1
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
3
|
Maharati A, Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Zangouei AS, Moghbeli M. MicroRNA-495: a therapeutic and diagnostic tumor marker. J Mol Histol 2023; 54:559-578. [PMID: 37759132 DOI: 10.1007/s10735-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Therapeutic and diagnostic progresses have significantly reduced the mortality rate among cancer patients during the last decade. However, there is still a high rate of mortality among cancer patients. One of the important reasons involved in the high mortality rate is the late diagnosis in advanced tumor stages that causes the failure of therapeutic strategies in these patients. Therefore, investigating the molecular mechanisms involved in tumor progression has an important role in introducing the efficient early detection markers. MicroRNAs (miRNAs) as stable factors in body fluids are always considered as non-invasive diagnostic and prognostic markers. In the present review, we investigated the role of miR-495 in tumor progression. It has been reported that miR-495 has mainly a tumor suppressor function through the regulation of transcription factors and tyrosine kinases as well as cellular processes such as multidrug resistance, chromatin remodeling, and signaling pathways. This review can be an effective step towards introducing the miR-495 as a non-invasive diagnostic/prognostic marker as well as a suitable target in tumor therapy.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Peng H, Zou Z, Xiang Z, Lu X, Zhang Y, Peng X. Cuproptosis-related prognostic signatures predict the prognosis and immunotherapy in HCC patients. Medicine (Baltimore) 2023; 102:e34741. [PMID: 37653738 PMCID: PMC10470811 DOI: 10.1097/md.0000000000034741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Cuproptosis, an unusual type of programmed cell death mechanism of cell death, involved the disruption of specific mitochondrial metabolic enzymes in the occurrence and development of tumors. However, it was still unclear how the relationship between cuproptosis-related genes (CRGs) may contribute to hepatocellular carcinoma (HCC) potential the prognosis of HCC remained limited. Here, the landscape of 14 CRGs in HCC was evaluated using the Cancer Genome Atlas and International Cancer Genome Consortium datasets. And then, 4 CRGs (ATP7A, MTF1, GLS, and CDKN2A) were screened for the construction of risk signatures for prognosis and drug therapy. The HCC patients with CRGs high-risk showed poor prognosis than those with low risk. Moreover, the CRGs risk signature was shown to be an independent prognostic factor and associated with the immune microenvironment in HCC. Meanwhile, we constructed and verified a prognostic model based on cuproptosis-related lncRNAs (Cr-lncRNAs). We obtained 291 Cr-lncRNAs and constructed Cr-lncRNA prognosis signature based on 3 key Cr-lncRNAs (AC026356.1, NRAV, AL031985.3). The Cr-lncRNA prognosis signature was also an independent prognostic factor and associated with the immune microenvironment in HCC. Finally, the drug sensitivity database showed that 8 candidate drugs related to CRGs signature and Cr-lncRNAs signature. In summary, we evaluated and validated the CRGs and Cr-lncRNAs as potential predictive markers for prognosis, immunotherapy, and drug candidate with the personalized diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Hong Peng
- Medical School, Huanghe Science &Technology College, Zhengzhou, Henan, China
| | - Zhaoxia Zou
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Ziye Xiang
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xingjun Lu
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
5
|
Chen J, Yu X, Tong H, Tang C, Tang Z. Establishment and experimental validation of a novel cuproptosis-related gene signature for prognostic implication in cholangiocarcinoma. Front Oncol 2022; 12:1054063. [PMID: 36568224 PMCID: PMC9773249 DOI: 10.3389/fonc.2022.1054063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a highly malignant, heterogeneous bile duct malignancy with poor treatment options. A novel type of cell death termed cuproptosis was recently demonstrated to closely correlate with tumor progression. To gain more insight into the role of cuproptosis in CCA, we investigated the prognostic implications of cuproptosis related genes (CRGs) and their relationship to the development of CCA. Methods Gene expression data for CCA were obtained from the European Bioinformatics Institute (EMBL-EBI) database. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression was used to construct a prognostic risk model based on CRGs. RNA-seq, qRT-PCR and immunohistochemistry staining were used to verify the expression of CRGs in human CCA tissues or cell lines. Further in vitro experiments were performed to demonstrate the role of cuproptosis in CCA. Results We established a 4-gene signature (ATP7A, FDX1, DBT and LIAS) that exhibited good stability and was an independent prognostic factor for CCA. Seventy-five CCA samples were divided into high- and low-risk groups based on the risk score. Enrichment analysis revealed increased extracellular activity in the high-risk group and increased lipid metabolic activity in the low-risk group. Moreover, the 4 signature genes were verified in clinical samples and cell lines by RNA-seq, qRT-PCR and immunohistochemistry. Further experiments confirmed that cuproptosis can significantly inhibit the viability of CCA cells. Knockdown of the key gene LIAS ameliorated the toxicity of cuproptosis to CCA cells. Conclusion We established a 4-gene prognostic signature based on cuproptosis and explored the role of cuproptosis in CCA. The results provide an effective indicator for predicting the prognosis of cuproptosis in CCA.
