1
|
Liu Y, Lankadasari M, Rosiene J, Johnson KE, Zhou J, Bapat S, Chow-Tsang LFL, Tian H, Mastrogiacomo B, He D, Connolly JG, Lengel HB, Caso R, Dunne EG, Fick CN, Rocco G, Sihag S, Isbell JM, Bott MJ, Li BT, Lito P, Brennan CW, Bilsky MH, Rekhtman N, Adusumilli PS, Mayo MW, Imielinski M, Jones DR. Modeling lung adenocarcinoma metastases using patient-derived organoids. Cell Rep Med 2024; 5:101777. [PMID: 39413736 PMCID: PMC11513837 DOI: 10.1016/j.xcrm.2024.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Approximately 50% of patients with surgically resected early-stage lung cancer develop distant metastasis. At present, there is no in vivo metastasis model to investigate the biology of human lung cancer metastases. Using well-characterized lung adenocarcinoma (LUAD) patient-derived organoids (PDOs), we establish an in vivo metastasis model that preserves the biologic features of human metastases. Results of whole-genome and RNA sequencing establish that our in vivo PDO metastasis model can be used to study clonality and tumor evolution and to identify biomarkers related to organotropism. Investigation of the response of KRASG12C PDOs to sotorasib demonstrates that the model can examine the efficacy of treatments to suppress metastasis and identify mechanisms of drug resistance. Finally, our PDO model cocultured with autologous peripheral blood mononuclear cells can potentially be used to determine the optimal immune-priming strategy for individual patients with LUAD.
Collapse
Affiliation(s)
- Yuan Liu
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manendra Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel Rosiene
- Department of Pathology, New York University, New York, NY, USA
| | - Kofi E Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Juan Zhou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samhita Bapat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lai-Fong L Chow-Tsang
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huasong Tian
- Department of Pathology, New York University, New York, NY, USA
| | - Brooke Mastrogiacomo
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Di He
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James G Connolly
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harry B Lengel
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raul Caso
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth G Dunne
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron N Fick
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Smita Sihag
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James M Isbell
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Piro Lito
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark H Bilsky
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Frieboes HB, Raghavan S, Godin B. Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis. Front Bioeng Biotechnol 2020; 8:1011. [PMID: 32974325 PMCID: PMC7466654 DOI: 10.3389/fbioe.2020.01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) presents a challenging barrier for effective nanotherapy-mediated drug delivery to solid tumors. In particular for tumors less vascularized than the surrounding normal tissue, as in liver metastases, the structure of the organ itself conjures with cancer-specific behavior to impair drug transport and uptake by cancer cells. Cells and elements in the TME of hypovascularized tumors play a key role in the process of delivery and retention of anti-cancer therapeutics by nanocarriers. This brief review describes the drug transport challenges and how they are being addressed with advanced in vitro 3D tissue models as well as with in silico mathematical modeling. This modeling complements network-oriented techniques, which seek to interpret intra-cellular relevant pathways and signal transduction within cells and with their surrounding microenvironment. With a concerted effort integrating experimental observations with computational analyses spanning from the molecular- to the tissue-scale, the goal of effective nanotherapy customized to patient tumor-specific conditions may be finally realized.
Collapse
Affiliation(s)
- Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, United States
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
| | - Shreya Raghavan
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX, United States
- Developmental Therapeutics Program, Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Akazawa Y, Higashiyama M, Nishino K, Uchida J, Kumagai T, Inoue T, Fujiwara A, Tokunaga T, Okami J, Imamura F, Kodama K, Kobayashi H. Impact of in vitro chemosensitivity test-guided platinum-based adjuvant chemotherapy on the surgical outcomes of patients with p-stage IIIA non-small cell lung cancer that underwent complete resection. Mol Clin Oncol 2017; 7:327-335. [PMID: 28811897 PMCID: PMC5547765 DOI: 10.3892/mco.2017.1340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/22/2017] [Indexed: 12/26/2022] Open
Abstract
The impact of in vitro chemosensitivity test-guided platinum-based adjuvant chemotherapy on the surgical outcomes of patients undergoing complete resection for locally advanced non-small cell lung cancer (NSCLC) has yet to be elucidated. In the present study, the utility of adjuvant chemotherapy based on the collagen gel droplet embedded culture drug sensitivity test (CD-DST) in patients with p (pathology)-stage IIIA NSCLC was retrospectively analyzed. A series of 39 patients that had received platinum-based adjuvant chemotherapy following complete resection between 2007 and 2012 were enrolled. Their surgical specimens were subjected to the CD-DST. The patients were subsequently classified into two groups on the basis of in vitro anti-cancer drug sensitivity data obtained using the CD-DST: The sensitive group (25 patients) were treated with regimens including one or two of the anti-cancer drug(s) that were indicated to be effective by the CD-DST, whereas the non-sensitive group (14 patients) were treated with chemotherapy regimens that did not include any CD-DST-selected anti-cancer drugs. There were no significant differences in the background characteristics of the two groups [including in respect of the pathological TN (tumor-lymph node) stage, tumor histology, epidermal growth factor receptor mutation status, the frequency of each chemotherapy regimen, and the number of administered cycles]. The 5-year disease-free survival (DFS) rate of the sensitive group was 32.3%, whereas that of the non-sensitive group was 14.3% (P=0.037). In contrast, no difference in overall survival (OS) was observed (P=0.76). Multivariate analysis revealed that adjuvant chemotherapy based on the CD-DST had a significant favorable effect on the DFS (P=0.01). Therefore, the present study has demonstrated that CD-DST data obtained from surgical specimens aid the selection of effective platinum-based adjuvant chemotherapy regimens for patients undergoing complete resection for p-stage IIIA NSCLC. The use of CD-DST-guided platinum-based regimens may have a beneficial impact on the DFS of such patients.
Collapse
Affiliation(s)
- Yuki Akazawa
- Department of Thoracic Oncology, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
- Department of Respiratory Medicine, Osaka General Medical Center, Osaka 558-8585, Japan
| | - Masahiko Higashiyama
- Department of General Thoracic Surgery, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
| | - Jyunji Uchida
- Department of Thoracic Oncology, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
| | - Toru Kumagai
- Department of Thoracic Oncology, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
| | - Takako Inoue
- Department of Thoracic Oncology, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
| | - Ayako Fujiwara
- Department of General Thoracic Surgery, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
| | - Toshiteru Tokunaga
- Department of General Thoracic Surgery, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
| | - Jiro Okami
- Department of General Thoracic Surgery, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
| | - Fumio Imamura
- Department of Thoracic Oncology, Osaka International Cancer Institute (formerly, Osaka Medical Center for Cancer and Cardiovascular Diseases), Osaka 541-8567, Japan
| | - Ken Kodama
- Department of Surgery, Yao Municipal Hospital, Osaka 581-0069, Japan
| | - Hisayuki Kobayashi
- Technical Research Laboratory, Kurabo Industries Ltd., Osaka 541-8581, Japan
| |
Collapse
|