1
|
Liu D, Mei W, Kang J, Liao T, Wei Y, Jie L, Shi L, Wang P, Mao J, Wu P. Casticin ameliorates osteoarthritic cartilage damage in rats through PI3K/AKT/HIF-1α signaling. Chem Biol Interact 2024; 391:110897. [PMID: 38309612 DOI: 10.1016/j.cbi.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Knee osteoarthritis (KOA) is a chronic, disabling knee joint lesion in which degeneration and defects in articular cartilage are the most important features. Casticin (CAS) is a flavonoid extracted from the Chinese herb Vitex species that has anti-inflammatory and antitumor effects. The aim of this study was to investigate the therapeutic and mechanistic effects of CAS on cartilage damage in KOA. A KOA rat model was established by anterior cruciate ligament transection (ACLT), and cartilage morphological changes were assessed by histological analysis and micro-CT scans. Subsequently, chondrocytes were treated with 10 ng/mL IL-1β to establish an OA model. CCK-8 assays and EdU assays were performed to assess the viability of CAS-treated chondrocytes. Western blotting, flow cytometry and Hoechst 33342/PI Double Stain were used to detect chondrocyte apoptosis. Western blotting, qRT‒PCR and ELISA were used to detect changes in inflammatory mediators. In addition, cartilage matrix-related indices were detected by Western blotting, qRT‒PCR and immunofluorescence (IF) analysis. Immunohistochemistry (IHC) and Western blotting were performed to detect the expression of p-PI3K, p-AKT and HIF-1α in vivo and in vitro. Micro-CT, pathological sections and related scores showed that CAS improved the alterations in bony structures and reduced cartilage damage and osteophyte formation in the ACLT model. In vivo, CAS attenuated IL-1β-induced cartilage matrix degradation, apoptosis and the inflammatory response. In addition, CAS inhibited the expression of the PI3K/AKT/HIF-1α signaling pathway in the ACLT animal model and IL-1β cell model. CAS may ameliorate cartilage damage in OA by inhibiting the PI3K/AKT/HIF-1α signaling pathway, suggesting that CAS is a potential strategy for the treatment of OA.
Collapse
Affiliation(s)
- Deren Liu
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Wei Mei
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Junfeng Kang
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; The Hospital of Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Taiyang Liao
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yibao Wei
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Lishi Jie
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Lei Shi
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Peimin Wang
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Jun Mao
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.
| | - Peng Wu
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
2
|
Luiz-Ferreira A, Pacifico T, Cruz ÁC, Laudisi F, Monteleone G, Stolfi C. TRAIL-Sensitizing Effects of Flavonoids in Cancer. Int J Mol Sci 2023; 24:16596. [PMID: 38068921 PMCID: PMC10706592 DOI: 10.3390/ijms242316596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a promising anticancer agent, as it selectively induces apoptosis in transformed cells without altering the cellular machinery of healthy cells. Unfortunately, the presence of TRAIL resistance mechanisms in a variety of cancer types represents a major hurdle, thus limiting the use of TRAIL as a single agent. Accumulating studies have shown that TRAIL-mediated apoptosis can be facilitated in resistant tumors by combined treatment with antitumor agents, ranging from synthetic molecules to natural products. Among the latter, flavonoids, the most prevalent polyphenols in plants, have shown remarkable competence in improving TRAIL-driven apoptosis in resistant cell lines as well as tumor-bearing mice with minimal side effects. Here, we summarize the molecular mechanisms, such as the upregulation of death receptor (DR)4 and DR5 and downregulation of key anti-apoptotic proteins [e.g., cellular FLICE-inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), survivin], underlying the TRAIL-sensitizing properties of different classes of flavonoids (e.g., flavones, flavonols, isoflavones, chalcones, prenylflavonoids). Finally, we discuss limitations, mainly related to bioavailability issues, and future perspectives regarding the clinical use of flavonoids as adjuvant agents in TRAIL-based therapies.
Collapse
Affiliation(s)
- Anderson Luiz-Ferreira
- Inflammatory Bowel Disease Research Laboratory, Department of Biological Sciences, Institute of Biotechnology, Federal University of Catalão (UFCAT), Catalão 75704020, GO, Brazil;
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.P.); (F.L.); (G.M.)
| | - Álefe Cardoso Cruz
- Inflammatory Bowel Disease Research Laboratory, Department of Biological Sciences, Institute of Biotechnology, Federal University of Catalão (UFCAT), Catalão 75704020, GO, Brazil;
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.P.); (F.L.); (G.M.)
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.P.); (F.L.); (G.M.)
