1
|
Sharaky M, Dokla EME, Abdel-Aziz AK. Anticancer activity of EMD37 against human head and neck cancer: Impact on apoptotic and inflammatory machineries. Toxicol In Vitro 2025; 102:105967. [PMID: 39510359 DOI: 10.1016/j.tiv.2024.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Accumulating evidence emphasizes the tumorigenic role of epidermal growth factor receptor (EGFR) in head and neck cancer (HNC). Although cetuximab is the sole anti-EGFR approved by the Food and Drug Administration for treating HNC patients.its response rates are modest. Thus, novel effective and tolerable therapeutic strategies are urged. We previously reported the capability of oxadiazole derivatives to degrade tyrosine kinase receptors including EGFR and exhibit potent anticancer activities against NCI-60 panel which does not include HNC. The aim of this study was to investigate the potential anticancer activity of EMD37, a novel 1,2,4-oxadiazole derivative, against human HNC cells and if effective, to examine the effect of EMD37 on apoptotic and inflammation mediators. Indeed, EMD37 exhibited potent cytotoxicity against patient-derived HNC cell lines (HNO-97, HN-9 and FaDu). Delving deeper, EMD37 triggered intrinsic and extrinsic apoptosis in HNC cells as evidenced by increased levels of caspase-8, caspase-9, caspase-3, caspase-7, caspase-6, TP53BP1 tumor suppressor and Bax, and downregulated anti-apoptotic Bcl-2 protein. EMD37 also significantly abrogated the levels of pro-inflammatory interleukin-1β, interleukin-6, cyclooxygenase-2 and matrix metalloproteinases (MMP-2 and MMP-9) which are heightened in HNC. Bioinformatic analysis revealed that BCL2low, IL6low and MMP9low HNC biospecimens are enriched with epithelial cell differentiation gene set, and CASP8high cohort is enriched with extrinsic apoptosis. Altogether, this study emphasizes the therapeutic potential of targeting the apoptotic and inflammatory machineries in HNC using EMD37.
Collapse
Affiliation(s)
- Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt.
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Wang Y, Li Q, Zhao R, Wang JY, Wang Y, Lin W, Yuan Z, Zhang J, Fadare O, Wang Y, Zheng W. Fallopian tubal histogenesis of ovarian endometriosis-A study of folate receptor-alpha expression. Front Med (Lausanne) 2023; 10:1138690. [PMID: 36936232 PMCID: PMC10017500 DOI: 10.3389/fmed.2023.1138690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Ovary is a common organ site involved by endometriosis. We previously found that fallopian tube may contribute to the histogenesis of ovarian endometriosis. The finding was novel and requires further studies. We addressed this issue by examining a differentially expressed gene folate receptor alpha (FOLR1) and its protein (FRA) in this study. Results A total of 144 tissue samples were studied. These included 32-paired tubal-endometrial-ovarian endometriosis samples (n = 96), 18 samples of ovarian endometriosis without corresponding fallopian tube or endometrium, and 30 ovarian tissue samples with ovarian surface epithelia but without endometriosis. Multiple comparisons among groups of ovarian endometriosis, normal fallopian tube and benign endometrium were performed. FOLR1 was highly expressed in the epithelia of fallopian tube and ovarian endometriosis, with paired endometrial samples showing a significantly lower level of expression. Similar differential studies for FRA protein were performed through Western blot and immunohistochemistry (IHC). The expression of folate receptor alpha at both mRNA and protein levels in the tissues (fallopian tube or ovarian endometriosis vs. the endometrium) were significantly different (p < 0.001). All ovarian surface mesothelial epithelia showed negative expression of FRA by IHC. Conclusion The results further support that the fallopian tube may contribute to the development of ovarian endometriosis. Understanding the tubal contribution to ovarian endometriosis should ultimately contribute to ongoing investigative efforts aimed at identifying alternative ways to prevent and treat endometriosis. High level of FRA expression in the fallopian tube and endometriosis might be considered as potential tissue sites for targeted therapy.
Collapse
Affiliation(s)
- Yiying Wang
- Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
- *Correspondence: Yiying Wang,
| | - Qiyan Li
- Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
- Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Ruijiao Zhao
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Jerry Y. Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yan Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Wanrun Lin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zeng Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China
| | - Jing Zhang
- Department of Biological Sciences, University at Albany, SUNY, Albany, NY, United States
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego, San Diego, CA, United States
| | - Yue Wang
- Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
- Yue Wang,
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Pathology, Harold C Simmons Comprehensive Cancer Center at University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235768. [PMID: 36497250 PMCID: PMC9737485 DOI: 10.3390/cancers14235768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.
