1
|
Muhammad FA, Adhab AH, Mahdi MS, Jain V, Ganesan S, Bhanot D, Naidu KS, Kaur S, Mansoor AS, Radi UK, Abd NS, Kariem M. Unveiling Novel Targets in Lung Tumors for Enhanced Radiotherapy Efficacy: A Comprehensive Review. J Biochem Mol Toxicol 2025; 39:e70180. [PMID: 39987513 DOI: 10.1002/jbt.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Radiotherapy is a cornerstone of lung cancer management, though its efficacy is frequently undermined by intrinsic and acquired radioresistance. This review examines the complexity of lung tumors, highlighting their potential as a reservoir of novel targets for radiosensitization. Ionizing radiation (IR) primarily exerts its effects through oxidative damage and DNA double-strand breaks (DSBs). Lung cancer cells, however, develop mutations that enhance DNA damage response (DDR) and suppress cell death pathways. Additionally, interactions between tumor cells and tumor microenvironment (TME) components-including immune cells, stromal cells, and molecular mediators such as cytokines, chemokines, and growth factors-contribute to resistance against IR. Understanding these intricate relationships reveals potential targets to improve radiotherapy outcomes. Promising targets include DDR pathways, immunosuppressive cells and molecules, hypoxia, proangiogenic mediators, and other key signaling pathways. This review discusses emerging strategies, such as combining radiotherapy with immunomodulators, hypoxia and proangiogenic inhibitors, DDR-targeting agents, and other innovative approaches. By offering a comprehensive analysis of the lung TME, this review underscores opportunities to enhance radiotherapy effectiveness through targeted radiosensitization strategies.
Collapse
Affiliation(s)
| | | | | | - Vicky Jain
- Department of Chemistry, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, India
| | - Sharnjeet Kaur
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Nasiriyah, Iraq
| | - Nasr Saadoun Abd
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Wang M, Li W, Zhou F, Wang Z, Jia X, Han X. A nicotinamide metabolism-related gene signature for predicting immunotherapy response and prognosis in lung adenocarcinoma patients. PeerJ 2025; 13:e18991. [PMID: 40034678 PMCID: PMC11874940 DOI: 10.7717/peerj.18991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Background Nicotinamide (NAM) metabolism fulfills crucial functions in tumor progression. The present study aims to establish a NAM metabolism-correlated gene (NMRG) signature to assess the immunotherapy response and prognosis of lung adenocarcinoma (LUAD). Methods The training set and validation set (the GSE31210 dataset) were collected The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Molecular subtypes of LUAD were classified by consensus clustering. Mutation landscape of the top 20 somatic genes was visualized by maftools package. Subsequently, differential expression analysis was conducted using the limma package, and univariate, multivariate and LASSO regression analyses were performed on the screened genes to construct a risk model for LUAD. Next, the MCP-counter, TIMER and ESTIMATE algorithms were utilized to comprehensively assess the immune microenvironmental profile of LUAD patients in different risk groups. The efficacy of immunotherapy and chemotherapy drugs was evaluated by TIDE score and pRRophetic package. A nomogram was created by integrating RiskScore and clinical features. The mRNA expressions of independent prognostic NMRGs and the migration and invasion of LUAD cells were measured by carrying out cellular assays. Results Two subtypes (C1 and C2) of LUAD were classified, with C1 subtype showing a worse prognosis than C2. The top three genes with a high mutation frequency in C1 and C2 subtypes were TTN (45.25%), FLG (25.25%), and ZNF536 (19.8%). Four independent prognostic NMRGs (GJB3, CPA3, DKK1, KRT6A) were screened and used to construct a RiskScore model, which exhibited a strong predictive performance. High-risk group showed low immune cell infiltration, high TIDE score, and worse prognosis, and the patients in this group exhibited a high drug sensitivity to Cisplatin, Erlotinib, Paclitaxel, Saracatini, and CGP_082996. A nomogram was established with an accurate predictive and diagnostic performance. GJB3, DKK1, CPA3, and KRT6A were all high- expressed in LUAD cells, and silencing GJB3 inhibited the migration and invasion of LUAD cells. Conclusion A novel NMRG signature was developed, contributing to the prognostic evaluation and personalized treatment for LUAD patients.
Collapse
Affiliation(s)
- Meng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Fang Zhou
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Zheng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Xiaoteng Jia
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Xingpeng Han
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Yesupogu Moorthy Babu J, Manoharan R. NUAKs facilitate mTOR-mediated NSCLC proliferation and metastasis by modulating glucose metabolism and inhibiting p53 activity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119922. [PMID: 39965261 DOI: 10.1016/j.bbamcr.2025.119922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Non-small cell lung cancer (NSCLC) cells frequently exhibit aberrant glucose metabolism, characterized by elevated aerobic glycolysis, pentose phosphate pathway (PPP), and reduced oxidative phosphorylation. However, the specific mechanisms underlying the abnormal activation of glucose metabolism and its contribution to NSCLC tumorigenesis remain incompletely elucidated. In this study, we observed that both NUAK1 and NUAK2 mRNA expression levels were significantly elevated in NSCLC tissues compared to non-tumor tissues, and that high NUAK1/2 expression correlated with poor prognosis in NSCLC patients. Furthermore, NUAK1/2 promotes aerobic glycolysis and PPP in NSCLC cells and stimulates cellular proliferation and migration. Depletion or inhibition of NUAK1/2 results in decreased aerobic glycolysis, PPP activity, cell proliferation, and migration, leading to increased apoptosis of NSCLC cells. Mechanistically, NUAK1/2 enhances mTOR activity by suppressing the activity of p53, thereby promoting NSCLC cell growth and metastasis through the promotion of aerobic glycolysis and PPP. Our findings suggest that NUAK1/2 plays a crucial role in glucose reprogramming and tumorigenesis in NSCLC cells, indicating that targeting NUAK1/2 may represent a potential therapeutic strategy for NSCLC metabolism.
