1
|
Dai J, Gao J, Dong H. Prognostic relevance and validation of ARPC1A in the progression of low-grade glioma. Aging (Albany NY) 2024; 16:11162-11184. [PMID: 39012280 PMCID: PMC11315382 DOI: 10.18632/aging.205952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 07/17/2024]
Abstract
Low-grade glioma (LGG) is a grade II-III glioma accompanied by distinct clinical and molecular characteristics and the studies related to its prognosis are still unclear. The objective of this study is to explore the involvement of mitochondrial-related genes SLBP, COMMD7, LSM4, TOMM34, RPP40, FKBP1A, ARPC1A, and TBCA for the prognosis of LGG. We detected differences in the expression of some of the genes by analyzing the bioinformatics dataset and combining it with RT-PCR experiments. Subsequently, a nomogram was constructed and validated for the clinical relevance of risk factors such as age, WHO grade, IDH mutation status, Ch.1p19q co-deletion status, and high and low expression of ARPC1A to predict the 1-, 3-, 5-year overall survival and prognostic relevance of ARPC1A. Gene set enrichment analysis was performed for the relevant datasets pertinent to the expression of ARPC1A to elucidate the cancer-promoting pathways involved in the LGG through KEGG and GO analysis. Transfection assays, CCK-8 assays, and flow cytometry were used to determine the proliferation rate, and apoptosis rate of the HS683 and SW1783 cell lines respectively. Western blotting was used to examine the involvement of the cancer-promoting activity of ARPC1A through MAPK signaling. In this study, the prognostic value of ARPC1A in LGG was found by bioinformatics analysis combined with experimental approach analysis and may be a significant independent risk factor. ARPC1A fosters a higher LGG proliferation rate that may control the MAP kinase signaling and could be a prominent biomarker for LGG. Future studies are warranted to explore its clinical implications.
Collapse
Affiliation(s)
- Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Missouri, MO 64468, USA
| | - Jiahui Gao
- Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Hebei, China
| | | |
Collapse
|
2
|
Zhu W, Song S, Xu Y, Sheng H, Wang S. EMP3: A promising biomarker for tumor prognosis and targeted cancer therapy. Cancer Biomark 2024; 40:227-239. [PMID: 39213053 PMCID: PMC11380316 DOI: 10.3233/cbm-230504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epithelial membrane protein 3 (EMP3) belongs to the peripheral myelin protein 22 kDa (PMP22) gene family, characterized by four transmembrane domains and widespread expression across various human tissues and organs. Other members of the PMP22 family, including EMP1, EMP2, and PMP22, have been linked to various cancers, such as glioblastoma, laryngeal cancer, nasopharyngeal cancer, gastric cancer, breast cancer, and endometrial cancer. However, few studies report on the function and relevance of EMP3 in tumorigenicity. Given the significant structural similarities among members of the PMP22 family, there are likely potential functional similarities as well. Previous studies have established the regulatory role of EMP3 in immune cells like T cells and macrophages. Additionally, EMP3 is found to be involved in critical signaling pathways, including HER-2/PI3K/Akt, MAPK/ERK, and TGF-beta/Smad. Furthermore, EMP3 is associated with cell cycle regulation, cellular proliferation, and apoptosis. Hence, it is likely that EMP3 participates in cancer development through these aforementioned pathways and mechanisms. This review aims to systematically examine and summarize the structure and function of EMP3 and its association to various cancers. EMP3 is expected to emerge as a significant biological marker for tumor prognosis and a potential target in cancer therapeutics.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shu Song
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hanyue Sheng
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Wang H, Wang X, Xu L, Zhang J, Cao H. Prognostic significance of age related genes in patients with lower grade glioma. J Cancer 2020; 11:3986-3999. [PMID: 32328202 PMCID: PMC7171497 DOI: 10.7150/jca.41123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: To analyze the prognostic effects of age in different tumor types and determine the prognostic significance of age related genes in patients with lower grade glioma (LGG). Methods: The relationships between age and tumor overall survival were determined by Kaplan-Meier survival analysis using The Cancer Genome Atlas (TCGA) dataset. The age related genes were identified using TCGA RNA-seq data. Univariate and multivariate cox regression were used to