Collapse
|
4
|
Yucer N, Ahdoot R, Workman MJ, Laperle AH, Recouvreux MS, Kurowski K, Naboulsi DJ, Liang V, Qu Y, Plummer JT, Gayther SA, Orsulic S, Karlan BY, Svendsen CN. Human iPSC-derived fallopian tube organoids with BRCA1 mutation recapitulate early-stage carcinogenesis. Cell Rep 2021; 37:110146. [PMID: 34965417 PMCID: PMC9000920 DOI: 10.1016/j.celrep.2021.110146] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2021] [Accepted: 11/27/2021] [Indexed: 12/28/2022] Open
Abstract
Germline pathogenic mutations in BReast CAncer (BRCA1) genes are thought to drive normal fallopian tube epithelial (FTE) cell transformation to high-grade serous ovarian cancer. No human models capture the sequence of events for disease initiation and progression. Here, we generate induced pluripotent stem cells (iPSCs) from healthy individuals and young ovarian cancer patients with germline pathogenic BRCA1 mutations (BRCA1mut). Following differentiation into FTE organoids, BRCA1mut lines exhibit cellular abnormalities consistent with neoplastic transformation compared to controls. BRCA1mut organoids show an increased production of cancer-specific proteins and survival following transplantation into mice. Organoids from women with the most aggressive ovarian cancer show the greatest pathology, indicating the potential value to predict clinical severity prior to disease onset. These human FTE organoids from BRCA1mut carriers provide a faithful physiological in vitro model of FTE lesion generation and early carcinogenesis. This platform can be used for personalized mechanistic and drug screening studies. Yucer et al. generate a human BRCA1 mutant iPSC-derived fallopian tube organoid model, which recapitulates BRCA1 mutant ovarian carcinogenesis in vitro and shows tumors in vivo. This model provides a biologically relevant platform to validate drugs and a basis for personalized early detection and preventative strategies for women carrying BRCA1 mutations.
Collapse
|
5
|
Blasiak J, Szczepańska J, Sobczuk A, Fila M, Pawlowska E. RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair. Int J Mol Sci 2021; 22:11440. [PMID: 34768871 PMCID: PMC8583789 DOI: 10.3390/ijms222111440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Replication timing (RT) is a cellular program to coordinate initiation of DNA replication in all origins within the genome. RIF1 (replication timing regulatory factor 1) is a master regulator of RT in human cells. This role of RIF1 is associated with binding G4-quadruplexes and changes in 3D chromatin that may suppress origin activation over a long distance. Many effects of RIF1 in fork reactivation and DNA double-strand (DSB) repair (DSBR) are underlined by its interaction with TP53BP1 (tumor protein p53 binding protein). In G1, RIF1 acts antagonistically to BRCA1 (BRCA1 DNA repair associated), suppressing end resection and homologous recombination repair (HRR) and promoting non-homologous end joining (NHEJ), contributing to DSBR pathway choice. RIF1 is an important element of intra-S-checkpoints to recover damaged replication fork with the involvement of HRR. High-resolution microscopic studies show that RIF1 cooperates with TP53BP1 to preserve 3D structure and epigenetic markers of genomic loci disrupted by DSBs. Apart from TP53BP1, RIF1 interact with many other proteins, including proteins involved in DNA damage response, cell cycle regulation, and chromatin remodeling. As impaired RT, DSBR and fork reactivation are associated with genomic instability, a hallmark of malignant transformation, RIF1 has a diagnostic, prognostic, and therapeutic potential in cancer. Further studies may reveal other aspects of common regulation of RT, DSBR, and fork reactivation by RIF1.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Szczepańska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| |
Collapse
|
6
|
Design and Construction of a Focused DNA-Encoded Library for Multivalent Chromatin Reader Proteins. Molecules 2020; 25:molecules25040979. [PMID: 32098353 PMCID: PMC7070942 DOI: 10.3390/molecules25040979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Chromatin structure and function, and consequently cellular phenotype, is regulated in part by a network of chromatin-modifying enzymes that place post-translational modifications (PTMs) on histone tails. These marks serve as recruitment sites for other chromatin regulatory complexes that ‘read’ these PTMs. High-quality chemical probes that can block reader functions of proteins involved in chromatin regulation are important tools to improve our understanding of pathways involved in chromatin dynamics. Insight into the intricate system of chromatin PTMs and their context within the epigenome is also therapeutically important as misregulation of this complex system is implicated in numerous human diseases. Using computational methods, along with structure-based knowledge, we have designed and constructed a focused DNA-Encoded Library (DEL) containing approximately 60,000 compounds targeting bi-valent methyl-lysine (Kme) reader domains. Additionally, we have constructed DNA-barcoded control compounds to allow optimization of selection conditions using a model Kme reader domain. We anticipate that this target-class focused approach will serve as a new method for rapid discovery of inhibitors for multivalent chromatin reader domains.