Collapse
Affiliation(s)
- Jaithanya Yesupogu Moorthy Babu
- Cell Signaling and Cancer Biology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Ravi Manoharan
- Cell Signaling and Cancer Biology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India.
| |
Collapse
|
4
|
Karankar VS, Awasthi S, Srivastava N. Peptide-driven strategies against lung cancer. Life Sci 2025; 366-367:123453. [PMID: 39923837 DOI: 10.1016/j.lfs.2025.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Lung cancer remains one of the most significant global health challenges, accounting for 18 % of all cancer-related deaths. While risk factors such as heavy metal exposure and cigarette smoking are well-known contributors, the limitations of conventional treatments including severe side effects and drug resistance highlight the urgent need for more targeted and safer therapeutic options. In this context, peptides have emerged as a novel, precise, and effective class of therapies for lung cancer treatment. They have shown promise in limiting lung cancer progression by targeting key molecular pathways involved in tumour growth. Anti-non-small cell lung cancer peptides that specifically target proteins such as EGFR, TP53, BRAF, MET, ROS1, and ALK have demonstrated potential in improving lung cancer outcomes. Additionally, anti-inflammatory and apoptosis-inducing peptides offer further therapeutic benefits. This review provides a comprehensive overview of the peptides currently in use or under investigation for the treatment of lung cancer, highlighting their mechanisms of action and therapeutic potential. As research continues to advance, peptides are poised to become a promising new therapeutic option in the fight against lung cancer.
Collapse
Affiliation(s)
- Vijayshree S Karankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Saurabh Awasthi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India.
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Feng W, Ting Y, Tang X, Liu D, Zhou WC, Li Y, Shen Z. The role of ESM1 in the lipids metabolic reprogramming and angiogenesis of lung adenocarcinoma cells. Heliyon 2024; 10:e36897. [PMID: 39281564 PMCID: PMC11400980 DOI: 10.1016/j.heliyon.2024.e36897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the respiratory diseases with high mortality and incidence. As an important angiogenic factor, (Endothelial cell-specific molecule 1) ESM1 plays an important role in the occurrence and development of LUAD. However, the role and molecular mechanism of ESM1 on LUAD metabolic reprogramming and angiogenesis remain unclear. Methods We used multiple databases to analyze the prognostic significance and potential function of ESM1 in patients with LUAD. The expression of ESM1 in LUAD cells was down-regulated/overexpressed by RNA interference, and the effects of ESM1 on the proliferation, migration, lipid metabolism and angiogenesis of LUAD cells in vitro and in vivo were analyzed using MTT, EdU, wound healing, oil red O, tubule formation, xenograft tumor model and chicken embryo allantoic model. Results ESM1 is closely associated with poor prognosis in LUAD patients. ESM1 promotes LUAD proliferation, migration, fatty acid synthesis and angiogenesis. It also accelerates the proliferation, migration, lipid synthesis and tubule formation of endothelial cells in the tumor microenvironment in the form of secreted protein. Mechanically, ESM1 can promote the activation of AKT signaling pathway and up-regulate the expression of SCD1 and FASN. Conclusion Our results suggest that ESM1 promotes the proliferation, migration, lipid reprogramming, and angiogenesis of LUAD cells by activating the AKT signaling pathway, suggesting that ESM1 may be a potential therapeutic target and prognostic marker in LUAD patients.