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.P.); (F.L.); (G.M.)
| |
Collapse
|
3
|
Carbone K, Gervasi F, Kozhamzharova L, Altybaeva N, Sönmez Gürer E, Sharifi-Rad J, Hano C, Calina D. Casticin as potential anticancer agent: recent advancements in multi-mechanistic approaches. Front Mol Biosci 2023; 10:1157558. [PMID: 37304067 PMCID: PMC10250667 DOI: 10.3389/fmolb.2023.1157558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Plants, with their range of pharmacologically active molecules, represent the most promising source for the production of new anticancer drugs and for the formulation of adjuvants in chemotherapy treatments to reduce drug content and/or counteract the side effects of chemotherapy. Casticin is a major bioactive flavonoid isolated from several plants, mainly from the Vitex species. This compound is well known for its anti-inflammatory and antioxidant properties, which are mainly exploited in traditional medicine. Recently, the antineoplastic potential of casticin has attracted the attention of the scientific community for its ability to target multiple cancer pathways. The purpose of this review is, therefore, to present and critically analyze the antineoplastic potential of casticin, highlighting the molecular pathways underlying its antitumor effects. Bibliometric data were extracted from the Scopus database using the search strings "casticin" and "cancer" and analyzed using VOSviewer software to generate network maps to visualize the results. Overall, more than 50% of the articles were published since 2018 and even more recent studies have expanded the knowledge of casticin's antitumor activity by adding interesting new mechanisms of action as a topoisomerase IIα inhibitor, DNA methylase 1 inhibitor, and an upregulator of the onco-suppressive miR-338-3p. Casticin counteracts cancer progression through the induction of apoptosis, cell cycle arrest, and metastasis arrest, acting on several pathways that are generally dysregulated in different types of cancer. In addition, they highlight that casticin can be considered as a promising epigenetic drug candidate to target not only cancer cells but also cancer stem-like cells.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Fabio Gervasi
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Latipa Kozhamzharova
- Department of Scientific Works and International Relations, International Taraz Innovative Institute Named After Sherkhan Murtaza, Taraz, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-frabi, Kazakhstan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | | | - Christophe Hano
- Department of Biological Chemistry, Université ď Orléans, Orléans, France
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
4
|
Santin (5,7-Dihydroxy-3,6,4'-Trimetoxy-Flavone) Enhances TRAIL-Mediated Apoptosis in Colon Cancer Cells. Life (Basel) 2023; 13:life13020592. [PMID: 36836951 PMCID: PMC9962120 DOI: 10.3390/life13020592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
TRAIL (Tumor necrosis factor-Related Apoptosis-Inducing Ligand) has the ability to selectively kill cancer cells without being toxic to normal cells. This endogenous ligand plays an important role in surveillance and anti-tumor immunity. However, numerous tumor cells are resistant to TRAIL-induced apoptosis. In this study, the apoptotic effect of santin in combination with TRAIL on colon cancer cells was examined. Flow cytometry was used to detect the apoptosis and expression of death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Mitochondrial membrane potential (ΔΨm) was evaluated by DePsipher staining with the use of fluorescence microscopy. We have shown for the first time that flavonoid santin synergizes with TRAIL to induce apoptosis in colon cancer cells. Santin induced TRAIL-mediated apoptosis through increased expression of death receptors TRAIL-R1 and TRAIL-R2 and augmented disruption of the mitochondrial membrane in SW480 and SW620 cancer cells. The obtained data may indicate the potential role of santin in colon cancer chemoprevention through the enhancement of TRAIL-mediated apoptosis.
Collapse
|
5
|
Chaudhry GES, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 2022; 13:842376. [PMID: 36034846 PMCID: PMC9399632 DOI: 10.3389/fphar.2022.842376] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a multifactorial, multi-stage disease, including complex cascades of signaling pathways—the cell growth governed by dysregulated and abrupt cell division. Due to the complexity and multi-regulatory cancer progression, cancer is still a challenging disease to treat and survive. The screening of extracts and fractions from plants and marine species might lead to the discovery of more effective compounds for cancer therapeutics. The isolated compounds and reformed analogs were known as future prospective contenders for anti-cancer chemotherapy. For example, Taxol, a potent mitotic inhibitor discovered from Taxus brevifolia, suppresses cell growth and arrest, induces apoptosis, and inhibits proliferation. Similarly, marine sponges show remarkable tumor chemo preventive and chemotherapeutic potential. However, there is limited research to date. Several plants and marine-derived anti-cancer compounds having the property to induce apoptosis have been approved for clinical trials. The anti-cancer activity kills the cell and slows the growth of cancer cells. Among cell death mechanisms, apoptosis induction is a more profound mechanism of cell death triggered by naturally isolated anti-cancer agents. Evading apoptosis is the major hurdle in killing cancer cells, a mechanism mainly regulated as intrinsic and extrinsic. However, it is possible to modify the apoptosis-resistant phenotype of the cell by altering many of these mechanisms. Various