Collapse
|
7
|
Ren X, Xia B, Chen Z, Chen X, Wu D, Lu W, Luo N, Zhou L, Liu W, Yang X, Liu J. Short-term and long-term exposure to hexavalent chromium alters 53BP1 via H3K18ac and H3K27ac. CHEMOSPHERE 2019; 229:284-294. [PMID: 31078885 DOI: 10.1016/j.chemosphere.2019.04.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a well-known human carcinogen and a strong oxidizer that causes severe DNA damage. However, the associations between epigenetic dysregulation and DNA damage have not been well-characterized. In this study, we evaluated the effects of short-term and long-term exposure to Cr(VI) in human bronchial epithelial (16HBE) cells. Then, we explored the role of epigenetic modification in Cr(VI)-induced DNA damage. We found that short- and long-term exposure to Cr(VI) induced DNA damage and reduced the expression 53BP1, but increased the expression of other DNA repair mediators. Short- and long-term exposure to Cr(VI) reduced the levels of H3K18ac and H3K27ac and reduced their enrichment at the promoter of 53BP1. Long-term Cr(VI) exposure resulted in multiple malignant characteristics including cell invasion, migration, and tumorgenicity. These data demonstrated that reduced H3K18ac and H3K27ac following Cr(VI) treatment contributed to the suppression of 53BP1. Our study demonstrated that epigenetic changes and DNA damage responses are involved in short-term toxicity and long-term carcinogenesis induced by Cr(VI).
Collapse
Affiliation(s)
- Xiaohu Ren
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Bo Xia
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China; College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, 410128, Hunan, China
| | - Zhihong Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China; School of Public Health, Southern Medical University, Tonghe District, Guangzhou, 510515, China
| | - Xiao Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Desheng Wu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Weixue Lu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Nuanyuan Luo
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Li Zhou
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Wei Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Xifei Yang
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Jianjun Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
8
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Zhuang RJ, Bai XX, Liu W. MicroRNA-23a depletion promotes apoptosis of ovarian cancer stem cell and inhibits cell migration by targeting DLG2. Cancer Biol Ther 2019; 20:897-911. [PMID: 30862230 DOI: 10.1080/15384047.2019.1579960] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer (OC) is xenogeneic that is influenced by many generated factors related to epigenetic factors to accelerate tumor metastasis. This study was conducted with the objective of investigating the effect of microRNA-23a-3p (miR-23a) on the biological characteristics of OC stem cells by targeting discs large homolog 2 (DLG2). OC-related differentially expressed genes were screened by microarray-based gene expression analysis, after which a list of miRNAs that regulate the genes was predicted. In total, 50 patients diagnosed with OC were enrolled in this study. DLG2 positive protein expression was measured in OC tissues. The interaction between DLG2 and miR-23a was predicted and analyzed through luciferase activity measurement. With the intervention of miR-23a and/or DLG2 expression in OC stem cells, the expression of miR-23a, DLG2, Bax, Bcl-2, Oct-4, and Nanog was determined. Afterward, different cell experiments were conducted to examine the regulation effect of miR-23a in OC stem cells. Tumor formation in vivo was also evaluated in nude mice. DLG2 had low expression in OC. The results showed that there was a decrease in the expression of Bcl-2, Oct-4, and Nanog, while DLG2 and Bax were increased as a result of miR-23a depletion. In addition, when miR-23a was suppressed, cell viability, migration, invasion, cloning, and renewal abilities of OC stem cells were decreased, while apoptosis ability was enhanced. As a target gene of miR-23a, DLG2 downregulation reversed the suppressive function of miR-23a in the inhibition of OC development. Finally, in vivo experiment verified that miR-23a downregulation restrained the tumor growth in OC stem cells. In conclusion, our findings suggested that the inhibition of miR-23a results in the suppression of OC progression by releasing DLG2, which provides new understanding on the potential therapeutic effect of miR-23a inhibition in OC patients.