Collapse
Affiliation(s)
- Wenchang Feng
- Cardiology Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ting
- Department of Trauma Center, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Chao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Zhenyu Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
6
|
Guo Z, Liu Y, Li X, Huang Y, Zhou Z, Yang C. Reprogramming hematopoietic stem cell metabolism in lung cancer: glycolysis, oxidative phosphorylation, and the role of 2-DG. Biol Direct 2024; 19:73. [PMID: 39182128 PMCID: PMC11344923 DOI: 10.1186/s13062-024-00514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Hematopoietic stem cells (HSCs) exhibit significant functional and metabolic alterations within the lung cancer microenvironment, contributing to tumor progression and immune evasion by increasing differentiation into myeloid-derived suppressor cells (MDSCs). Our aim is to analyze the metabolic transition of HSCs from glycolysis to oxidative phosphorylation (OXPHOS) in lung cancer and determine its effects on HSC functionality. Using a murine Lewis Lung Carcinoma lung cancer model, we conducted metabolic profiling of long-term and short-term HSCs, as well as multipotent progenitors, comparing their metabolic states in normal and cancer conditions. We measured glucose uptake using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-Deoxyglucose (2-NBDG) and assessed levels of lactate, acetyl-coenzyme A, and ATP. Mitochondrial functionality was evaluated through flow cytometry, alongside the impact of the glucose metabolism inhibitor 2-DG on HSC differentiation and mitochondrial activity. HSCs under lung cancer conditions showed increased glucose uptake and lactate production, with an associated rise in OXPHOS activity, marking a metabolic shift. Treatment with 2-DG led to decreased T-HSCs and MDSCs and an increased red blood cell count, highlighting its potential to influence metabolic and differentiation pathways in HSCs. This study provides novel insights into the metabolic reprogramming of HSCs in lung cancer, emphasizing the critical shift from glycolysis to OXPHOS and its implications for the therapeutic targeting of cancer-related metabolic pathways.
Collapse
Affiliation(s)
- Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
| | - Yaping Liu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xin Li
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yuying Huang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
7
|
Zhang J, He W, Liu D, Zhang W, Qin H, Zhang S, Cheng A, Li Q, Wang F. Phosphoenolpyruvate carboxykinase 2-mediated metabolism promotes lung tumorigenesis by inhibiting mitochondrial-associated apoptotic cell death. Front Pharmacol 2024; 15:1434988. [PMID: 39193344 PMCID: PMC11347759 DOI: 10.3389/fphar.2024.1434988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Background It is unknown how cancer cells override apoptosis and maintain progression under nutrition-deprived conditions within the tumor microenvironment. Phosphoenolpyruvate carboxykinase (PEPCK or PCK) catalyzes the first rate-limiting reaction in gluconeogenesis, which is an essential metabolic alteration that is required for the proliferation of cancer cells under glucose-limited conditions. However, if PCK-mediated gluconeogenesis affects apoptotic cell death of non small cell lung cancer (NSCLC) and its potential mechanisms remain unknown. Methods RNA-seq, Western blot and RT-PCR were performed in A549 cell lines cultured in medium containing low or high concentrations of glucose (1 mM vs. 20 mM) to gain insight into how cancer cells rewire their metabolism under glucose-restriction conditions. Stable isotope tracing metabolomics technology (LC-MS) was employed to allow precise quantification of metabolic fluxes of the TCA cycle regulated by PCK2. Flow Cytometry was used to assess the rates of early and later apoptosis and mitochondrial ROS in NSCLC cells. Transwell assays and luciferase-based in vivo imaging were used to determine the role of PCK2 in migration and invasion of NSCLC cells. Xenotransplants on BALB/c nude mice to evaluate the effects of PCK2 on tumor growth in vivo. Western blot, Immunohistochemistry and TUNEL assays to evaluate the protein levels of mitochondrial apoptosis. Results This study report that the mitochondrial resident PCK (PCK2) is upregulated in dependent of endoplasmic reticulum stress-induced expression of activating transcription factor 4 (ATF4) upon glucose deprivation in NSCLC cells. Further, the study finds that PCK2-mediated metabolism is required to decrease the burden of the TCA cycles and oxidative phosphorylation as well as the production of mitochondrial reactive oxygen species. These metabolic alterations in turn reduce the activation of Caspase9-Caspase3-PARP signal pathway which drives apoptotic cell death. Importantly, silencing PCK2 increases apoptosis of NSCLC cells under low glucose condition and inhibits tumor growth both in vitro and in vivo. Conclusion In summary, PCK2-mediated metabolism is an important metabolic adaptation for NSCLC cells to acquire resistance to apoptosis under glucose deprivation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjuan He
- School of Medicine, Tongji University, Shanghai, China
| | | | - Wenyu Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Huan Qin
- School of Medicine, Tongji University, Shanghai, China
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ailan Cheng
- Department of Radiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Zhu G, Cao L, Wu J, Xu M, Zhang Y, Wu M, Li J. Co-morbid intersections of cancer and cardiovascular disease and targets for natural drug action: Reprogramming of lipid metabolism. Biomed Pharmacother 2024; 176:116875. [PMID: 38850662 DOI: 10.1016/j.biopha.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Cancer and cardiovascular diseases are major contributors to global morbidity and mortality, and their seemingly separate pathologies are intricately intertwined. In the context of cancer, the cardiovascular disease encompasses not only the side effects arising from anti-tumor treatments but also the metabolic shifts induced by oncological conditions. A growing body of research indicates that lipid metabolic reprogramming serves as a distinctive hallmark of tumors. Furthermore, anomalies in lipid metabolism play a significant role in the development of cardiovascular disease. This study delves into the cardiac implications of lipid metabolic reprogramming within the cancer context, closely examining abnormalities in lipid metabolism present in tumors, cardiac tissue, and immune cells within the microenvironment. Additionally, we examined risk factors such as obesity and anti-tumor therapy. Despite progress, a gap remains in the availability of drugs targeting lipid metabolism modulation for treating tumors and mitigating cardiac risk, with limited advancement seen in prior studies. Here, we present a review of previous research on natural drugs that exhibit both shared and distinct therapeutic effects on tumors and cardiac health by modulating lipid metabolism. Our aim is to provide insights for potential drug development.