Collapse
|
6
|
Forgie BN, Prakash R, Telleria CM. Revisiting the Anti-Cancer Toxicity of Clinically Approved Platinating Derivatives. Int J Mol Sci 2022; 23:15410. [PMID: 36499737 PMCID: PMC9793759 DOI: 10.3390/ijms232315410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (CDDP), carboplatin (CP), and oxaliplatin (OXP) are three platinating agents clinically approved worldwide for use against a variety of cancers. They are canonically known as DNA damage inducers; however, that is only one of their mechanisms of cytotoxicity. CDDP mediates its effects through DNA damage-induced transcription inhibition and apoptotic signalling. In addition, CDDP targets the endoplasmic reticulum (ER) to induce ER stress, the mitochondria via mitochondrial DNA damage leading to ROS production, and the plasma membrane and cytoskeletal components. CP acts in a similar fashion to CDDP by inducing DNA damage, mitochondrial damage, and ER stress. Additionally, CP is also able to upregulate micro-RNA activity, enhancing intrinsic apoptosis. OXP, on the other hand, at first induces damage to all the same targets as CDDP and CP, yet it is also capable of inducing immunogenic cell death via ER stress and can decrease ribosome biogenesis through its nucleolar effects. In this comprehensive review, we provide detailed mechanisms of action for the three platinating agents, going beyond their nuclear effects to include their cytoplasmic impact within cancer cells. In addition, we cover their current clinical use and limitations, including side effects and mechanisms of resistance.
Collapse
Affiliation(s)
- Benjamin N. Forgie
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rewati Prakash
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
7
|
Konoshenko M, Lansukhay Y, Krasilnikov S, Laktionov P. MicroRNAs as Predictors of Lung-Cancer Resistance and Sensitivity to Cisplatin. Int J Mol Sci 2022; 23:7594. [PMID: 35886942 PMCID: PMC9321818 DOI: 10.3390/ijms23147594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Platinum-based chemotherapy, cisplatin (DDP) specifically, is the main strategy for treating lung cancer (LC). However, currently, there is a lack of predictive drug-resistance markers, and there is increased interest in the development of a reliable and sensitive panels of markers for DDP chemotherapy-effectiveness prediction. MicroRNAs represent a perspective pool of markers for chemotherapy effectiveness. OBJECTIVES Data on miRNAs associated with LC DDP chemotherapy response are summarized and analyzed. MATERIALS AND METHODS A comprehensive review of the data in the literature and an analysis of bioinformatics resources were performed. The gene targets of miRNAs, as well as their reciprocal relationships with miRNAs, were studied using several databases. RESULTS AND DISCUSSION The complex analysis of bioinformatics resources and the literature indicated that the expressions of 12 miRNAs have a high predictive potential for LC DDP chemotherapy responses. The obtained information was discussed from the point of view of the main mechanisms of LC chemoresistance. CONCLUSIONS An overview of the published data and bioinformatics resources, with respect to the predictive microRNA markers of chemotherapy response, is presented in this review. The selected microRNAs and gene panel have a high potential for predicting LC DDP sensitiveness or DDP resistance as well as for the development of a DDP co-therapy.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Yuriy Lansukhay
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Sergey Krasilnikov
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| |
Collapse
|
8
|
Barbanente A, Galliani A, Iacobazzi RM, Lasorsa A, Nardella MI, Pennetta A, Margiotta N, Arnesano F. Interaction of Copper Trafficking Proteins with the Platinum Anticancer Drug Kiteplatin. ChemMedChem 2022; 17:e202100593. [PMID: 34727402 PMCID: PMC9298912 DOI: 10.1002/cmdc.202100593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Indexed: 12/31/2022]
Abstract
The interaction of metallodrugs with proteins influences their mechanism of action and side effects. In the case of platinum drugs, copper transporters modulate sensitivity and resistance to these anticancer agents. To deepen the knowledge of the structural properties underlying the reactivity of platinum drugs with copper transporters, we studied the interaction of kiteplatin and two of its derivatives with the methionine-rich motif of copper importer Ctr1 and with the dithiol motif of the first domain of Menkes ATPase. Furthermore, cellular uptake and cytotoxicity of the three complexes were evaluated in cisplatin-sensitive and -resistant ovarian cancer cells, comparing the data with those of clinically relevant drugs. Reactivity depends on the tightness of the chelate ring formed by the carrier ligands and the nature of the leaving and entering groups. The results highlight the importance of subtle changes in the platinum coordination sphere that affect drug absorption and intracellular fate.
