1
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Zhang K, Zhao J, Bi Z, Feng Y, Zhang H, Zhang J, Qin X, Zhao Y, Niu R, Mei X, He Z, Yang J, Lv J, Guo W. Mechanism of miR-98-5p in gastric cancer cell proliferation, migration, and invasion through the USP44/CTCFL axis. Toxicol Res (Camb) 2024; 13:tfae040. [PMID: 38500512 PMCID: PMC10944557 DOI: 10.1093/toxres/tfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 03/20/2024] Open
Abstract
Objectives Gastric cancer (GC) is the leading digestive malignancy with high incidence and mortality rate. microRNAs (miRs) play an important role in GC progresssion. This study aimed to investigate the effect of miR-98-5p on proliferation, migration, and invasion of GC cells. Methods The expression levels of miR-98-5p, ubiquitin specific peptidase 44 (USP44), and CCCTCbinding factor-like (CTCFL) in GC tissues and cells were identified using reversetranscription quantitative polymerase chain reaction and Western blot assay. The relationship between miR-98-5p expression/USP44 and the clinicopathological features in GC patients was analyzed. GC cell proliferation, invasion, and migration were evaluated by cell counting kit-8 and clone formation assays and Transwell assays. The bindings of miR-98-5p to USP44 and USP44 to CTCFL were examined using dualluciferase assay and co-immunoprecipitation. GC cells were treated with MG132 and the ubiquitination level of CTCFL was examined using ubiquitination assay. Rescue experiments were performed to verify the roles of USP44 and CTCFL in GC cells. Results miR-98-5p was downregulated in GC. miR-98-5p overexpression inhibited the proliferation, migration, and invasion of GC cells. miR-98-5p inhibited USP44 expression. USP44 bound to CTCFL and limited ubiquitination degradation of CTCFL. Overexpression of USP44 and CTCFL attenuated the inhibitory effects of miR-98-5p overexpression on GC cell progression. Conclusion miR-98-5p overexpression limited USP44-mediated CTCFL deubiquitination, and suppressed CTCFL expression, mitigating GC cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Kangkang Zhang
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Jinjiang Zhao
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Zhibin Bi
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Yafei Feng
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Huipeng Zhang
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Jinjie Zhang
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Xiaowei Qin
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Yanbo Zhao
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Ruilong Niu
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Xianghuang Mei
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Zhipeng He
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Jingcheng Yang
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Jiake Lv
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| | - Wei Guo
- Department of gastrointestinal surgery, Changzhi Medical College Affiliated Heji Hospital, No. 271 Taihang East Street, Luzhou District, Changzhi, Shanxi 046000, China
| |
Collapse
|
3
|
Li J, Chen CT, Li P, Zhang X, Liu X, Wu W, Gu W. Lung transcriptomics reveals the underlying mechanism by which aerobic training enhances pulmonary function in chronic obstructive pulmonary disease. BMC Pulm Med 2024; 24:154. [PMID: 38532405 DOI: 10.1186/s12890-024-02967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Aerobic training is the primary method of rehabilitation for improving respiratory function in patients with chronic obstructive pulmonary disease (COPD) in remission. However, the mechanism underlying this improvement is not yet fully understood. The use of transcriptomics in rehabilitation medicine offers a promising strategy for uncovering the ways in which exercise training improves respiratory dysfunction in COPD patients. In this study, lung tissue was analyzed using transcriptomics to investigate the relationship between exercise and lung changes. METHODS Mice were exposed to cigarette smoke for 24 weeks, followed by nine weeks of moderate-intensity treadmill exercise, with a control group for comparison. Pulmonary function and structure were assessed at the end of the intervention and RNA sequencing was performed on the lung tissue. RESULTS Exercise training was found to improve airway resistance and lung ventilation indices in individuals exposed to cigarette smoke. However, the effect of this treatment on damaged alveoli was weak. The pair-to-pair comparison revealed numerous differentially expressed genes, that were closely linked to inflammation and metabolism. CONCLUSIONS Further research is necessary to confirm the cause-and-effect relationship between the identified biomarkers and the improvement in pulmonary function, as this was not examined in the present study.