Collapse
Affiliation(s)
- Guanghui Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Luchang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Manman Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
9
|
Patra SK, Sahoo RK, Biswal S, Panda SS, Biswal BK. Enigmatic exosomal connection in lung cancer drug resistance. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102177. [PMID: 38617976 PMCID: PMC11015513 DOI: 10.1016/j.omtn.2024.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Lung cancer remains a significant global health concern with limited treatment options and poor prognosis, particularly in advanced stages. Small extracellular vesicles such as exosomes, secreted by cancer cells, play a pivotal role in mediating drug resistance in lung cancer. Exosomes have been found to facilitate intercellular communication by transferring various biomolecules between cancer cells and their microenvironment. Additionally, exosomes can transport signaling molecules promoting cancer cell survival and proliferation conferring resistance to chemotherapy. Moreover, exosomes can modulate the tumor microenvironment by inducing phenotypic changes hindering drug response. Understanding the role of exosomes in mediating drug resistance in lung cancer is crucial for developing novel therapeutic strategies and biomarkers to overcome treatment limitations. In this review, we summarize the current knowledge on conventional and emerging drug resistance mechanisms and the involvement of exosomes as well as exosome-mediated factors mediating drug resistance in lung cancer.
Collapse
Affiliation(s)
- Sambit K. Patra
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Rajeev K. Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Shikshya S. Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
10
|
Mohanty P, Pande B, Acharya R, Bhaskar LVKS, Verma HK. Unravelling the Triad of Lung Cancer, Drug Resistance, and Metabolic Pathways. Diseases 2024; 12:93. [PMID: 38785748 PMCID: PMC11119248 DOI: 10.3390/diseases12050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer, characterized by its heterogeneity, presents a significant challenge in therapeutic management, primarily due to the development of resistance to conventional drugs. This resistance is often compounded by the tumor's ability to reprogram its metabolic pathways, a survival strategy that enables cancer cells to thrive in adverse conditions. This review article explores the complex link between drug resistance and metabolic reprogramming in lung cancer, offering a detailed analysis of the molecular mechanisms and treatment strategies. It emphasizes the interplay between drug resistance and changes in metabolic pathways, crucial for developing effective lung cancer therapies. This review examines the impact of current treatments on metabolic pathways and the significance of considering metabolic factors to combat drug resistance. It highlights the different challenges and metabolic alterations in non-small-cell lung cancer and small-cell lung cancer, underlining the need for subtype-specific treatments. Key signaling pathways, including PI3K/AKT/mTOR, MAPK, and AMPK, have been discussed for their roles in promoting drug resistance and metabolic changes, alongside the complex regulatory networks involved. This review article evaluates emerging treatments targeting metabolism, such as metabolic inhibitors, dietary management, and combination therapies, assessing their potential and challenges. It concludes with insights into the role of precision medicine and metabolic biomarkers in crafting personalized lung cancer treatments, advocating for metabolic targeting as a promising approach to enhance treatment efficacy and overcome drug resistance. This review underscores ongoing advancements and hurdles in integrating metabolic considerations into lung cancer therapy strategies.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492099, India;
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, IngolstädterLandstraße 1, 85764 Oberschleißheim, 85764 Munich, Bayren, Germany
| |
Collapse
|
11
|
Berrell N, Sadeghirad H, Blick T, Bidgood C, Leggatt GR, O'Byrne K, Kulasinghe A. Metabolomics at the tumor microenvironment interface: Decoding cellular conversations. Med Res Rev 2024; 44:1121-1146. [PMID: 38146814 DOI: 10.1002/med.22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Naomi Berrell
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Bidgood
- APCRC-Q, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Graham R Leggatt
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Zhai H, Zheng T, Fan L. Unveiling the STAT3-ACC1 axis: a key driver of lipid metabolism and tumor progression in non-small cell lung cancer. J Cancer 2024; 15:2340-2353. [PMID: 38495496 PMCID: PMC10937262 DOI: 10.7150/jca.93890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background and Objective: Lung cancer is a prevalent global malignancy, and investigating the metabolic reprogramming of tumor cells has significant therapeutic implications. This study aims to explore the molecular mechanism driving the progression of non-small cell lung cancer (NSCLC), with a specific emphasis on the STAT3-ACC1-FAS axis involved in fatty acid synthesis. Methods: The levels of Signal transducer and activator of transcription 3 (STAT3) and acetyl-CoA carboxylase 1 (ACC1) were determined in mouse NSCLC specimens and cell lines using Western blot and qPCR methods. Various assays such as CCK-8, colony formation, EDU, wound-healing, and transwell migration were employed to assess cancer cell proliferation, migration, and invasion. Additionally, a nude mouse xenograft model was utilized for in vivo tumor growth analysis. The interaction between STAT3 and ACC1 was examined through chromatin immunoprecipitation and dual-luciferase assays. Results: The study observed upregulation of STAT3 and ACC1 in NSCLC tissues. Notably, the suppression of STAT3 and ACC1 inhibited the in vitro progression and lipid synthesis of NSCLC cells. Furthermore, STAT3 enhanced lipid synthesis by upregulating ACC1 expression. Mechanistic assays revealed that this process occurred through direct activation of ACC1 transcription by STAT3. STAT3 played a vital role in regulating lipid metabolism and supporting NSCLC progression. Conclusion: The findings of this study underscore the significance of the STAT3-ACC1-FAS axis in NSCLC. The activation of ACC1 through STAT3-mediated transcription serves as a crucial mechanism for stimulating the progression of NSCLC tumors and promoting lipid synthesis. Consequently, targeting the STAT3-ACC1 axis may present a promising avenue for the diagnosis and treatment of NSCLC patients.