Collapse
Affiliation(s)
| | - Angela Galliani
- Department of ChemistryUniversity of Bari “Aldo Moro”Via E. Orabona 470125BariItaly
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental PharmacologyIRCCS Istituto Tumori “Giovanni Paolo II”Viale O. Flacco 6570124BariItaly
| | - Alessia Lasorsa
- Department of ChemistryUniversity of Bari “Aldo Moro”Via E. Orabona 470125BariItaly
| | | | - Antonio Pennetta
- Department of Engineering for InnovationUniversity of SalentoVia per Monteroni Km 173100LecceItaly
- Department of Cultural HeritageUniversity of SalentoVia Dalmazio Birago 6473100LecceItaly
| | - Nicola Margiotta
- Department of ChemistryUniversity of Bari “Aldo Moro”Via E. Orabona 470125BariItaly
| | - Fabio Arnesano
- Department of ChemistryUniversity of Bari “Aldo Moro”Via E. Orabona 470125BariItaly
| |
Collapse
|
9
|
Qiu WL, Hsu WH, Tsao SM, Tseng AJ, Lin ZH, Hua WJ, Yeh H, Lin TE, Chen CC, Chen LS, Lin TY. WSG, a Glucose-Rich Polysaccharide from Ganoderma lucidum, Combined with Cisplatin Potentiates Inhibition of Lung Cancer In Vitro and In Vivo. Polymers (Basel) 2021; 13:polym13244353. [PMID: 34960904 PMCID: PMC8705874 DOI: 10.3390/polym13244353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022] Open
Abstract
Lung cancer has the highest global mortality rate of any cancer. Although targeted therapeutic drugs are commercially available, the common drug resistance and insensitivity to cisplatin-based chemotherapy, a common clinical treatment for lung cancer, have prompted active research on alternative lung cancer therapies and methods for mitigating cisplatin-related complications. In this study, we investigated the effect of WSG, a glucose-rich, water soluble polysaccharide derived from Ganoderma lucidum, on cisplatin-based treatment for lung cancer. Murine Lewis lung carcinoma (LLC1) cells were injected into C57BL/6 mice subcutaneously and through the tail vein. The combined administration of WSG and cisplatin effectively inhibited tumor growth and the formation of metastatic nodules in the lung tissue of the mice. Moreover, WSG increased the survival rate of mice receiving cisplatin. Co-treatment with WSG and cisplatin induced a synergistic inhibitory effect on the growth of lung cancer cells, enhancing the apoptotic responses mediated by cisplatin. WSG also reduced the cytotoxic effect of cisplatin in both macrophages and normal lung fibroblasts. Our findings suggest that WSG can increase the therapeutic effectiveness of cisplatin. In clinical settings, WSG may be used as an adjuvant or supplementary agent.
Collapse
Affiliation(s)
- Wei-Lun Qiu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
| | - Wei-Hung Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
- LO-Sheng Hospital Ministry of Health and Welfare, New Taipei 242, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Ming Tsao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
| | - Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin Yeh
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
| | - Tzu-En Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Chien-Chang Chen
- The General Education Center, Ming Chi University of Technology, New Taipei 243, Taiwan;
| | - Li-Sheng Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (L.-S.C.); or (T.-Y.L.)
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.-L.Q.); (W.-H.H.); (A.-J.T.); (Z.-H.L.); (W.-J.H.); (H.Y.)