Collapse
Affiliation(s)
- Jian Li
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), 200433, Shanghai, PR China
- Department of Sports Rehabilitation, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, 200438, Shanghai, PR China
| | - Cai-Tao Chen
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, PR China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Xiaoyun Zhang
- Laboratory Department of the 908th Hospital of the Joint Logistics Support Force, 330001, Nanchang, PR China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, 200438, Shanghai, PR China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), No. 800 Xiangyin Road, Yangpu District, 200433, Shanghai, PR China.
| |
Collapse
|
4
|
Zhang B, Sun R, Gu M, Jiang Z, Wang Y, Zhang L, Liu X, Chi Z. RNA-binding protein NOVA1 promotes acute T-lymphocyte leukemia progression by stabilizing USP44 mRNA. Biochem Cell Biol 2024; 102:60-72. [PMID: 37816258 DOI: 10.1139/bcb-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Acute T-lymphocyte leukemia (T-ALL) is a malignant tumor disease. RNA-binding protein neotumor ventral antigen-1 (NOVA1) is highly expressed in bone marrow mononuclear cells of T-ALL patients, while the role of NOVA1 in T-ALL progression remains unknown. The gain- and loss-of-function studies for NOVA1 were performed in Jurkat and CCRF-CEM cells. NOVA1 overexpression promoted cell proliferation and cell cycle progression. NOVA1 knockdown increased the apoptosis rate of T-ALL cells. Ubiquitin-specific protease 44 (USP44), a nuclear protein with deubiquitinase catalytic activity, has been reported to play an oncogene role in human T-cell leukemia. USP44 expression was positively associated with NOVA1, and RNA immunoprecipitation assay verified the binding of NOVA1 to the mRNA of USP44. USP44 knockdown partially abolished NOVA1-induced cell proliferation and inhibition of apoptosis. The in vivo xenograft experiment was performed by injection of T-ALL tumor cells into the tail vein of NOD/SCID mice. The knockdown of NOVA1 had lower tumorigenicity. NOVA1 knockdown alleviated pathological changes in lung and spleen tissues, and increased the overall survival period and the weight of T-ALL mice. Thus, NOVA1 acts as an accelerator in T-ALL, and its function might be achieved by binding to and stabilizing USP44 mRNA.
Collapse
Affiliation(s)
- Bin Zhang
- The First Department of Pediatric HematologyShengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ruowen Sun
- The Second Department of Pediatric HematologyShengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Min Gu
- The Second Department of Pediatric HematologyShengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zehui Jiang
- The Second Department of Pediatric HematologyShengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ye Wang
- The Second Department of Pediatric HematologyShengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Linlin Zhang
- The Second Department of Pediatric HematologyShengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xiaoyang Liu
- The Second Department of Pediatric HematologyShengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zuofei Chi
- The Second Department of Pediatric HematologyShengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
5
|
Al-Balushi E, Al Marzouqi A, Tavoosi S, Baghsheikhi AH, Sadri A, Aliabadi LS, Salarabedi MM, Rahman SA, Al-Yateem N, Jarrahi AM, Halimi A, Ahmadvand M, Abdel-Rahman WM. Comprehensive analysis of the role of ubiquitin-specific peptidases in colorectal cancer: A systematic review. World J Gastrointest Oncol 2024; 16:197-213. [PMID: 38292842 PMCID: PMC10824112 DOI: 10.4251/wjgo.v16.i1.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most frequent and the second most fatal cancer. The search for more effective drugs to treat this disease is ongoing. A better understanding of the mechanisms of CRC development and progression may reveal new therapeutic strategies. Ubiquitin-specific peptidases (USPs), the largest group of the deubiquitinase protein family, have long been implicated in various cancers. There have been numerous studies on the role of USPs in CRC; however, a comprehensive view of this role is lacking. AIM To provide a systematic review of the studies investigating the roles and functions of USPs in CRC. METHODS We systematically queried the MEDLINE (via PubMed), Scopus, and Web of Science databases. RESULTS Our study highlights the pivotal role of various USPs in several processes implicated in CRC: Regulation of the cell cycle, apoptosis, cancer stemness, epithelial-mesenchymal transition, metastasis, DNA repair, and drug resistance. The findings of this study suggest that USPs have great potential as drug targets and noninvasive biomarkers in CRC. The dysregulation of USPs in CRC contributes to drug resistance through multiple mechanisms. CONCLUSION Targeting specific USPs involved in drug resistance pathways could provide a novel therapeutic strategy for overcoming resistance to current treatment regimens in CRC.