extracts and fractions successfully induce apoptosis, cell-cycle modulation, apoptosis, and anti-proliferative activity. Therefore, there is a pressing need to develop new anti-cancer drugs of natural origins to reduce the effects on normal cells. Here, we’ve emphasized the most critical elements: i) A better understanding of cancer progression and development and its origins, ii) Molecular strategies to inhibit the cell proliferation/Carcino-genesis, iii) Critical regulators of cancer cell proliferation and development, iv) Signaling Pathways in Apoptosis: Potential Targets for targeted therapeutics, v) Why Apoptosis induction is mandatory for effective chemotherapy, vi) Plants extracts/fractions as potential apoptotic inducers, vii) Marine extracts as Apoptotic inducers, viii) Marine isolated Targeted compounds as Apoptotic inducers (FDA Approved/treatment Phase). This study provides a potential therapeutic option for cancer, although more clinical studies are needed to verify its efficacy in cancer chemotherapy.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- *Correspondence: Gul-e-Saba Chaudhry, ,
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health sciences, University of Putra Malaysia, Seri Kembangan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
6
|
miR-338-3p Plays a Significant Role in Casticin-Induced Suppression of Acute Myeloid Leukemia via Targeting PI3K/Akt Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9214130. [PMID: 35765408 PMCID: PMC9233736 DOI: 10.1155/2022/9214130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Objective Casticin is generally used in traditional herbal medicine for its anti-inflammatory and anticarcinogenic pharmacological properties. Also, microRNAs are indispensable oncogenes or cancer suppressors being dysregulated in various diseases. In this study, we aimed to elucidate the mechanisms underlying effects of casticin on the progression of acute myeloid leukemia (AML). Methods CCK-8 and flow cytometry were utilized to measure the proliferation and apoptosis of AML cell lines, respectively, after treatment with different concentrations of casticin. The alteration of several microRNA expressions in response to casticin treatment was detected by performing qRT-PCR, and the activity of PI3K/Akt pathways was evaluated through immunoblotting. Afterwards, the potential target gene of miR-338-3p was investigated by dual-luciferase reporter assay. In order to evaluate the role of miR-338-3p in the casticin-induced cellular phenotype changes, AML cells were transfected with miR-338-3p mimics or inhibitor and then subjected to proliferation and apoptosis analysis. Finally, a mouse xenograft model system was employed to investigate the role of casticin in AML progression in vivo. Results Suppressed cellular proliferation and enhanced apoptosis were observed in HL-60 and THP-1 cells after exposure to casticin, accompanied by remarkable upregulation of the miR-338-3p expression as well as a decline in the phosphorylation of PI3K and Akt proteins. RUNX2 was identified as a direct target molecular of miR-338-3p, which might account for the findings that miR-338-3p knockdown enhanced the PI3K/Akt pathway activity, whereas the miR-338-3p overexpression inactivated this signaling pathway. In addition, the inhibition of the miR-338-3p expression attenuated severe cell apoptosis and suppressions of PI3K/Akt pathway induced by casticin. Furthermore, casticin treatment retarded tumor growth rate in mouse models, whilst elevating miR-338 expression and repressing the activity of PI3K/Akt pathway in vivo. However, miR-338-3p depletion could also abolish the phenotypic alterations caused by casticin treatment. Conclusion Casticin promotes AML cell apoptosis but inhibits AML cell proliferation in vitro and tumor growth in vivo by upregulating miR-338-3p, which targets RUNX2 and thereafter inactivates PI3K-Akt signaling pathway. Our results provide insights into the mechanisms underlying the action of casticin in the control of AML progression.
Collapse
|
7
|
Casticin Impacts Key Signaling Pathways in Colorectal Cancer Cells Leading to Cell Death with Therapeutic Implications. Genes (Basel) 2022; 13:genes13050815. [PMID: 35627200 PMCID: PMC9141418 DOI: 10.3390/genes13050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer is the third most frequently encountered cancer worldwide. While current chemotherapeutics help to manage the disease to some extent, they have eluded achieving complete remission and are limited by their severe side effects. This warrants exploration of novel agents that are efficacious with anticipation of minimal adverse effects. In the current study, casticin, a tetramethoxyflavone, was tested for its ability to inhibit the viability of three human colorectal cancer cells: adenocarcinoma (DLD-1, Caco-2 cell lines) and human colorectal carcinoma cells (HCT116 cell line). Casticin showed potent inhibition of viability of DLD-1 and HCT116 cells. Clonogenic assay performed in DLD-1 cells revealed that casticin impeded the colony-forming efficiency of the cells, suggesting its impact on the proliferation of these cells. Further, a sustained effect of the inhibitory action upon withdrawal of the treatment was observed. Elucidation of the mechanism of action revealed that casticin impacted the extrinsic programmed cell death pathway, leading to an increase in apoptotic cells. Further, Bcl-2, the key moiety of cell survival, was affected. Notably, a significant number of cells were arrested in the G2/M phase of the cell cycle in DLD-1 cells. Due to the multifaceted action of casticin, we envision that treatment with casticin could provide an efficacious treatment option for colorectal adenocarcinomas with minimal side effects.