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (L.-S.C.); or (T.-Y.L.)
| |
Collapse
|
10
|
Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol 2021; 15:3527-3544. [PMID: 34390123 PMCID: PMC8637554 DOI: 10.1002/1878-0261.13079] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/10/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer cells reprogram their copper metabolism to adapt to adverse microenvironments, such as oxidative stress. The copper chelator elesclomol has been reported to have considerable anticancer efficacy, but the underlying mechanisms remain largely unknown. In this study, we found that elesclomol-mediated copper overload inhibits colorectal cancer (CRC) both in vitro and in vivo. Elesclomol alone promotes the degradation of the copper transporter copper-transporting ATPase 1 (ATP7A), which retards the proliferation of CRC cells. This property distinguishes it from several other copper chelators. Combinational treatment of elesclomol and copper leads to copper retention within mitochondria due to ATP7A loss, leading to reactive oxygen species accumulation, which in turn promotes the degradation of SLC7A11, thus further enhancing oxidative stress and consequent ferroptosis in CRC cells. This effect accounts for the robust antitumour activity of elesclomol against CRC, which can be reversed by the administration of antioxidants and ferroptosis inhibitors, as well as the overexpression of ATP7A. In summary, our findings indicate that elesclomol-induced copper chelation inhibits CRC by targeting ATP7A and regulating ferroptosis.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| | - Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jie Lin
- Department of Medical OncologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
11
|
Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118893. [PMID: 33091507 DOI: 10.1016/j.bbamcr.2020.118893] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
The last 25 years have witnessed tremendous progress in identifying and characterizing proteins that regulate the uptake, intracellular trafficking and export of copper. Although dietary copper is required in trace amounts, sufficient quantities of this metal are needed to sustain growth and development in humans and other mammals. However, copper is also a rate-limiting nutrient for the growth and proliferation of cancer cells. Oral copper chelators taken with food have been shown to confer anti-neoplastic and anti-metastatic benefits in animals and humans. Recent studies have begun to identify specific roles for copper in pathways of oncogenic signaling and resistance to anti-neoplastic drugs. Here, we review the general mechanisms of cellular copper homeostasis and discuss roles of copper in cancer progression, highlighting metabolic vulnerabilities that may be targetable in the development of anticancer therapies.
Collapse
Affiliation(s)
- Vinit C Shanbhag
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Nikita Gudekar
- Genetics Area Program, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Kimberly Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Christos Papageorgiou
- Department of Medicine, University of Missouri, Columbia, MO 65211, United States of America
| | - Kamal Singh
- The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States of America
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; Department of Ophthalmology, University of Missouri, Columbia, MO 65211, United States of America; Genetics Area Program, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
12
|
Gong TT, Liu XD, Zhan ZP, Wu QJ. Sulforaphane enhances the cisplatin sensitivity through regulating DNA repair and accumulation of intracellular cisplatin in ovarian cancer cells. Exp Cell Res 2020; 393:112061. [PMID: 32437713 DOI: 10.1016/j.yexcr.2020.112061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Cisplatin is commonly applied as anticancer agent for various cancers, including ovarian cancer. Unfortunately, the drug resistance frequently occurred which obstructing the effect of cisplatin on tumors. The goal of our research was to investigate the reversal actions and the potential mechanisms of sulforaphane (SFN) on cisplatin resistance in ovarian carcinoma. METHODS The A2780 and IGROV1 cells and their cisplatin resistance cells A2780/CP70 and IGROV1-R10 were used in this study. Cell viability was detected by CCK-8. The DNA repair was measured by comet assay. The cisplatin transporter proteins were measured with western blotting. The concentration of intracellular cisplatin was detected by HPLC. The luciferase activity assay was applied to determine the target site of miR-30a-3p on the 3'UTR of ERCC1 and ATP7A. A2780/CP70 and IGROV1-R10 xenograft mouse model were established to confirm the antineoplastic action of SFN combined with cisplatin. RESULTS SFN reversed the resistance of A2780/CP70 and IGROV1-R10 ovarian carcinoma cells to cisplatin through inducing DNA damage and accumulation of intracellular cisplatin. SFN treatment notably increased miR-30a-3p expression, which was decreased in cisplatin-resistant cells. Moreover, overexpressed miR-30a-3p enhanced the sensitivity of A2780/CP70 and IGROV1-R10 cells to cisplatin treatment, and inhibiting miR-30a-3p activity abated the reversal actions of SFN on cisplatin resistance. The luciferase assay findings showed that miR-30a-3p binds to ERCC1 and ATP7A which are the key regulators for DNA repair and cisplatin transportation. CONCLUSIONS Our findings indicated that SFN could enhance cisplatin sensitivity of ovarian carcinoma cells through up-regulating miR-30a-3p to induce DNA damage and accumulation of intracellular cisplatin.