Collapse
Affiliation(s)
- Hong Zhai
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai200072, China
| | - Tiansheng Zheng
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai200072, China
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai200072, China
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wang Z, Li J, Wang L, Liu Y, Wang W, Chen J, Liang H, Chen YQ, Zhu S. FFAR4 activation inhibits lung adenocarcinoma via blocking respiratory chain complex assembly associated mitochondrial metabolism. Cell Mol Biol Lett 2024; 29:17. [PMID: 38243188 PMCID: PMC10799372 DOI: 10.1186/s11658-024-00535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Despite notable advancements in the investigation and management of lung adenocarcinoma (LUAD), the mortality rate for individuals afflicted with LUAD remains elevated, and attaining an accurate prognosis is challenging. LUAD exhibits intricate genetic and environmental components, and it is plausible that free fatty acid receptors (FFARs) may bridge the genetic and dietary aspects. The objective of this study is to ascertain whether a correlation exists between FFAR4, which functions as the primary receptor for dietary fatty acids, and various characteristics of LUAD, while also delving into the potential underlying mechanism. The findings of this study indicate a decrease in FFAR4 expression in LUAD, with a positive correlation (P < 0.01) between FFAR4 levels and overall patient survival (OS). Receiver operating characteristic (ROC) curve analysis demonstrated a significant diagnostic value [area under the curve (AUC) of 0.933] associated with FFAR4 expression. Functional investigations revealed that the FFAR4-specific agonist (TUG891) effectively suppressed cell proliferation and induced cell cycle arrest. Furthermore, FFAR4 activation resulted in significant metabolic shifts, including a decrease in oxygen consumption rate (OCR) and an increase in extracellular acidification rate (ECAR) in A549 cells. In detail, the activation of FFAR4 has been observed to impact the assembly process of the mitochondrial respiratory chain complex and the malate-aspartate shuttle process, resulting in a decrease in the transition of NAD+ to NADH and the inhibition of LUAD. These discoveries reveal a previously unrecognized function of FFAR4 in the negative regulation of mitochondrial metabolism and the inhibition of LUAD, indicating its potential as a promising therapeutic target for the treatment and diagnosis of LUAD.
Collapse
Affiliation(s)
- Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jinyou Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - LongFei Wang
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yaowei Liu
- State Key Lab of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JiaYao Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - HuiJun Liang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Y Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - ShengLong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
14
|
Chen Y, He J, Jin T, Zhang Y, Ou Y. Functional enrichment analysis of LYSET and identification of related hub gene signatures as novel biomarkers to predict prognosis and immune infiltration status of clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:16905-16929. [PMID: 37740762 PMCID: PMC10645642 DOI: 10.1007/s00432-023-05280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE The latest research shows that the lysosomal enzyme trafficking factor (LYSET) encoded by TMEM251 is a key regulator of the amino acid metabolism reprogramming (AAMR) and related pathways significantly correlate with the progression of some tumors. The purpose of this study was to explore the potential pathways of the TMEM251 in clear cell renal cell carcinoma (ccRCC) and establish related predictive models based on the hub genes in these pathways for prognosis and tumor immune microenvironment (TIME). METHODS We obtained mRNA expression data and clinical information of ccRCC samples from The Cancer Genome Atlas (TCGA), E-MATE-1980, and immunotherapy cohorts. Single-cell sequencing data (GSE152938) were downloaded from the Gene Expression Omnibus (GEO) database. We explored biological pathways of the LYSET by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of TMEM251-coexpression genes. The correlation of LYSET-related pathways with the prognosis was conducted by Gene Set Variation Analysis (GSVA) and unsupervised cluster analysis. The least absolute shrinkage and selection operator (LASSO) and Cox regression were used to identify hub prognostic genes and construct the risk score. Immune infiltration analysis was conducted by CIBERSORTx and Tumor Immune Estimation Resource (TIMER) databases. The predictive value of the risk score and hub prognostic genes on immunotherapy responsiveness was analyzed through the tumor mutation burden (TMB) score, immune checkpoint expression, and survival analysis. Immunohistochemistry (IHC) was finally used to verify the expressions of hub prognostic genes. RESULTS The TMEM251 was found to be significantly correlated with some AAMR pathways. AAGAB, ENTR1, SCYL2, and WDR72 in LYSET-related pathways were finally identified to construct a risk score model. Immune infiltration analysis showed that LYSET-related gene signatures significantly influenced the infiltration of some vital immune cells such as CD4 + cells, NK cells, M2 macrophages, and so on. In addition, the constructed risk score was found to be positively correlated with TMB and some common immune checkpoint expressions. Different predictive values of these signatures for Nivolumab therapy responsiveness were also uncovered in immunotherapy cohorts. Finally, based on single-cell sequencing analysis, the TMEM251 and the hub gene signatures were found to be expressed in tumor cells and some immune cells. Interestingly, IHC verification showed a potential dual role of four hub genes in ccRCC progression. CONCLUSION The novel predictive biomarkers we built may benefit clinical decision-making for ccRCC. Our study may provide some evidence that LYSET-related gene signatures could be novel potential targets for treating ccRCC and improving immunotherapy efficacy. Our nomogram might be beneficial to clinical choices, but the results need more experimental verifications in the future.