Collapse
Affiliation(s)
- Ru-Jin Zhuang
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Harbin Medical University , Harbin , P.R. China
| | - Xiao-Xu Bai
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Harbin Medical University , Harbin , P.R. China
| | - Wei Liu
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Harbin Medical University , Harbin , P.R. China
| |
Collapse
|
10
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
11
|
Hong S, Li X, Zhao Y, Yang Q, Kong B. 53BP1 inhibits the migration and regulates the chemotherapy resistance of ovarian cancer cells. Oncol Lett 2018; 15:9917-9922. [PMID: 29928364 DOI: 10.3892/ol.2018.8596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 05/19/2017] [Indexed: 02/05/2023] Open
Abstract
The major problems faced during the treatment of ovarian cancer are metastasis and the development of intrinsic or acquired drug resistance. The present study assessed whether tumor protein p53 binding protein 1 (53BP1) regulated migration and modulated chemotherapy resistance in SKOV3 cells and identified proteins associated with the molecular mechanisms underlying this coordinate regulation. SKOV3 cells were transfected using a 53BP1-expressing vector, which induced 53BP1 overexpression. The migration of the transfected cells was observed using a Transwell assay. The expression of matrix metalloproteinase (MMP)-2 and MMP-9 were assayed using gelatin zymography. In addition, the effects of 53BP1 on the chemosensitivity of SKOV3 cells to cisplatin were evaluated using MTT and western blot assays. Compared with the control, the average number of migrating SKOV3/pLPC-53BP1 cells was decreased from 230±58 to 45±12 (P<0.05) and the protein expression of MMP-9 was significantly inhibited. However, the chemosensitivity of SKOV3/pLPC-53BP1 to cisplatin decreased significantly: Cisplatin half maximal inhibitory concentration (IC50) for SKOV3/pLPC-53BP1=7.58±0.51 µg/ml; cisplatin IC50 for control=2.98±0.27 µg/ml (P<0.01). Decreased chemosensitivity to cisplatin may be associated with increased expression of phosphorylated-protein kinase B and cyclin dependent kinase 2 and with decreased expression of p21 and the B cell lymphoma (Bcl)-2 associated X/Bcl-2 ratio. The results of the present study demonstrated that 53BP1 may inhibit migration but upregulate chemoresistance to cisplatin in SKOV3 cells.
Collapse
Affiliation(s)
- Shuhui Hong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Gynecology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaoyan Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qifeng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
De Gregoriis G, Ramos JA, Fernandes PV, Vignal GM, Brianese RC, Carraro DM, Monteiro AN, Struchiner CJ, Suarez-Kurtz G, Vianna-Jorge R, de Carvalho MA. DNA repair genes PAXIP1 and TP53BP1 expression is associated with breast cancer prognosis. Cancer Biol Ther 2017; 18:439-449. [PMID: 28475402 DOI: 10.1080/15384047.2017.1323590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite remarkable advances in diagnosis, prognosis and treatment, advanced or recurrent breast tumors have limited therapeutic approaches. Many treatment strategies try to explore the limitations of DNA damage response (DDR) in tumor cells to selectively eliminate them. BRCT (BRCA1 C-terminal) domains are present in a superfamily of proteins involved in cell cycle checkpoints and the DDR. Tandem BRCT domains (tBRCT) represent a distinct class of these domains. We investigated the expression profile of 7 tBRCT genes (BARD1, BRCA1, LIG4, ECT2, MDC1, PAXIP1/PTIP and TP53BP1) in breast cancer specimens and observed a high correlation between PAXIP1 and TP53BP1 gene expression in tumor samples. Tumors with worse prognosis (tumor grade 3 and triple negative) showed reduced expression of tBRCT genes, notably, PAXIP1 and TP53BP1. Survival analyses data indicated that tumor status of both genes may impact prognosis. PAXIP1 and 53BP1 protein levels followed gene expression results, i.e., are intrinsically correlated, and also reduced in more advanced tumors. Evaluation of both genes in triple negative breast tumor samples which were characterized for their BRCA1 status showed that PAXIP1 is overexpressed in BRCA1 mutant tumors. Taken together our findings indicate that PAXIP1 status correlates with breast cancer staging, in a manner similar to what has been characterized for TP53BP1.