Collapse
|
8
|
Park MY, Ha SE, Vetrivel P, Kim HH, Bhosale PB, Abusaliya A, Kim GS. Differences of Key Proteins between Apoptosis and Necroptosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3420168. [PMID: 34934768 PMCID: PMC8684821 DOI: 10.1155/2021/3420168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022]
Abstract
Many different types of programmed cell death (PCD) have been identified, including apoptosis and necroptosis. Apoptosis is a type of cell death that is controlled by various genes. It is in charge of eliminating aberrant cells such as cancer cells, replenishing normal cells, and molding the body as it develops. Necroptosis is a type of programmed cell death that combines necrosis and apoptosis. In other words, it takes on a necrotic appearance, although cells die in a controlled manner. Various investigations of these two pathways have revealed that caspase-8, receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and RIPK3 are crucial proteins in charge of the switching between these two pathways, resulting in the activation or inhibition of necroptosis. In this review, we have summarized the key proteins between apoptosis and necroptosis.
Collapse
Affiliation(s)
- Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Preethi Vetrivel
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Yang JL, Yang MD, Chen JC, Lu KW, Huang YP, Peng SF, Chueh FS, Liu KC, Lin TS, Chen PY, Chen WJ. Ouabain Induces DNA Damage in Human Osteosarcoma U-2 OS Cells and Alters the Expression of DNA Damage and DNA Repair-associated Proteins. In Vivo 2021; 35:2687-2696. [PMID: 34410957 DOI: 10.21873/invivo.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Ouabain, isolated from natural plants, exhibits anticancer activities; however, no report has presented its mechanism of DNA damage induction in human osteosarcoma cancer cells in vitro. The aim of this study was to investigate whether ouabain induces DNA damage and repair, accompanied with molecular pathways in human osteosarcoma cancer U-2 OS cells in vitro. MATERIALS AND METHODS The percentage of viable cell number was measured by flow cytometric assay; DNA damage was assayed by DAPI staining, comet assay, and agarose gel electrophoresis. DNA damage and repair associated protein expressions were assayed by western blotting assays. RESULTS Ouabain reduced total cell viability, induced chromatin condensation, DNA fragmentation, and DNA damage in U-2 OS cells. Ouabain increased p-ATMSer1981, p-ATRSer428, and p53 at 2.5-10 μM, increased p-p53Ser15 at 10 μM; however, it decreased p-MDM2Ser166 at 2.5-10 μM. Ouabain increased p-H2A.XSer139, MDC-1, and PARP at 2.5-10 μM and BRCA1 at 5-10 μM; however, it decreased DNA-PK and MGMT at 2.5-10 μM in U-2 OS cells at 48 h treatment. Ouabain promoted expression and nuclear translocation of p-H2A.XSer139 in U-2 OS cells and this was confirmed by confocal laser microscopy. CONCLUSION Ouabain reduced total viable cell number through triggering DNA damage and altering the protein expression of DNA damage and repair system in U-2 OS cells in vitro.
Collapse
Affiliation(s)
- Jiun-Long Yang
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Yilan, Taiwan, R.O.C
| | - Mei-Due Yang
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Jaw-Chyun Chen
- Department of Medicinal Botany and Health Applications, Da-Yeh University, Changhua, Taiwan, R.O.C
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, R.O.C
| | - Tzu-Shun Lin
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Yilan, Taiwan, R.O.C.,Department of Pharmacy, Saint Mary's Hospital Luodong, Yilan, Taiwan, R.O.C
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.;
| | - Wei-Jen Chen
- Department of Orthopedics, Chang Bing Show-Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.; .,Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| |
Collapse
|
10
|
The Most Competent Plant-Derived Natural Products for Targeting Apoptosis in Cancer Therapy. Biomolecules 2021; 11:biom11040534. [PMID: 33916780 PMCID: PMC8066452 DOI: 10.3390/biom11040534] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a challenging problem for the global health community, and its increasing burden necessitates seeking novel and alternative therapies. Most cancers share six basic characteristics known as "cancer hallmarks", including uncontrolled proliferation, refractoriness to proliferation blockers, escaping apoptosis, unlimited proliferation, enhanced angiogenesis, and metastatic spread. Apoptosis, as one of the best-known programmed cell death processes, is generally promoted through two signaling pathways, including the intrinsic and extrinsic cascades. These pathways comprise several components that their alterations can render an apoptosis-resistance phenotype to the cell. Therefore, targeting more than one molecule in apoptotic pathways can be a novel and efficient approach for both identifying new anticancer therapeutics and preventing resistance to therapy. The main purpose of this review is to summarize data showing that various plant extracts and plant-derived molecules can activate both intrinsic and extrinsic apoptosis pathways in human cancer cells, making them attractive candidates in cancer treatment.
