1
|
Constantin M, Chifiriuc MC, Bleotu C, Vrancianu CO, Cristian RE, Bertesteanu SV, Grigore R, Bertesteanu G. Molecular pathways and targeted therapies in head and neck cancers pathogenesis. Front Oncol 2024; 14:1373821. [PMID: 38952548 PMCID: PMC11215092 DOI: 10.3389/fonc.2024.1373821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
The substantial heterogeneity exhibited by head and neck cancer (HNC), encompassing diverse cellular origins, anatomical locations, and etiological contributors, combined with the prevalent late-stage diagnosis, poses significant challenges for clinical management. Genomic sequencing endeavors have revealed extensive alterations in key signaling pathways that regulate cellular proliferation and survival. Initiatives to engineer therapies targeting these dysregulated pathways are underway, with several candidate molecules progressing to clinical evaluation phases, including FDA approval for agents like the EGFR-targeting monoclonal antibody cetuximab for K-RAS wild-type, EGFR-mutant HNSCC treatment. Non-coding RNAs (ncRNAs), owing to their enhanced stability in biological fluids and their important roles in intracellular and intercellular signaling within HNC contexts, are now recognized as potent biomarkers for disease management, catalyzing further refined diagnostic and therapeutic strategies, edging closer to the personalized medicine desideratum. Enhanced comprehension of the genomic and immunological landscapes characteristic of HNC is anticipated to facilitate a more rigorous assessment of targeted therapies benefits and limitations, optimize their clinical deployment, and foster innovative advancements in treatment approaches. This review presents an update on the molecular mechanisms and mutational spectrum of HNC driving the oncogenesis of head and neck malignancies and explores their implications for advancing diagnostic methodologies and precision therapeutics.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| | - Raluca Grigore
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| |
Collapse
|
2
|
Gadewal N, Natu A, Sen S, Rauniyar S, Bastikar V, Gupta S. Integrative epigenome-transcriptome analysis unravels cancer-specific over-expressed genes potentially regulating immune microenvironment in clear cell renal cell carcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130596. [PMID: 38471632 DOI: 10.1016/j.bbagen.2024.130596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Clear cell Renal Cell Carcinoma (ccRCC) is the frequently diagnosed histological life-threatening tumor subtype in the urinary system. Integrating multi-omics data is emerging as a tool to provide a comprehensive view of biology and disease for better therapeutic interventions. METHOD We have integrated freely available ccRCC data sets of genome-wide DNA methylome, transcriptome, and active histone modification marks, H3K27ac, H3K4me1, and H3K4me3 specific ChIP-seq data to screen genes with higher expression. Further, these genes were filtered based on their effect on survival upon alteration in expression. RESULTS The six multi-omics-based identified genes, RUNX1, MSC, ADA, TREML1, TGFA, and VWF, showed higher expression with enrichment of active histone marks and hypomethylated CpG in ccRCC. In continuation, the identified genes were validated by an independent dataset and showed a correlation with nodal and metastatic status. Furthermore, gene ontology and pathway analysis revealed that immune-related pathways are activated in ccRCC patients. CONCLUSIONS The network analysis of six overexpressed genes suggests their potential role in an immunosuppressive environment, leading to tumor progression and poor prognosis. Our study shows that the multi-omics approach helps unravel complex biology for patient subtyping and proposes combination strategies with epi-drugs for more precise immunotherapy in ccRCC.
Collapse
Affiliation(s)
- Nikhil Gadewal
- Bioinformatics & Computational Biology Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Center for Computational Biology & Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan, Post - Somathne, Panvel, Mumbai, 410206, MH, India
| | - Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, MH, India
| | - Siddhartha Sen
- Bioinformatics & Computational Biology Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India
| | - Sukanya Rauniyar
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, MH, India
| | - Virupaksha Bastikar
- Center for Computational Biology & Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan, Post - Somathne, Panvel, Mumbai, 410206, MH, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, MH, India.
| |
Collapse
|
3
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
4
|
Chen W, Wu Y, Deng J, Yang Z, Chen J, Tan Q, Guo M, Jin Y. Phospholipid-Membrane-Based Nanovesicles Acting as Vaccines for Tumor Immunotherapy: Classification, Mechanisms and Applications. Pharmaceutics 2022; 14:pharmaceutics14112446. [PMID: 36432636 PMCID: PMC9698496 DOI: 10.3390/pharmaceutics14112446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Membrane vesicles, a group of nano- or microsized vesicles, can be internalized or interact with the recipient cells, depending on their parental cells, size, structure and content. Membrane vesicles fuse with the target cell membrane, or they bind to the receptors on the cell surface, to transfer special effects. Based on versatile features, they can modulate the functions of immune cells and therefore influence immune responses. In the field of tumor therapeutic applications, phospholipid-membrane-based nanovesicles attract increased interest. Academic institutions and industrial companies are putting in effort to design, modify and apply membrane vesicles as potential tumor vaccines contributing to tumor immunotherapy. This review focuses on the currently most-used types of membrane vesicles (including liposomes, bacterial membrane vesicles, tumor- and dendritic-cell-derived extracellular vesicles) acting as tumor vaccines, and describes the classification, mechanism and application of these nanovesicles.
Collapse
Affiliation(s)
- Wenjuan Chen
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yali Wu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jingjing Deng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Correspondence: ; Tel.: +86-135-5436-1146
| |
Collapse
|