Collapse
Affiliation(s)
- Giuliana De Gregoriis
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil
| | | | | | - Giselle Maria Vignal
- c Divisão de Patologia , Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil
| | | | - Dirce Maria Carraro
- d International Research Center, A. C. Camargo Cancer Center , São Paulo , SP , Brazil
| | - Alvaro N Monteiro
- e Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | | | - Guilherme Suarez-Kurtz
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil
| | - Rosane Vianna-Jorge
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil.,g Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - Marcelo Alex de Carvalho
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil.,b Instituto Federal do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
13
|
Wang JY, Chen SY, Sun CN, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene 2015; 35:1657-70. [PMID: 26096928 DOI: 10.1038/onc.2015.228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
DNA repair is critical for the maintenance of genome stability. Upon genotoxic stress, dysregulated DNA repair may induce apoptosis. Translin-associated factor X (TRAX), which was initially identified as a binding partner of Translin, has been implicated in genome stability. However, the exact role of TRAX in DNA repair remains largely unknown. Here, we showed that TRAX participates in the ATM/H2AX-mediated DNA repair machinery by interacting with ATM and stabilizing the MRN complex at double-strand breaks. The exogenous expression of wild-type (WT) TRAX, but not a TRAX variant lacking the nuclear localization signal (NLS), rescued the vulnerability of TRAX-null mouse embryo fibroblasts (MEFs). This finding confirms the importance of the nuclear localization of TRAX in the repair of DNA damage. Compared with WT MEFs, TRAX-null MEFs exhibited impaired DNA repair (for example, reduced phosphorylation of ATM and H2AX) after treatment with ultra violet-C or γ-ray irradiation and a higher incidence of p53-mediated apoptosis. Our findings demonstrate that TRAX is required for MRN complex-ATM-H2AX signaling, which optimizes DNA repair by interacting with the activated ATM and protects cells from genotoxic stress-induced apoptosis.
Collapse
Affiliation(s)
- J-Y Wang
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - S-Y Chen
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - C-N Sun
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - T Chien
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Y Chern
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
14
|
Bi J, Huang A, Liu T, Zhang T, Ma H. Expression of DNA damage checkpoint 53BP1 is correlated with prognosis, cell proliferation and apoptosis in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6070-6082. [PMID: 26261485 PMCID: PMC4525819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
53BP1, an important mediator of DNA damage checkpoint, plays an essential role in maintaining the cell genome stability, and the aberrant expression of 53BP1 was found to contribute to tumor occurrence and development. In this study, we explored the clinical significance of 53BP1 expression in colorectal cancer and investigated the effects of 53BP1 expression on tumor cell proliferation and apoptosis and its possible mechanisms. Immunohistochemical analysis was performed to detect the expression of 53BP1 in 95 cases of tumor tissues. After establishment of shRNA-mediated knockdown stable HCT-116 cell lines, cell proliferation, apoptosis and cell cycle distribution were detected by MTT and flow cytometry, and expression of up-and down-steam related proteins as γ-H2AX, CHK2 and P53 were tested by Western blot. 53BP1 intensity was found to be associated with tumor location (P < 0.05), and the low expression of 53BP1 revealed decreased survival time compared with high expression in subgroups as male, tumor size > 5 cm, tumor located at right side, T stage as T3-T4, N0, clinical stage as I-II (P < 0.05). In vitro, shRNA-mediated loss of 53BP1 obviously inhibited HCT-116 tumor cell apoptosis, promoted cell proliferation and increased accumulation of cells in S phase. Meanwhile, the expression of γ-H2AX, CHK2 and P53 was significantly reduced (P < 0.05). Our findings suggest 53BP1 may serve as a candidate biomarker for predicting prognosis and disease development in colorectal cancer.