Collapse
|
11
|
Basak D, Uddin MN, Hancock J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers (Basel) 2020; 12:E3336. [PMID: 33187272 PMCID: PMC7698080 DOI: 10.3390/cancers12113336] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
An altered redox status accompanied by an elevated generation of reactive oxygen/nitrogen species (ROS/RNS) has been implicated in a number of diseases including colorectal cancer (CRC). CRC, being one of the most common cancers worldwide, has been reported to be associated with multiple environmental and lifestyle factors (e.g., dietary habits, obesity, and physical inactivity) and harboring heightened oxidative stress that results in genomic instability. Although under normal condition ROS regulate many signal transduction pathways including cell proliferation and survival, overwhelming of the antioxidant capacity due to metabolic abnormalities and oncogenic signaling leads to a redox adaptation response that imparts drug resistance. Nevertheless, excessive reliance on elevated production of ROS makes the tumor cells increasingly vulnerable to further ROS insults, and the abolition of such drug resistance through redox perturbation could be instrumental to preferentially eliminate them. The goal of this review is to demonstrate the evidence that links redox stress to the development of CRC and assimilate the most up-to-date information that would facilitate future investigation on CRC-associated redox biology. Concomitantly, we argue that the exploitation of this distinct biochemical property of CRC cells might offer a fresh avenue to effectively eradicate these cells.
Collapse
Affiliation(s)
- Debasish Basak
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| | | | - Jake Hancock
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| |
Collapse
|
12
|
Cheng ZY, Hsiao YT, Huang YP, Peng SF, Huang WW, Liu KC, Hsia TC, Way TD, Chung JG. Casticin Induces DNA Damage and Affects DNA Repair Associated Protein Expression in Human Lung Cancer A549 Cells (Running Title: Casticin Induces DNA Damage in Lung Cancer Cells). Molecules 2020; 25:E341. [PMID: 31952105 PMCID: PMC7024307 DOI: 10.3390/molecules25020341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Casticin was obtained from natural plants, and it has been shown to exert biological functions; however, no report concerns the induction of DNA damage and repair in human lung cancer cells. The objective of this study was to investigate the effects and molecular mechanism of casticin on DNA damage and repair in human lung cancer A549 cells. Cell viability was determined by flow cytometric assay. The DNA damage was evaluated by 4',6-diamidino-2-phenylindole (DAPI) staining and electrophoresis which included comet assay and DNA gel electrophoresis. The protein levels associated with DNA damage and repair were analyzed by western blotting. The expression and translocation of p-H2A.X were observed by confocal laser microscopy. Casticin reduced total viable cell number and induced DNA condensation, fragmentation, and damage in A549 cells. Furthermore, casticin increased p-ATM at 6 h and increased p-ATR and BRCA1 at 6-24 h treatment but decreased p-ATM at 24-48 h, as well as decreased p-ATR and BRCA1 at 48 h. Furthermore, casticin decreased p-p53 at 6-24 h but increased at 48 h. Casticin increased p-H2A.X and MDC1 at 6-48 h treatment. In addition, casticin increased PARP (cleavage) at 6, 24, and 48 h treatment, DNA-PKcs and MGMT at 48 h in A549 cells. Casticin induced the expressions and nuclear translocation of p-H2AX in A549 cells by confocal laser microscopy. Casticin reduced cell number through DNA damage and condensation in human lung cancer A549 cells.
Collapse
Affiliation(s)
- Zheng-Yu Cheng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan;
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| |
Collapse
|
13
|
Shi Y, Wang J, Liu J, Lin G, Xie F, Pang X, Pei Y, Cheng Y, Zhang Y, Lin Z, Yin Z, Wang X, Niu G, Chen X, Liu G. Oxidative stress-driven DR5 upregulation restores TRAIL/Apo2L sensitivity induced by iron oxide nanoparticles in colorectal cancer. Biomaterials 2019; 233:119753. [PMID: 31923762 DOI: 10.1016/j.biomaterials.2019.119753] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/11/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022]
Abstract
There exists an emergency clinical demand to overcome TRAIL/Apo2L (tumor necrosis factor-related apoptosis-inducing ligand) resistance, which is a major obstacle attributed to insufficient level or mutation of TRAIL receptors. Here, we developed an iron oxide cluster-based nanoplatform for both sensitization and MR image-guided evaluation to improve TRAIL/Apo2L efficacy in colorectal cancer, which has an inadequate response to TRAIL/Apo2L or chemotherapy. Specifically, NanoTRAIL (TRAIL/Apo2L-iron oxide nanoparticles) generated ROS (reactive oxygen species)-triggered JNK (c-Jun N-terminal kinase) activation and induced subsequent autophagy-assisted DR5 upregulation, resulting in a significant enhanced antitumor efficacy of TRAIL/Apo2L, which confirmed in both TRAIL-resistant HT-29, intermediately resistant SW-480 and sensitive HCT-116 cells. Furthermore, in a subcutaneous colorectal cancer mouse model, the in vivo tumor retention of NanoTRAIL can be demonstrated by MR T2 weighted contrast imaging, and NanoTRAIL significantly suppressed tumor growth and prolonged the survival time without observable adverse effects compared with control and TRAIL/Apo2L monotherapy. Importantly, in the study of colorectal cancer patient-derived xenograft models, we found that the NanoTRAIL treatment could significantly improve the survival outcome with consistent ROS-dependent autophagy-assisted DR5 upregulation and tumor apoptosis. Our results describe a transformative design that can be applied clinically to sensitize Apo2L/TRAIL-resistant patients using FDA-approved iron oxide nanoparticles.