Collapse
Affiliation(s)
- Yuxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Jinhang He
- First Clinical Medical College, Chongqing Medical University, Chongqing, China
| | - Tian Jin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ye Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Huang J, Liang L, Jiang S, Liu Y, He H, Sun X, Li Y, Xie L, Tao Y, Cong L, Jiang Y. BDH1-mediated LRRC31 regulation dependent on histone lysine β-hydroxybutyrylation to promote lung adenocarcinoma progression. MedComm (Beijing) 2023; 4:e449. [PMID: 38098610 PMCID: PMC10719427 DOI: 10.1002/mco2.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common form of lung cancer, with a consistently low 5-year survival rate. Therefore, we aim to identify key genes involved in LUAD progression to pave the way for targeted therapies in the future. BDH1 plays a critical role in the conversion between acetoacetate and β-hydroxybutyrate. The presence of β-hydroxybutyrate is essential for initiating lysine β-hydroxybutyrylation (Kbhb) modifications. Histone Kbhb at the H3K9 site is attributed to transcriptional activation. We unveiled that β-hydroxybutyrate dehydrogenase 1 (BDH1) is not only conspicuously overexpressed in LUAD, but it also modulates the overall intracellular Kbhb modification levels. The RNA sequencing analysis revealed leucine-rich repeat-containing protein 31 (LRRC31) as a downstream target gene regulated by BDH1. Ecologically expressed BDH1 hinders the accumulation of H3K9bhb in the transcription start site of LRRC31, consequently repressing the transcriptional expression of LRRC31. Furthermore, we identified potential BDH1 inhibitors, namely pimozide and crizotinib, which exhibit a synergistic inhibitory effect on the proliferation of LUAD cells exhibiting high expression of BDH1. In summary, this study elucidates the molecular mechanism by which BDH1 mediates LUAD progression through the H3K9bhb/LRRC31 axis and proposes a therapeutic strategy targeting BDH1-high-expressing LUAD, providing a fresh perspective for LUAD treatment.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Xiaoyan Sun
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Yi Li
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Li Xie
- Department of Head and Neck SurgeryHunan Cancer Hospital, Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, School of Basic Medicine, Central South UniversityChangshaHunanChina
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| |
Collapse
|
16
|
Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. ENVIRONMENTAL RESEARCH 2023; 237:116951. [PMID: 37633628 DOI: 10.1016/j.envres.2023.116951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanomedicine application in cancer therapy is an urgency because of inability of current biological therapies for complete removal of tumor cells. The development of smart and novel nanoplatforms for treatment of cancer can provide new insight in tumor suppression. Hyaluronic acid is a biopolymer that can be employed for synthesis of smart nanostructures capable of selective targeting CD44-overexpressing tumor cells. The breast and lung cancers are among the most malignant and common tumors in both females and males that environmental factors, lifestyle and genomic alterations are among the risk factors for their pathogenesis and development. Since etiology of breast and lung tumors is not certain and multiple factors participate in their development, preventative measures have not been completely successful and studies have focused on developing new treatment strategies for them. The aim of current review is to provide a comprehensive discussion about application of hyaluronic acid-based nanostructures for treatment of breast and lung cancers. The main reason of using hyaluronic acid-based nanoparticles is their ability in targeting breast and lung cancers in a selective way due to upregulation of CD44 receptor on their surface. Moreover, nanocarriers developed from hyaluronic acid or functionalized with hyaluronic acid have high biocompatibility and their safety is appreciated. The drugs and genes used for treatment of breast and lung cancers lack specific accumulation at cancer site and their cytotoxicity is low, but hyaluronic acid-based nanostructures provide their targeted delivery to tumor site and by increasing internalization of drugs and genes in breast and lung tumor cells, they improve their therapeutic index. Furthermore, hyaluronic acid-based nanostructures can be used for phototherapy-mediated breast and lung cancers ablation. The stimuli-responsive and smart kinds of hyaluronic acid-based nanostructures such as pH- and light-responsive can increase selective targeting of breast and lung cancers.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
17
|
Tarin M, Babaie M, Eshghi H, Matin MM, Saljooghi AS. Elesclomol, a copper-transporting therapeutic agent targeting mitochondria: from discovery to its novel applications. J Transl Med 2023; 21:745. [PMID: 37864163 PMCID: PMC10589935 DOI: 10.1186/s12967-023-04533-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/16/2023] [Indexed: 10/22/2023] Open
Abstract
Copper (Cu) is an essential element that is involved in a variety of biochemical processes. Both deficiency and accumulation of Cu are associated with various diseases; and a high amount of accumulated Cu in cells can be fatal. The production of reactive oxygen species (ROS), oxidative stress, and cuproptosis are among the proposed mechanisms of copper toxicity at high concentrations. Elesclomol (ELC) is a mitochondrion-targeting agent discovered for the treatment of solid tumors. In this review, we summarize the synthesis of this drug, its mechanisms of action, and the current status of its applications in the treatment of various diseases such as cancer, tuberculosis, SARS-CoV-2 infection, and other copper-associated disorders. We also provide some detailed information about future directions to improve its clinical performance.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Babaie
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