Collapse
Affiliation(s)
- Jianping Bi
- Department of Radiation Oncology, Hubei Cancer HospitalWuhan 430079, Hubei, China
| | - Ai Huang
- Cancer Center of Wuhan Union Hospital, Tong Ji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Tao Liu
- Cancer Center of Wuhan Union Hospital, Tong Ji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Tao Zhang
- Cancer Center of Wuhan Union Hospital, Tong Ji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Hong Ma
- Cancer Center of Wuhan Union Hospital, Tong Ji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|
15
|
Liu G, Ren X, Gao C, Zhang W. Acylglycerol kinase promotes the proliferation and cell cycle progression of oral squamous cell carcinoma. Mol Med Rep 2015; 12:2225-30. [PMID: 25872568 DOI: 10.3892/mmr.2015.3602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
Cell proliferation is a major underlying cause of mortality amongst patients with oral squamous cell carcinoma (OSCC); however, the underlying mechanisms have remained to be elucidated. Acylglycerol kinase (AGK) is a multisubstrate lipid kinase, which is known to be associated with the progression of various types of human cancer. The present study aimed to investigate the role of AGK in cell proliferation and cell cycle progression in OSCC. The expression levels of AGK were detected in cancerous and adjacent normal tissue samples from four patients with OSCC undergoing surgical resection, and in OSCC cell lines, using the polymerase chain reaction (PCR) and western blot analysis. The effects of AGK on the proliferation and cell cycle progression of OSCC cells were assessed using a short hairpin RNA lentivirus or expressed-plasmid transfection. In addition, the expression levels of cyclin D1 and p21, as well as cell proliferation- and cell cycle-associated proteins were detected by PCR and western blotting. The results of the present study demonstrated that the expression levels of AGK were significantly higher in the cancerous tissues and OSCC cell lines, compared with the adjacent normal tissues and control cells, respectively. Furthermore, MTT and colony formation assays, in addition to flow cytometric analysis were conducted, in order to assess the role of AGK in cell proliferation and cell cycle progression. The cell proliferation and cell cycle progression of an established OSCC cell line were demonstrated to be decreased following AGK knockdown, and enhanced by AGK overexpression in vitro. Aberrant AGK expression in OSCC was shown to be associated with cell proliferation and cell cycle progression. The results of the present study provide evidence that AGK may promote cell proliferation and cell cycle progression in OSCC.
Collapse
Affiliation(s)
- Guijuan Liu
- Cytology Laboratory, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Xingbin Ren
- Clinical Laboratory, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Chunhai Gao
- Clinical Laboratory, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Wei Zhang
- Second Department of Trauma Orthopedics, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
16
|
Yuan Z, Wang L, Wang Y, Zhang T, Li L, Cragun JM, Chambers SK, Kong B, Zheng W. Tubal origin of ovarian endometriosis. Mod Pathol 2014; 27:1154-62. [PMID: 24390223 DOI: 10.1038/modpathol.2013.245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022]
Abstract
Endometriosis is a puzzling and debilitating disease that affects millions of women around the world. Ovary is the most common organ site involved by endometriosis. Despite various hypotheses about its cell of origin, uncertainty remains. On the basis of our clinicopathologic observations, we hypothesize that fallopian tube may contribute the histogenesis of ovarian endometriosis. To examine if the hypothesis, tubal origin of ovarian endometriosis, has scientific supporting evidence, we identified a set of novel genes, which are either highly expressed in the normal fallopian tube or in the endometrium through a gene differential array study. Among many differentially expressed genes, FMO3 and DMBT1 were selected as the initial biomarkers to test the hypothesis. These biomarkers were then validated in ovarian sections with foci of endometriosis by comparing their expression levels in the fallopian tube and the endometrium within the same patients with real-time PCR, western blot and immunohistochemistry analysis. FMO3 was highly expressed in the tubal epithelia while low in the paired endometrium. In contrast, DMBT1 was high in the endometrium but low in the fallopian tube. In 32 ovarian endometriosis cases analyzed by real-time PCR, 18 (56%) showed a high level of FMO3 and a low level of DMBT1 expression. However, 14 (44%) endometriosis cases showed a reversed expression pattern with these two markers. Results were similarly seen in the methods of western blot and immunohistochemistry. The findings suggest that approximately 60% of the ovarian endometriosis we studied may be derived from the fallopian tube, whereas about 40% of the cases may be of endometrial origin. The fallopian tube epithelia may represent one of the tissue sources contributing to ovarian endometriosis. Such novel findings, which require confirmation, may have a significant clinical impact in searching for alternative ways of prevention and treatment of endometriosis.