Collapse
Affiliation(s)
- Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingyi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China; School of Medicine, Xiamen University, Xiamen, 361105, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fengfei Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yihua Pei
- School of Medicine, Xiamen University, Xiamen, 361105, China; Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhengyu Yin
- School of Medicine, Xiamen University, Xiamen, 361105, China; Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Xiaomin Wang
- School of Medicine, Xiamen University, Xiamen, 361105, China; Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
14
|
Casticin-Induced Inhibition of Cell Growth and Survival Are Mediated through the Dual Modulation of Akt/mTOR Signaling Cascade. Cancers (Basel) 2019; 11:cancers11020254. [PMID: 30813295 PMCID: PMC6406334 DOI: 10.3390/cancers11020254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
The Akt/mTOR signaling cascade is a critical pathway involved in various physiological and pathological conditions, including regulation of cell proliferation, survival, invasion, and angiogenesis. In the present study, we investigated the anti-neoplastic effects of casticin (CTC), identified from the plant Vitex rotundifolia L., alone and/or in combination with BEZ-235, a dual Akt/mTOR inhibitor in human tumor cells. We found that CTC exerted a significant dose-dependent cytotoxicity and reduced cell proliferation in a variety of human tumor cells. Also, CTC effectively blocked the phosphorylation levels of Akt (Ser473) and mTOR (Ser2448) proteins as well as induced substantial apoptosis. Additionally treatment with CTC and BEZ-235 in conjunction resulted in a greater apoptotic effect than caused by either agent alone thus implicating the anti-neoplastic effects of this novel combination. Overall, the findings suggest that CTC can interfere with Akt/mTOR signaling cascade involved in tumorigenesis and can be used together with pharmacological agents targeting Akt/mTOR pathway.
Collapse
|
15
|
Lee JH, Kim C, Ko JH, Jung YY, Jung SH, Kim E, Kong M, Chinnathambi A, Alahmadi TA, Alharbi SA, Sethi G, Ahn KS. Casticin inhibits growth and enhances ionizing radiation-induced apoptosis through the suppression of STAT3 signaling cascade. J Cell Biochem 2018; 120:9787-9798. [PMID: 30520154 DOI: 10.1002/jcb.28259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
Casticin (CTC), one of the major components of Vitex rotundifolia L., has been reported to exert significant beneficial pharmacological activities and can function as an antiprolactin, anticancer, anti-inflammatory, neuroprotective, analgesic, and immunomodulatory agent. This study aimed at investigating whether the proapoptotic effects of CTC may be mediated through the abrogation of signal transducers and activators of transcription-3 (STAT3) signaling pathway in a variety of human tumor cells. We found that CTC significantly decreased cell viability in a concentration-dependent manner and suppressed cell proliferation in 786-O, YD-8, and HN-9 cells. CTC also induced programmed cell death that was found to be mediated via caspase-3 activation and induction of poly(ADP-ribose) polymerase cleavage. Interestingly, CTC repressed both constitutive and interleukin-6-induced STAT3 activation in 786-O and YD-8 cells but only affected constitutive STAT3 phosphorylation in HN-9 cells. Moreover, CTC could potentiate ionizing radiation-induced apoptotic effects leading to the downregulation of STAT3 activation and thus may be used in combination with radiation against diverse malignancies.
Collapse
Affiliation(s)
- Jong Hyun Lee
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chulwon Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Hyeon Ko
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young Yun Jung
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Eunok Kim
- Korean Medicine Clinical Trial Center, Korean Medicine, Hospital, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Emergency Medicine, Pediatric Emergency Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Ma J, Yin G, Lu Z, Xie P, Zhou H, Liu J, Yu L. Casticin prevents DSS induced ulcerative colitis in mice through inhibitions of NF-κB pathway and ROS signaling. Phytother Res 2018; 32:1770-1783. [DOI: 10.1002/ptr.6108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jiamei Ma
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Ganghui Yin
- Department of Spine Surgery; The Third Affiliated Hospital of Southern Medical University; Guangzhou China
| | - Zibin Lu
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Pei Xie
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Hongling Zhou
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Junshan Liu
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Linzhong Yu
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| |
Collapse
|
17
|
Ahn DS, Lee HJ, Hwang J, Han H, Kim B, Shim B, Kim SH. Lambertianic Acid Sensitizes Non-Small Cell Lung Cancers to TRAIL-Induced Apoptosis via Inhibition of XIAP/NF-κB and Activation of Caspases and Death Receptor 4. Int J Mol Sci 2018; 19:ijms19051476. [PMID: 29772677 PMCID: PMC5983579 DOI: 10.3390/ijms19051476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Lambertianic acid (LA) is a biologically active compound from the leaves of Pinus koraiensis. In the present study, apoptotic mechanisms of LA plus TNF-related apoptosis-inducing ligand (TRAIL) were elucidated in non-small cell lung cancer cells (NSCLCs). Cytotoxicity assay, flow cytometry, immunoprecipitation, and Western blotting were performed. Here, combined treatment of LA and TRAIL increased cytotoxicity, sub-G1 population, cleaved poly (ADP-ribose) polymerase (PARP), and caspase3/8/9 in A549 and H1299 cells compared to LA or TRAIL alone. Furthermore, combined treatment of LA and TRAIL significantly decreased antiapoptotic proteins such as B-cell lymphoma 2 (Bcl-2), Fas-like inhibitor protein (FLIP), and X-linked inhibitor of apoptosis protein (XIAP), and enhanced the activation of proapoptotic proteins Bid compared to LA or TRAIL alone. In addition, combined treatment of LA and TRAIL upregulated the expression of Death receptor 4 (DR4) and downregulated phosphorylation of nuclear factor κ-light-chain-enhancer of activated B cells (p-NF-κB), inhibitory protein of kB family (p-IκB), and FLIP in A549 and H1299 cells along with disrupted binding of XIAP with caspase3 or NF-κB. Overall, these findings suggest that lambertianic acid enhances TRAIL-induced apoptosis via inhibition of XIAP/NF-κB in TRAIL resistant NSCLCs.