determine the prognostic significance of age related genes. The results derived from TCGA dataset were further validated using Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA) datasets. Results: Age at initial pathologic diagnosis was most associated with the overall survival of LGG patients than other types of tumor patients. Age related genes EMP3, IGFBP2, TIMP1 and SERPINE1 were highly expressed in old LGG patients. The hypo-methylations of EMP3 and SERPINE1 were contributing to the high expressions of EMP3 and SERPINE1 in old LGG patients. Also, EMP3, IGFBP2, TIMP1 and SERPINE1 were highly expressed in LGG tumor tissues, compared with normal brain tissues. Moreover, high expressions of IGFBP2, EMP3, TIMP1 and SERPINE1 were associated with the worse prognosis of LGG patients. Furthermore, we demonstrated that EMP3 and SERPINE1 were connected with each other and the combination of EMP3 and SERPINE1 had better prognostic effects in glioma patients. Conclusions: Age related genes IGFBP2, EMP3, TIMP1 and SERPINE1 have significant prognostic effects in LGG patients.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Xinrui Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Cao
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:199-211. [PMID: 28408326 DOI: 10.1016/j.bbcan.2017.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/15/2017] [Accepted: 04/08/2017] [Indexed: 02/09/2023]
Abstract
The epithelial membrane protein genes 1, 2, and 3 (EMP1, EMP2, and EMP3) belong to the peripheral myelin protein 22-kDa (PMP22) gene family, which consists of at least seven members: PMP22, EMP1, EMP2, EMP3, PERP, brain cell membrane protein 1, and MP20. This review addresses the structural and functional features of EMPs, detailing their tissue distribution and functions in the human body, their expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and potential application in disease therapy are discussed. For example, EMP1 was reported to be a biomarker of gefitinib resistance in lung cancer and contributes to prednisolone resistance in acute lymphoblastic leukemia patients. EMP2 functions as an oncogene in human endometrial and ovarian cancers; however, characteristics of EMP2 in urothelial cancer fulfill the criteria of a suppressor gene. Of particular interest, EMP3 overexpression in breast cancer is significantly related to strong HER-2 expression. Co-expression of HER-2 and EMP3 is the most important indicator of progression-free and metastasis-free survival for patients with urothelial carcinoma of the upper urinary tract. Altogether, discovery of pharmacological inhibitors and/or regulators of EMP protein activity could open novel strategies for enhanced therapy against EMP-mediated human diseases.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Ling Cheng
- National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ya-Rou Ding
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lien-Hsuan Chou
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway. Oncotarget 2016; 6:34859-74. [PMID: 26472188 PMCID: PMC4741495 DOI: 10.18632/oncotarget.5414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial membrane protein-3 (EMP3), a typical member of the epithelial membrane protein (EMP) family, is epigenetically silenced in some cancer types, and has been proposed to be a tumor suppressor gene. However, its effects on tumor suppression are controversial and its roles in development and malignancy of hepatocellular carcinoma (HCC) remain unclear. In the present study, we found that EMP3 was highly expressed in the tumorous tissues comparing to the matched normal tissues, and negatively correlated with differentiated degree of HCC patients. Knockdown of EMP3 significantly reduced cell proliferation, arrested cell cycle at G1 phase, and inhibited the motility and invasiveness in accordance with the decreased expression and activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) in HCC cells. The in vivo tumor growth of HCC was effectively suppressed by knockdown of EMP3 in a xenograft mouse model. The EMP3 knockdown-reduced cell proliferation and invasion were attenuated by inhibition of phosphatidylinositol 3-kinase (PI3K) or knockdown of Akt, and rescued by overexpression of Akt in HCC cells. Clinical positive correlations of EMP3 with p85 regulatory subunit of PI3K, p-Akt, uPA, as well as MMP-9 were observed in the tissue sections from HCC patients. Here, we elucidated the tumor progressive effects of EMP3 through PI3K/Akt pathway and uPA/MMP-9 cascade in HCC cells. The findings provided a new insight into EMP3, which might be a potential molecular target for diagnosis and treatment of HCC.