Collapse
Affiliation(s)
- Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Dong Liu
- Department of Pharmacy, Shengjing hospital of China Medical University, Shenyang, China
| | - Zhi-Peng Zhan
- Department of Nutrition, School of Public Health, Jinzhou Medical University, Jinzhou, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Mao CX, Li M, Zhang W, Zhou HH, Yin JY, Liu ZQ. Pharmacogenomics for the efficacy of platinum-based chemotherapy: Old drugs, new integrated perspective. Biomed Pharmacother 2020; 126:110057. [PMID: 32145590 DOI: 10.1016/j.biopha.2020.110057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Platinum-based chemotherapy remains the cornerstone of treatment for many malignancies. However, although therapeutic efficiency varies greatly among individuals, there is a lack of pharmacogenomic biomarkers that can be used in clinical settings to identify chemosensitive patients and allow stratification. With the development of high-throughput screening techniques and systems biology approaches, a growing body of evidence has shown that platinum resistance is a multifactorial, multi-dimensional, dynamic process incorporating genetic background, tumor evolution and gut microbes. This review critically summarizes potential pharmacogenomic biomarkers for predicting the efficacy of platinum drugs and provides a comprehensive, time-varying perspective that integrates multiple markers.
Collapse
Affiliation(s)
- Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
14
|
Lopriore P, Capitanio N, Panatta E, Di Daniele N, Gambacurta A, Melino G, Amelio I. TAp73 regulates ATP7A: possible implications for ageing-related diseases. Aging (Albany NY) 2019; 10:3745-3760. [PMID: 30530920 PMCID: PMC6326685 DOI: 10.18632/aging.101669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
The p53 family member p73 controls a wide range of cellular function. Deletion of p73 in mice results in increased tumorigenesis, infertility, neurological defects and altered immune system. Despite the extensive effort directed to define the molecular underlying mechanism of p73 function a clear definition of its transcriptional signature and the extent of overlap with the other p53 family members is still missing. Here we describe a novel TAp73 target, ATP7A a member of a large family of P-type ATPases implicated in human neurogenerative conditions and cancer chemoresistance. Modulation of TAp73 expression influences basal expression level of ATP7A in different cellular models and chromatin immunoprecipitation confirmed a physical direct binding of TAp73 on ATP7A genomic regions. Bioinformatic analysis of expression profile datasets of human lung cancer patients suggests a possible implication of TAp73/ATP7A axis in human cancer. These data provide a novel TAp73-dependent target which might have implications in ageing-related diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Piervito Lopriore
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom.,Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuele Panatta
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom
| | - Nicola Di Daniele
- Department of Systems Medicine, Nephrology and Hypertension Unit, Tor Vergata University Hospital, Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom.,Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Ivano Amelio
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom
| |
Collapse
|
15
|
Toosendanin mediates cisplatin sensitization through targeting Annexin A4/ATP7A in non-small cell lung cancer cells. J Nat Med 2018; 72:724-733. [DOI: 10.1007/s11418-018-1211-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/30/2018] [Indexed: 11/27/2022]
|
16
|
Li YQ, Yin JY, Liu ZQ, Li XP. Copper efflux transporters ATP7A and ATP7B: Novel biomarkers for platinum drug resistance and targets for therapy. IUBMB Life 2018; 70:183-191. [PMID: 29394468 DOI: 10.1002/iub.1722] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
Abstract
Platinum-based chemotherapy agents are widely used in the treatment of various solid malignancies. However, their efficacy is limited by drug resistance. Recent studies suggest that copper efflux transporters, which are encoded by ATP7A and ATP7B, play an important role in platinum drug resistance. Over-expressions of ATP7A and ATP7B are observed in multiple cancers. Moreover, their expressions are associated with cancer prognosis and treatment outcomes of platinum-based chemotherapy. In our review, we highlight the roles of ATP7A/7B in platinum drug resistance and cancer progression. We also discuss the possible mechanisms of platinum drug resistance mediated by ATP7A/7B and provide novel strategies for overcoming resistance. This review may be helpful for understanding the roles of ATP7A and ATP7B in platinum drug resistance. © 2018 IUBMB Life, 70(3):183-191, 2018.