Collapse
Affiliation(s)
- Deok Soo Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyo Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Jisung Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyukgyu Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - BumSang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
18
|
Chan EWC, Wong SK, Chan HT. Casticin from Vitex species: a short review on its anticancer and anti-inflammatory properties. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:147-152. [PMID: 29559215 DOI: 10.1016/j.joim.2018.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/18/2018] [Indexed: 01/04/2023]
Abstract
This short review provides an update of the anticancer and anti-inflammatory properties of casticin from Vitex species. Casticin is a polymethylflavone with three rings, an orthocatechol moiety, a double bond, two hydroxyl groups and four methoxyl groups. Casticin has been isolated from various tissues of plants in the Vitex genus: fruits and leaves of V. trifolia, aerial parts and seeds of V. agnus-castus and leaves of V. negundo. Studies have reported the antiproliferative and apoptotic activities of casticin from Vitex species. The compound is effective against many cancer cell lines via different molecular mechanisms. Studies have also affirmed the anti-inflammatory properties of casticin, with several molecular mechanisms identified. Other pharmacological properties include anti-asthmatic, tracheospasmolytic, analgesic, antihyperprolactinemia, immunomodulatory, opioidergic, oestrogenic, anti-angiogenic, antiglioma, lung injury protection, rheumatoid arthritis amelioration and liver fibrosis attenuation activities. Clinical trials and commercial use of the casticin-rich fruit extract of V. agnus-castus among women with premenstrual syndrome were briefly discussed.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Siu Kuin Wong
- School of Science, Monash University, Petaling Jaya, Selangor 46150, Malaysia
| | - Hung Tuck Chan
- Secretariat of International Society for Mangrove Ecosystems, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
19
|
Chou GL, Peng SF, Liao CL, Ho HC, Lu KW, Lien JC, Fan MJ, La KC, Chung JG. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:127-141. [PMID: 29098808 DOI: 10.1002/tox.22497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca2+ production, levels of ΔΨm and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca2+ productions, decreases the levels of ΔΨm , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells.
Collapse
Affiliation(s)
- Guan-Ling Chou
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Heng-Chien Ho
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Kuang-Chi La
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
20
|
Lin S, Li Y, Zamyatnin AA, Werner J, Bazhin AV. Reactive oxygen species and colorectal cancer. J Cell Physiol 2018; 233:5119-5132. [PMID: 29215746 DOI: 10.1002/jcp.26356] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) has become the fourth leading cause of cancer-related death in the worldwide. It is urgent to find more effective therapeutic strategies for it. Reactive oxygen species (ROS) play multiple roles in normal cellular physiology processes. Thus, a certain level of ROS is essential to keep normal cellular function. However, the accumulation of ROS shows dual roles for cells, which is mainly dependent on the concentration of ROS, the origin of the cancer cell and the activated signaling pathways during tumor progression. In general, moderate level of ROS leads to cell damage, DNA mutation and inflammation, which promotes the initiation and development of cancer. Excessive high level of ROS induces cancer cell death, showing an anti-cancer role. ROS are commonly higher in CRC cells than their normal counterpart cells. Therefore, it is possible that ROS induce cell death in cancer cells while not affecting the normal cells, demonstrating lower side effects. Besides, ROS also play a role in tumor microenvironment and drug resistance. These multiple roles of ROS make them a promising therapeutic target for cancer. To explore potential ROS-target therapies against CRC, it is worth to comprehensively understanding the role of ROS in CRC and therapy. In this review, we mainly discuss the strategies of ROS in CRC therapy, including direct CRC cell target and indirect tumor environment target. In addition, the influences of ROS in drug resistance will also been discussed.
Collapse
Affiliation(s)
- Sisi Lin
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China.,Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yongyu Li
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
21
|
Zhao Y, Tian B, Wang Y, Ding H. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5. Med Sci Monit 2017; 23:5096-5105. [PMID: 29070784 PMCID: PMC5669221 DOI: 10.12659/msm.903552] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. Material/Methods The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20–100 μM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. Results Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. Conclusions Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.
