: PMC8973976 DOI: 10.1080/21655979.2022.2034586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long non-coding (lnc) RNA serves a vital role in the cellular processes of carcinoma. This study aimed to explore the accurate mechanism underlying lncRNA small nucleolar RNA host gene 8 (SNHG8) in melanoma. In this study, lncRNA SNHG8 expression were upregulated in melanoma tissues and cells, and lncRNA SNHG8 knockdown reduced melanoma cell viability, migration and invasion. Moreover, lncRNA SNHG8 expression could be induced by transcription factor YY1. In addition, we found that miR-656 could directly bind to lncRNA SNHG8 and SERPINE1 mRNA binding protein 1 (SERBP1). Rescue assays indicated that miR-656 overexpression inhibited the aforementioned cellular activities in melanoma cells, which were reversed by SERBP1 overexpression. In conclusion, this work elucidated that YY1-induced upregulation of lncRNA SNHG8 boosted the development of melanoma via the miR-656-3p/SERBP1 axis, providing a novel therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Baihui Shan
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Shengming Qu
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Sha Lv
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Dandan Fan
- Department of Dermatology, Jilin Province People’s Hospital, China
| | - Shu Wang
- Department of Radio Therapy, The Second Hospital of Jilin University, China
| |
Collapse
|