Collapse
Affiliation(s)
- Yue-Qin Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China
| |
Collapse
|
17
|
Fadejeva I, Olschewski H, Hrzenjak A. MicroRNAs as regulators of cisplatin-resistance in non-small cell lung carcinomas. Oncotarget 2017; 8:115754-115773. [PMID: 29383199 PMCID: PMC5777811 DOI: 10.18632/oncotarget.22975] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
With more than 80% of all diagnosed lung cancer cases, non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. Exact diagnosis is mostly very late and advanced-stage NSCLCs are inoperable at admission. Tailored therapies with tyrosine kinase inhibitors are only available for a minority of patients. Thus, chemotherapy is often the treatment of choice. As first-line chemotherapy for NSCLCs, platinum-based substances (e.g. cisplatin, CDDP) are mainly used. Unfortunately, the positive effects of CDDP are frequently diminished due to development of drug resistance and negative influence of microenvironmental factors like hypoxia. MicroRNAs (miRNAs) are small, non-coding molecules involved in the regulation of gene expression and modification of biological processes like cell proliferation, apoptosis and cell response to chemotherapeutics. Expression of miRNAs is often deregulated in lung cancer compared to corresponding non-malignant tissue. In this review we summarize the present knowledge about the effects of miRNAs on CDDP-resistance in NSCLCs. Further, we focus on miRNAs deregulated by hypoxia, which is an important factor in the development of CDDP-resistance in NSCLCs. This review will contribute to the general understanding of miRNA-regulated biological processes in NSCLC, with special focus on the role of miRNA in CDDP-resistance.
Collapse
Affiliation(s)
- Irina Fadejeva
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Zhu S, Shanbhag V, Wang Y, Lee J, Petris M. A Role for The ATP7A Copper Transporter in Tumorigenesis and Cisplatin Resistance. J Cancer 2017; 8:1952-1958. [PMID: 28819394 PMCID: PMC5559955 DOI: 10.7150/jca.19029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/25/2017] [Indexed: 01/24/2023] Open
Abstract
The ATP7A protein is a ubiquitously expressed copper-translocating P-type ATPase that controls cytoplasmic copper concentrations by mediating cellular copper egress. In vitro studies have previously demonstrated that ATP7A abundance in various tumor cell lines is correlated with increased resistance to cisplatin, a widely-used chemotherapy agent. However, to date no studies have examined a role for ATP7A in tumor growth or cisplatin sensitivity in vivo. In this study, we deleted ATP7A in H-RAS transformed tumorigenic mouse embryonic fibroblasts (MEFRAS7A-). Interestingly, loss of ATP7A was found to markedly suppress tumorigenesis in MEFRAS7A- cells relative to wild type parental cells. This was associated with hyperaccumulation of copper and sensitivity to reactive oxygen species and hypoxia. Tumor grafts lacking ATP7A were markedly more sensitive to cisplatin chemotherapy compared to ATP7A-expressing control tumors. These findings identify ATP7A at the nexus between tumorigenesis and cisplatin resistance pathways, underscoring its potential as a therapeutic target for regulating both tumor growth and the efficacy of cisplatin treatment.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211.,The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211
| | - Vinit Shanbhag
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211.,The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211
| | - Yanfang Wang
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211.,The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211
| | - Jaekwon Lee
- Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, 68588
| | - Michael Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211.,Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211.,The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211
| |
Collapse
|
19
|
Schreiber R, Mezencev R, Matyunina LV, McDonald JF. Evidence for the role of microRNA 374b in acquired cisplatin resistance in pancreatic cancer cells. Cancer Gene Ther 2016; 23:241-5. [PMID: 27229158 PMCID: PMC5007605 DOI: 10.1038/cgt.2016.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
Abstract
Recent evidence has implicated microRNAs (miRNAs) as potentially significant players in the acquisition of cancer-drug resistance in pancreatic and other cancers. To evaluate the potential contribution of miRNAs in acquired resistance to cisplatin in pancreatic cancer, we compared levels of more than 2000 human miRNAs in a cisplatin-resistant cell line (BxPC3-R) derived from parental (BxPC3) cells by step-wise exposure to increasing concentrations of the drug over more than 20 passages. The acquired drug resistance was accompanied by significant changes in the expression of 57 miRNAs, of which 23 were downregulated and 34 were upregulated. Employing a hidden Markov model (HMM) algorithm, we identified downregulation of miR-374b as likely being directly involved in acquisition of the drug-resistant phenotype. Consistent with this prediction, ectopic overexpression of miR-374b in the resistant BxPC3-R cells restored cisplatin sensitivity to levels approaching those displayed by the BxPC3 parental cells. The results are consistent with a growing body of evidence implicating miRNAs in acquired cancer-drug resistance and with the potential therapeutic value of these small regulatory RNAs in blocking and/or reversing the process.