18
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
19
|
Yao W, Wang L, Liu F, Xia L. The role of long non-coding RNAs in breast cancer microenvironment. Pathol Res Pract 2023; 248:154707. [PMID: 37506626 DOI: 10.1016/j.prp.2023.154707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The tumor microenvironment (TME), which includes tumor cells, fibroblasts, endothelial cells, immune cells, and blood vessels, can affect tumor growth and metastasis. Studies have shown that tumor cells, fibroblasts, and macrophages can promote the development of tumors, while T and B cells can inhibit tumor progression. The crosstalk among different cells within the TME needs further study. Long non-coding RNAs (lncRNAs) are involved in biological processes, including cell proliferation, migration, and differentiation. The abnormal expression of certain lncRNAs is correlated with the progression of breast cancer and has been proven as diagnostic markers in various cancers, including breast cancer. In breast cancer, recent studies have shown that tumor cell- and non-tumor cell-derived lncRNAs can affect various facets of tumor progression, including growth, proliferation, and migration of tumor cells. Interestingly, in addition to being regulated by lncRNAs derived from tumor and non-tumor cells, the TME can regulate the expression of lncRNAs in tumor cells, fibroblasts, and macrophages, influencing their phenotype and function. However, the detailed molecular mechanisms of these phenomena remain unclear in the breast cancer microenvironment. Currently, many studies have shown that TME-associated lncRNAs are potential diagnostic and therapeutic targets for breast cancer. Considering that TME and lncRNAs can regulate each other, we summarize the role of lncRNAs in the breast cancer microenvironment and the potential of lncRNAs as valuable diagnostic markers.
Collapse
Affiliation(s)
- Wenwu Yao
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
20
|
Shuvalov O, Kirdeeva Y, Fefilova E, Netsvetay S, Zorin M, Vlasova Y, Fedorova O, Daks A, Parfenyev S, Barlev N. 20-Hydroxyecdysone Confers Antioxidant and Antineoplastic Properties in Human Non-Small Cell Lung Cancer Cells. Metabolites 2023; 13:metabo13050656. [PMID: 37233697 DOI: 10.3390/metabo13050656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
20-Hydroxyecdysone (20E) is an arthropod hormone which is synthesized by some plants as part of their defense mechanism. In humans, 20E has no hormonal activity but possesses a number of beneficial pharmacological properties including anabolic, adaptogenic, hypoglycemic, and antioxidant properties, as well as cardio-, hepato-, and neuroprotective features. Recent studies have shown that 20E may also possess antineoplastic activity. In the present study, we reveal the anticancer properties of 20E in Non-Small Cell Lung Cancer (NSCLC) cell lines. 20E displayed significant antioxidant capacities and induced the expression of antioxidative stress response genes. The RNA-seq analysis of 20E-treated lung cancer cells revealed the attenuation of genes involved in different metabolic processes. Indeed, 20E suppressed several enzymes of glycolysis and one-carbon metabolism, as well as their key transcriptional regulators-c-Myc and ATF4, respectively. Accordingly, using the SeaHorse energy profiling approach, we observed the inhibition of glycolysis and respiration mediated by 20E treatment. Furthermore, 20E sensibilized lung cancer cells to metabolic inhibitors and markedly suppressed the expression of Cancer Stem Cells (CSCs) markers. Thus, in addition to the known beneficial pharmacological activities of 20E, our data uncovered novel antineoplastic properties of 20E in NSCLC cells.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Elizaveta Fefilova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Sofia Netsvetay
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Mark Zorin
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Yulia Vlasova
- Almazov National Medical Research Center Russia, 197341 St. Petersburg, Russia
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- School of Medicine, Nazarbayev University, 001000 Astana, Kazakhstan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
21
|
Li G, Zhou X, Huang CJ, Zuo ZW, Wu F, Zhang JF, Jiang R, Du FZ. Computed tomography-guided interstitial implantation of I (125) radioactive seeds in the treatment of hilar airway stenosis caused by non-small cell lung cancer. Nucl Med Commun 2023:00006231-990000000-00156. [PMID: 37184491 DOI: 10.1097/mnm.0000000000001709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Airway stenosis secondary to non-small cell lung cancer (NSCLC) is one of the severe complications that can lead to life-threatening outcomes. OBJECTIVE To investigate the clinical utility of computed tomography (CT)-guided interstitial implantation of radioactive I-125 seeds in the treatment of hilar airway stenosis caused by NSCLC. METHODS The cases of hilar airway stenosis caused by NSCLC in our hospital from 2017 to 2022 were collected and divided into observation and control groups. Both groups underwent conventional lung cancer treatment, and the observation group was treated with CT-guided interstitial implantation of radioactive I-125 seeds. The mean tumor diameter, hilar airway stenosis, and obstructive pneumonia scores at 3 months after treatment were compared between the two groups. RESULTS After 3 months of treatment, the mean tumor diameter (28.8 ± 9.3 mm vs 49.33 ± 16.75 mm, P < 0.001), hilar airway stenosis (20.55 ± 30.36% vs 84.85 ± 26.19%, P < 0.001), and obstructive pneumonia score (2.19 ± 1.41 vs 3.48 ± 1.12, P < 0.001) of the observation group were significantly lower than those of the control group. CONCLUSION CT-guided interstitial implantation of I (125) radioactive seeds in the treatment of hilar airway stenosis caused by NSCLC can effectively reduce the tumor volume, relieve airway stenosis, and alleviate the associated obstructive pneumonia and has a certain value of application in the clinic.