Collapse
Affiliation(s)
- Eman Al-Balushi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amina Al Marzouqi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shima Tavoosi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amir Hossein Baghsheikhi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 11365/4435, Iran
| | - Arash Sadri
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohammad-Mahdi Salarabedi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Syed Azizur Rahman
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nabeel Al-Yateem
- Department of Nursing, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alireza Mosavi Jarrahi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Aram Halimi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences , Tehran 1416634793, Iran
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
6
|
Xie S, Jin L, He J, Fu J, Yin T, Ren J, Liu W. Analysis of mRNA m 6A modification and mRNA expression profiles in middle ear cholesteatoma. Front Genet 2023; 14:1188048. [PMID: 37609036 PMCID: PMC10441234 DOI: 10.3389/fgene.2023.1188048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Middle ear cholesteatoma is characterized by the hyperproliferation of keratinocytes. In recent decades, N6-methyladenosine (m6A) modification has been shown to play an essential role in the pathogenesis of many proliferative diseases. However, neither the m6A modification profile nor its potential role in the pathogenesis of middle ear cholesteatoma has currently been investigated. Therefore, this study aimed to explore m6A modification patterns in middle ear cholesteatoma. Materials and methods: An m6A mRNA epitranscriptomic microarray analysis was performed to analyze m6A modification patterns in middle ear cholesteatoma tissue (n = 5) and normal post-auricular skin samples (n = 5). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the potential biological functions and signaling pathways underlying the pathogenesis of middle ear cholesteatoma. Subsequently, m6A modification levels were verified by methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) in middle ear cholesteatoma tissue and normal skin samples, respectively. Results: A total of 6,865 distinctive m6A-modified mRNAs were identified, including 4,620 hypermethylated and 2,245 hypomethylated mRNAs, as well as 9,162 differentially expressed mRNAs, including 4,891 upregulated and 4,271 downregulated mRNAs, in the middle ear cholesteatoma group relative to the normal skin group. An association analysis between methylation and gene expression demonstrated that expression of 1,926 hypermethylated mRNAs was upregulated, while expression of 2,187 hypomethylated mRNAs and 38 hypermethylated mRNAs was downregulated. Moreover, GO analysis suggested that differentially methylated mRNAs might influence cellular processes and biological behaviors, such as cell differentiation, biosynthetic processes, regulation of molecular functions, and keratinization. KEGG pathway analysis demonstrated that the hypermethylated transcripts were involved in 26 pathways, including the Hippo signaling pathway, the p53 signaling pathway, and the inflammatory mediator regulation of transient receptor potential (TRP) channels, while the hypomethylated transcripts were involved in 13 pathways, including bacterial invasion of epithelial cells, steroid biosynthesis, and the Hippo signaling pathway. Conclusion: Our study presents m6A modification patterns in middle ear cholesteatoma, which may exert regulatory roles in middle ear cholesteatoma. The present study provides directions for mRNA m6A modification-based research on the epigenetic etiology and pathogenesis of middle ear cholesteatoma.
Collapse
Affiliation(s)
- Shumin Xie
- Hunan Provincial Key Lab, Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Otolaryngology Institute of Major Diseases, Central South University, Changsha, Hunan, China
| | - Li Jin
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun He
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfeng Fu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tuanfang Yin
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jihao Ren
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|