Collapse
Affiliation(s)
- Zeng Yuan
- 1] Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China [2] Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China [3] Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Lijie Wang
- 1] Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China [2] Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China [3] Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Yiying Wang
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Tingguo Zhang
- Department of Pathology, Shandong University School of Medicine, Shandong, China
| | - Li Li
- Department of Pathology, Shandong University School of Medicine, Shandong, China
| | - Janiel M Cragun
- 1] Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA [2] Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Setsuko K Chambers
- 1] Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA [2] Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China
| | - Wenxin Zheng
- 1] Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China [2] Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA [3] Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA [4] Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Girardi C, De Pittà C, Casara S, Calura E, Romualdi C, Celotti L, Mognato M. Integration analysis of microRNA and mRNA expression profiles in human peripheral blood lymphocytes cultured in modeled microgravity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:296747. [PMID: 25045661 PMCID: PMC4090438 DOI: 10.1155/2014/296747] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 01/07/2023]
Abstract
We analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity condition, simulated by a ground-based rotating wall vessel (RWV) bioreactor. Our results show that 42 miRNAs were differentially expressed in MMG-incubated PBLs compared with 1 g incubated ones. Among these, miR-9-5p, miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p were the most dysregulated. To improve the detection of functional miRNA-mRNA pairs, we performed gene expression profiles on the same samples assayed for miRNA profiling and we integrated miRNA and mRNA expression data. The functional classification of miRNA-correlated genes evidenced significant enrichment in the biological processes of immune/inflammatory response, signal transduction, regulation of response to stress, regulation of programmed cell death, and regulation of cell proliferation. We identified the correlation of miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p expression with that of genes involved in immune/inflammatory response (e.g., IFNG and IL17F), apoptosis (e.g., PDCD4 and PTEN), and cell proliferation (e.g., NKX3-1 and GADD45A). Experimental assays of cell viability and apoptosis induction validated the results obtained by bioinformatics analyses demonstrating that in human PBLs the exposure to reduced gravitational force increases the frequency of apoptosis and decreases cell proliferation.
Collapse
Affiliation(s)
- C. Girardi
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - C. De Pittà
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - S. Casara
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - E. Calura
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - C. Romualdi
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - L. Celotti
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Laboratori Nazionali di Legnaro, INFN, Viale dell'Università 2, Legnaro, 35020 Padova, Italy
| | - M. Mognato
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
18
|
Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2014. [DOI: 10.2478/ersc-2014-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractInhibition of ERN1 (endoplasmic reticulum to nuclei 1), the major signalling pathway of endoplasmic reticulum stress, significantly decreases tumor growth. We have studied the expression of tumor protein 53 (TP53)- related genes such as TOPORS (topoisomerase I binding, arginine/serine-rich, E3 ubiquitin protein ligase), TP53BP1 (TP53 binding protein 1), TP53BP2, SESN1 (sestrin 1), NME6 (non-metastatic cells 6), and ZMAT3 (zinc finger, Matrin-type 3) in glioma cells expressing dominantnegative ERN1 under baseline and hypoxic conditions. We demonstrated that inhibition of ERN1 function in U87 glioma cells resulted in increased expression of RYBP, TP53BP2, and SESN1 genes, but decreased expression of TP53BP1, TOPORS, NME6, and ZMAT3 genes. Moreover, inhibition of ERN1 affected hypoxia-mediated changes in expression of TP53-related genes and their magnitude. Indeed, hypoxia has no effect on expression of TP53BP1 and SESN1 in control cells, while resulted in increased expression of these genes in cells with inhibited ERN1 function. Magnitude of hypoxia-mediated changes in expression levels of RYBP and TP53BP2 was gene specific and more robust in the case of TP53BP2. Hypoxiamediated decrease in expression levels of TOPORS was more prominent if ERN1 was inhibited. Present study demonstrates that fine-tuning of the expression of TP53- associated genes depends upon endoplasmic reticulum stress signaling under normal and hypoxic conditions. Inhibition of ERN1 branch of endoplasmic reticulum stress response correlates with deregulation of p53 signaling and slower tumor growth.
Collapse
|
19
|
Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, Horikoshi N, Pandita TK. Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res 2013; 181:1-8. [PMID: 24320053 DOI: 10.1667/rr13572.1] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The p53-binding protein 1 (53BP1) is a well-known DNA damage response (DDR) factor, which is recruited to nuclear structures at the site of DNA damage and forms readily visualized ionizing radiation (IR) induced foci. Depletion of 53BP1 results in cell cycle arrest in G2/M phase as well as genomic instability in human as well as mouse cells. Within the DNA damage response mechanism, 53BP1 is classified as an adaptor/mediator, required for processing of the DNA damage response signal and as a platform for recruitment of other repair factors. More recently, specific 53BP1 contributions to DSB repair pathway choice have been recognized and are being characterized. In this review, we have summarized recent advances in understanding the role of 53BP1 in regulating DNA DSBs repair pathway choice, variable diversity joining [V(D)J] recombination and class-switch recombination (CSR).