Collapse
|
6
|
Hong XC, Fen YJ, Yan GC, Hong H, Yan CH, Bing LW, Zhong YH. Epithelial membrane protein 3 functions as an oncogene and is regulated by microRNA-765 in primary breast carcinoma. Mol Med Rep 2015; 12:6445-50. [PMID: 26398721 PMCID: PMC4626151 DOI: 10.3892/mmr.2015.4326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 07/10/2015] [Indexed: 01/11/2023] Open
Abstract
Epithelial membrane protein 3 (EMP3) is a transmembrane signaling molecule, which is important in the regulation of apoptosis, differentiation and invasion of cancer cells. However, the specific function and regulatory mechanism of EMP3 in primary breast carcinoma remain to be elucidated. In the present study, the mRNA and protein levels of EMP3 were observed to be upregulated in primary breast carcinoma tissues, compared with normal tissues. It was hypothesized that the overexpression of EMP3 was correlated with the downregulation of microRNA‑765 (miR‑765), an underexpressed miRNA in primary breast carcinoma tissues. Functional analysis demonstrated that EMP3 was regulated by miR‑765 through binding to its 3'untranslated region. In addition, the knockdown of EMP3 and miR‑765 had similar effects on the inhibition of proliferation and invasion in SK‑BR‑3 cells. These results provided novel insight into the regulatory mechanism of EMP3 in primary breast carcinoma.
Collapse
Affiliation(s)
- Xiao Chun Hong
- Department of Clinical Laboratory, Nantong Cancer Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Yuan Jian Fen
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Guo Chun Yan
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Hong Hong
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Cao Hong Yan
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Li Wei Bing
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Yu Hai Zhong
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
7
|
Promoter hypermethylation of the EMP3 gene in a series of 229 human gliomas. BIOMED RESEARCH INTERNATIONAL 2013; 2013:756302. [PMID: 24083241 PMCID: PMC3776370 DOI: 10.1155/2013/756302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/26/2013] [Accepted: 07/10/2013] [Indexed: 01/29/2023]
Abstract
The epithelial membrane protein 3 (EMP3) is a candidate tumor suppressor gene in the critical region 19q13.3 for several solid tumors, including tumors of the nervous systems.
The aim of this study was to investigate the EMP3 promoter hypermethylation status in a series of 229 astrocytic and oligodendroglial tumors and in 16 GBM cell lines. The analysis was performed by methylation-specific PCR and capillary electrophoresis. Furthermore, the EMP3 expression at protein level was evaluated by immunohistochemistry and Western blotting analysis. Associations of EMP3 hypermethylation with total 1p/19q codeletion, MGMT promoter hypermethylation, IDH1/IDH2 and TP53 mutations, and EGFR amplification were studied, as well as its prognostic significance. The EMP3 promoter hypermethylation has been found in 39.5% of gliomas. It prevailed in low-grade tumors, especially in gliomas with an oligodendroglial component, and in sGBMs upon pGBMs. In oligodendroglial tumors, it was strongly associated with both IDH1/IDH2 mutations and total 1p/19q codeletion and inversely with EGFR gene amplification. No association was found with MGMT hypermethylation and TP53 mutations. In the whole series, the EMP3 hypermethylation status correlated with 19q13.3 loss and lack of EMP3 expression at protein level. A favorable prognostic significance on overall survival of the EMP3 promoter hypermethylation was found in patients with oligodendroglial tumors.
Collapse
|
8
|
Xue Q, Zhou Y, Wan C, Lv L, Chen B, Cao X, Ju G, Huang Y, Ni R, Mao G. Epithelial membrane protein 3 is frequently shown as promoter methylation and functions as a tumor suppressor gene in non-small cell lung cancer. Exp Mol Pathol 2013; 95:313-8. [PMID: 23920144 DOI: 10.1016/j.yexmp.2013.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/06/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Epithelial membrane protein 3 (EMP3) is a typical member of the epithelial membrane protein (EMP) family which has been reported to be a tumor suppressor gene in neuroblastomas and gliomas and recently reported to be commonly repressed in esophageal squamous cell carcinoma (ESCC) cell lines. However, the expression and clinical significance of EMP3 protein in lung cancer have not yet been elucidated. In this article, we detected that the expression of EMP3 in non-small cell lung cancer was significantly lower than the expression of normal lung tissues (P < 0.01) by western blot. EMP3 expression in Lung cancer was significantly related to p-TNM stage (P < 0.05) and EMP3 was negatively correlated with proliferation marker Ki67(r = -0.775; P < 0.01), However, no significant correlations were found between EMP3 and other clinical parameters. The post-recurrent survival after radical surgery was poorer in lung cancer patients with lower EMP3 expression (P < 0.01). While in vitro, following release from serum starvation of A549 NSCLC cell, the expression of EMP3 was deregulated. Thus, our finding suggests that EMP3 may be a tumor suppressor gene at the late step of lung cancer, and EMP3 may be a potential prognostic marker and therapeutic target of NSCLC.
Collapse
Affiliation(s)
- Qun Xue
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|