Collapse
Affiliation(s)
- R Schreiber
- School of Biology, Petit Institute of Bioengineering and BioSciences and Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
- Laboratório de Biologia Cardiovascular, Faculdade de Ciências Médicas- UNICAMP, Prédio Vital, Brazil
| | - R Mezencev
- School of Biology, Petit Institute of Bioengineering and BioSciences and Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| | - L V Matyunina
- School of Biology, Petit Institute of Bioengineering and BioSciences and Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| | - J F McDonald
- School of Biology, Petit Institute of Bioengineering and BioSciences and Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
20
|
Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res 2016; 106:27-36. [PMID: 26804248 DOI: 10.1016/j.phrs.2016.01.001] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 01/11/2023]
Abstract
Cisplatin is one of the most commonly used chemotherapy drugs, treating a wide range of cancer types. Unfortunately, many cancers initially respond to platinum treatment but when the tumor returns, drug resistance frequently occurs. Resistance to cisplatin is attributed to three molecular mechanisms: increased DNA repair, altered cellular accumulation, and increased drug inactivation. The use of precision medicine to make informed decisions on a patient's cisplatin resistance status and predicting the tumor response would allow the clinician to tailor the chemotherapy program based on the biology of the disease. In this review, key biomarkers of each molecular mechanism will be discussed along with the current clinical research. Additionally, known polymorphisms for each biomarker will be discussed in relation to their influence on cisplatin resistance.
Collapse
Affiliation(s)
- Lauren Amable
- National Institute on Minority Health and Health Disparities, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| |
Collapse
|
21
|
Yang T, Chen M, Chen T, Thakur A. Expression of the copper transporters hCtr1, ATP7A and ATP7B is associated with the response to chemotherapy and survival time in patients with resected non-small cell lung cancer. Oncol Lett 2015; 10:2584-2590. [PMID: 26622894 DOI: 10.3892/ol.2015.3531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/05/2015] [Indexed: 12/15/2022] Open
Abstract
Copper transporter family proteins may regulate the chemoresistance of non-small cell lung cancer (NSCLC) to platinum-based anticancer drugs. The present study aimed to investigate the expression of these proteins in lung cancer tissue specimens for association with clinicopathological data and patient responses to chemotherapy and survival. A total of 54 patients with surgically resected NSCLC that received first-line platinum-based doublet chemotherapy were recruited in the present study, and the paraffin-embedded pre-treatment tumor tissue specimens were subjected to immunohistochemical analysis for the expression of human copper transporter 1 (hCtr1) and copper-transporting p-type adenosine triphosphatase 1 (ATP7A) and 2 (ATP7B). This cohort of patients with NSCLC received platinum-based chemotherapy subsequent to the surgical removal of tumor lesions. ATP7B expression was found to be significantly associated with tumor cell differentiation, while hCtr1 expression was significantly associated with improved chemotherapeutic responses. The median survival time was 20 months in patients possessing tumors with high ATP7A expression, but >66 months in patients possessing tumors with low ATP7A expression at the end of the follow-up (P<0.001). The median survival time at the end of the follow-up was 15 months in patients with low tumor hCtr1 expression, but >66 months in patients with high tumor hCtr1 expression (P<0.001). High hCtr1 and low ATP7A expression were each favorable prognostic factors subsequent to chemotherapy for patients with resected NSCLC. Multivariate analysis revealed that high hCtr1 expression combined with low ATP7A expression, good tumor differentiation and female gender were all favorable independent predictive and prognostic factors for patients with resected NSCLC following chemotherapy. High hCtr1 expression combined with low ATP7A expression was associated with an improved prognosis in patients with resected NSCLC that received platinum-based chemotherapy. Surgery combined with neoadjuvant chemotherapy may improve the survival time of patients with NSCLC.