Collapse
Affiliation(s)
- Arun Gupta
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Chemoresistance of breast cancer is a worldwide problem for breast cancer and the resistance to chemotherapeutic agents frequently led to the subsequent recurrence and metastasis. In our previous study, we have found that 53BP1 showed a gradual decrease during the progression of breast cancer and loss of 53BP1 was associated with metastasis and poor prognosis in breast cancer. Here we aimed to reveal whether 53BP1 could sensitize breast cancer to 5-Fu. We found that ectopic expression of 53BP1 can significantly sensitize breast cancer cells to 5-Fu while knockdown of 53BP1 conferred the resistance. The in vivo experiments confirmed that overexpression of 53BP1 in combination with 5-Fu markedly inhibited growth of xenotransplanted tumors in nude mice when compared to either agent alone. Furthermore, we demonstrated that 53BP1 regulated the sensitivity to 5-Fu through thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPYD). The present studies provide a new clue that combination of 5-Fu and 53BP1 could be a potential novel targeted strategy for overcoming breast cancer chemoresistance.
Collapse
|
21
|
Li X, Kong X, Wang Y, Yang Q. 53BP1 is a novel regulator of angiogenesis in breast cancer. Cancer Sci 2013; 104:1420-6. [PMID: 23910218 DOI: 10.1111/cas.12247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/23/2013] [Accepted: 07/26/2013] [Indexed: 12/14/2022] Open
Abstract
In our previous study, we found that 53BP1 was a tumor suppressor and was associated with prognosis in breast cancer. However, little is known about its role in angiogenesis. In the present study, we aimed to reveal the role of 53BP1 in angiogenesis of breast cancer. With RNA interference and ectopic expression strategies to elucidate the detailed function of 53BP1 in angiogenesis, we observed that ectopic expression of 53BP1 inhibited cellular angiogenesis and 53BP1 RNA interference led to an increase in angiogenesis both in vitro and in vivo. In clinical breast cancer samples, 53BP1 was inversely correlated with CD31, MMP-2 and MMP-9 by immunohistochemistry analysis. Furthermore, we showed that the Akt pathway was involved in the antiangiogenesis function of 53BP1. Overall, our findings demonstrate that 53BP1 plays a vital role in inhibiting angiogenesis. These findings suggest that 53BP1 might provide a viable target therapy for breast cancer.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Ji'nan, Shandong, China
| | | | | | | |
Collapse
|
22
|
Li X, Xu B, Moran MS, Zhao Y, Su P, Haffty BG, Shao C, Yang Q. 53BP1 functions as a tumor suppressor in breast cancer via the inhibition of NF-κB through miR-146a. Carcinogenesis 2012; 33:2593-600. [PMID: 23027628 DOI: 10.1093/carcin/bgs298] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
p53-binding protein-1 (53BP1) plays a critical role in cell cycle checkpoint and DNA repair activities. Recently, 53BP1 was recognized as a potential tumor suppressor gene. In this study, we investigated its tumor suppressor function in breast cancer. In clinical samples, we observed a lower level of 53BP1 expression in the cancer lesions than in the matched non-tumor tissues. Furthermore, the 53BP1 level showed a gradual decrease during the progression from precancerous to cancer lesion. Ectopic expression of 53BP1 can significantly inhibit cell proliferation and curb the invasiveness in breast cancer cell lines, whereas knockdown of 53BP1 by RNA interference had the opposite effects. Additionally, 53BP1 markedly inhibited xenograft formation and metastasis of breast cancer cells in nude mice. Both in vitro and in vivo studies revealed that the 53BP1 expression level was inversely correlated to the function of nuclear factor-kappaB (NF-κB), which contributes to the invasion and metastasis of breast cancer. Importantly, the inhibitory effect of 53BP1 on NF-κB activity was shown to be mediated by the upregulation of miR-146a. Together, our findings demonstrated that 53BP1 has a potent tumor suppressor activity in breast cancer, and it may serve as a novel target for breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No.107, Jinan 250012, China
| | | | | | | | | | | | | | | |
Collapse
|