Collapse
Affiliation(s)
- Guo Li
- Department of Radiology, The General Hospital of Western Theater Command, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shao W, Liu L, Zheng F, Ma Y, Zhang J. The potent role of Src kinase-regulating glucose metabolism in cancer. Biochem Pharmacol 2022; 206:115333. [PMID: 36404485 DOI: 10.1016/j.bcp.2022.115333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
|
23
|
Lv H, Zhang F, Liang C, Liu X, Ma Y, Li J, Ye Y, Si S, Liu Y, Heng H, Geng H. Decreased IGF-1 level is associated with restrained amino acid metabolism in NSCLC with diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1031798. [PMID: 36329881 PMCID: PMC9623307 DOI: 10.3389/fendo.2022.1031798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of a large number of small pulmonary nodules and early diagnosis of lung cancer in the diabetic patients prompt us to re-examine the relationship between diabetes and the occurrence and development of lung cancer. The aim of this study was to explore the underlying metabolites changes in diabetes with NSCLC or benign nodule patients, and further to investigate the association of serum IGF-1 level and differentially expressed metabolites (DEMs). An untargeted metabolomics method was used to detect the changes of metabolism in diabetic patients with NSCLC on the platform of HR-MS. Serum level of IGF-1 was measured by ELISA. The patients were divided to three groups, DM, DLB (nodule), and DLC (cancer). we have identified numerous DEMs, which include amino acid, choline, and fatty acid derivatives. Further analysis of the involved metabolic pathways suggested that linoleate metabolism, tryptophan metabolism, histidine metabolism, putative anti-Inflammatory metabolites formation from EPA, and arachidonic acid metabolism were considered to be the most significant metabolic pathways between groups. Networks analysis suggested that a series of metabolites were associated with serum IGF-1among the three groups, which can be divided into 6 categories. Nine metabolites have been identified as the main DEMs among the DLC, DLB, and DM groups. In conclusion, metabolomics is a powerful and promising tool for the cancer risk evaluation in diabetic patients. Our results suggest that decreased IGF-1 level is associated with restrained amino acid metabolism in NSCLC with diabetes mellitus.
Collapse
Affiliation(s)
- Hehe Lv
- Department of Endocrinology, Graduate School of Bengbu Medical College, Bengbu, China
| | - Fan Zhang
- Department of Endocrinology, Xuzhou Central Hospital, Affiliated Clinical Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Can Liang
- Department of Medical Examination Center, Xuzhou Central hospital, Xuzhou, China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Affiliated Clinical Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yamei Ma
- Department of Endocrinology, Graduate School of Bengbu Medical College, Bengbu, China
| | - Jiayi Li
- Department of Endocrinology, Graduate School of Bengbu Medical College, Bengbu, China
| | - Yan Ye
- Department of Endocrinology, Xuzhou Central Hospital, Affiliated Clinical Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shanwen Si
- Department of Endocrinology, Xuzhou Central Hospital, Affiliated Clinical Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yaran Liu
- Institute of Medical Artificial Intelligence, Binzhou Medical College, Yantai, China
- *Correspondence: Houfa Geng, ; Hao Heng, ; Yaran Liu,
| | - Hao Heng
- Department of Endocrinology, Xuzhou Central Hospital, Affiliated Clinical Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Houfa Geng, ; Hao Heng, ; Yaran Liu,
| | - Houfa Geng
- Department of Endocrinology, Graduate School of Bengbu Medical College, Bengbu, China
- Department of Endocrinology, Xuzhou Central Hospital, Affiliated Clinical Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Houfa Geng, ; Hao Heng, ; Yaran Liu,
| |
Collapse
|