Collapse
Affiliation(s)
- Tian Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tianjun Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Asmitananda Thakur
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
22
|
A Chinese herbal Formula, Chang-Wei-Qin, Synergistically Enhances Antitumor Effect of Oxaliplatin. Pathol Oncol Res 2014; 21:389-97. [DOI: 10.1007/s12253-014-9831-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
|
23
|
Tahata S, Yuan B, Kikuchi H, Takagi N, Hirano T, Toyoda H. Cytotoxic effects of pyrrolidine dithiocarbamate in small-cell lung cancer cells, alone and in combination with cisplatin. Int J Oncol 2014; 45:1749-59. [PMID: 25070243 DOI: 10.3892/ijo.2014.2564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/01/2014] [Indexed: 11/06/2022] Open
Abstract
The cytocidal effect of pyrrolidine dithiocarbamate (PDTC) was investigated by focusing on cell viability, cell cycle arrest and apoptosis induction in small-cell lung cancer (SCLC) cell lines (NCI-H196 and NCI-H889). PDTC exhibited a much stronger dose-dependent cytotoxic activity against NCI-H196 compared to NCI-H889, while no such activity was observed in normal human embryonal lung fibroblast MRC-5 cells. Cell cycle arrest in S phase paralleled with suppression of c-myc expression without accompanying DNA fragmentation was observed in NCI-H196 cells. A transient increase in the intracellular ROS accompanied with an alteration of expression of oxidative stress-related genes was also confirmed in NCI-H196 cells. Furthermore, the addition of N-acetyl-l-cysteine (NAC), a free radical scavenger, not only abolished PDTC-trigger alterations of expression of these oxidative-related genes, but also almost completely abrogated PDTC-induced reduction in cell viability and morphological changes associated with cell damage. These results thus suggest that PDTC-induced cytotoxicity is attributed to its pro-oxidant activity. PDTC-induced cytotoxicity was further enhanced by CuCl2, however, abolished by bathocuproine disulfonate (BCPS), a non-permeable copper-specific chelator, supporting the plausibility that accumulation of intracellular Cu plays an important role in the cytotoxicity. Importantly, we demonstrated for the first time that PDTC downregulated the expression of ATP7A, known to be responsible for Cu efflux, but did not affect the expression of CTR1, known as a copper uptake transporter. Intriguingly, combination of much lower dose of cisplatin (5 µM) and non-toxic dose of PDTC (0.1 µM) synergistically induced a significant cytotoxicity in NCI-H196 cells. Given that ATP7A plays a critical role in the resistance of platinum-drug (such as cisplatin) representing a first-line treatment for SCLC, PDTC could be a promising candidate of adjunct therapeutic reagent for the patients requiring treatment with platinum-based regimens.
Collapse
Affiliation(s)
- Shinichi Tahata
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Bo Yuan
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hidetomo Kikuchi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
24
|
Song L, Li Y, Li W, Wu S, Li Z. miR-495 Enhances the Sensitivity of Non-Small Cell Lung Cancer Cells to Platinum by Modulation of Copper-Transporting P-type Adenosine Triphosphatase A (ATP7A). J Cell Biochem 2014; 115:1234-42. [PMID: 24038379 DOI: 10.1002/jcb.24665] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 09/03/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Liqiang Song
- Department of Respiratory Medicine, Xijing Hospital; Fourth Military Medical University; Xi'an 710032 China
| | - Yan Li
- Department of Cardiovascular Medicine, Xijing Hospital; Fourth Military Medical University; Xi'an 710032 China
| | - Weina Li
- Department of the Biotechnology Center; Fourth Military Medical University; Xi'an 710032 China
| | - Shouzhen Wu
- Department of the Biotechnology Center; Fourth Military Medical University; Xi'an 710032 China
| | - Zhikui Li
- Department of Respiratory Medicine, Xijing Hospital; Fourth Military Medical University; Xi'an 710032 China
| |
Collapse
|