Collapse
Affiliation(s)
- Yingmei Zhao
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China (mainland)
| | - Binqiang Tian
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China (mainland)
| | - Yong Wang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China (mainland)
| | - Haiying Ding
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China (mainland)
| |
Collapse
|
22
|
Shang HS, Liu JY, Lu HF, Chiang HS, Lin CH, Chen A, Lin YF, Chung JG. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2041-2052. [PMID: 27862857 DOI: 10.1002/tox.22381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca2+ productions, level of mitochondria membrane potential (ΔΨm ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨm , and Ca2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Chia-Hain Lin
- Department of Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ann Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Shang Z, Zhang L. Digitoxin increases sensitivity of glioma stem cells to TRAIL-mediated apoptosis. Neurosci Lett 2017; 653:19-24. [DOI: 10.1016/j.neulet.2017.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 11/15/2022]
|
24
|
Lim SC, Jeon HJ, Kee KH, Lee MJ, Hong R, Han SI. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells. Oncol Lett 2017; 13:3837-3844. [PMID: 28529596 PMCID: PMC5431559 DOI: 10.3892/ol.2017.5923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023] Open
Abstract
Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.
Collapse
Affiliation(s)
- Sung-Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Ho Jong Jeon
- Department of Pathology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Keun Hong Kee
- Department of Pathology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Mi Ja Lee
- Department of Pathology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Ran Hong
- Department of Pathology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Song Iy Han
- Division of Premedical Science, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Correspondence to: Professor Song Iy Han, Division of Premedical Science, College of Medicine, Chosun University, 309 Pilmun-daero, Gwangju 61452, Republic of Korea, E-mail:
| |
Collapse
|
25
|
Song XL, Zhang YJ, Wang XF, Zhang WJ, Wang Z, Zhang F, Zhang YJ, Lu JH, Mei JW, Hu YP, Chen L, Li HF, Ye YY, Liu YB, Gu J. Casticin induces apoptosis and G0/G1 cell cycle arrest in gallbladder cancer cells. Cancer Cell Int 2017; 17:9. [PMID: 28070171 PMCID: PMC5217413 DOI: 10.1186/s12935-016-0377-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/26/2016] [Indexed: 11/18/2022] Open
Abstract
Background Casticin, the flavonoid extracted from Vitex rotundifolia L, exerts various biological effects, including anti-inflammatory and anti-cancer activity. The aim of this study is to investigate the effects and mechanisms of casticin in human gallbladder cancer cells. Methods Human NOZ and SGC996 cells were used to perform the experiments. CCK-8 assay and colony formation assay were performed to evaluate cell viability. Cell cycle analyses and annexin V/PI staining assay for apoptosis were measured using flow cytometry. Western blot analysis was used to evaluate the changes in protein expression, and the effect of casticin treatment in vivo was experimented with xenografted tumors. Results In this study, we found that casticin significantly inhibited gallbladder cancer cell proliferation in a dose- and time-dependent manner. Casticin also induced G0/G1 arrest and mitochondrial-related apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9 and cleaved poly ADP-ribose polymerase expression, and by downregulating Bcl-2 expression. Moreover, casticin induced cycle arrest and apoptosis by upregulating p27 and downregulating cyclinD1/cyclin-dependent kinase4 and phosphorylated protein kinase B. In vivo, casticin inhibited tumor growth. Conclusion Casticin induces G0/G1 arrest and apoptosis in gallbladder cancer, suggesting that casticin might represent a novel and effective agent against gallbladder cancer.
Collapse
Affiliation(s)
- Xiao-Ling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yun-Jiao Zhang
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xue-Feng Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wen-Jie Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zheng Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fei Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi-Jian Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian-Hua Lu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jia-Wei Mei
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yun-Ping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Chen
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Huai-Feng Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuan-Yuan Ye
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ying-Bin Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jun Gu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Yang F, He K, Huang L, Zhang L, Liu A, Zhang J. Casticin inhibits the activity of transcription factor Sp1 and the methylation of RECK in MGC803 gastric cancer cells. Exp Ther Med 2016; 13:745-750. [PMID: 28352361 DOI: 10.3892/etm.2016.4003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the effect of casticin on reversion-inducing-cysteine-rich protein with kazal motifs (RECK) gene expression and intracellular methylation levels in MGC803 gastric cancer cells. Cells were treated with 1, 10 and 30 µmol/l casticin. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were performed to determine the protein expression and mRNA levels of RECK and DNA methyltransferase 1 (DNMT1), respectively. High-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry was used to detect RECK methylation. In addition, MGC803 cell proliferation was measured by an MTT assay and the DNA-binding activity of transcription factor Sp1 was determined using an enzyme-linked immunosorbent assay. The results demonstrated that treatment with 1, 10 and 30 µmol/l casticin significantly increased RECK protein expression and mRNA levels. In addition, casticin (30 µmol/l) decreased RECK promoter methylation levels by 31%, global DNA methylation levels by 39% and nuclear methylation activity by 71.6%. Furthermore, casticin downregulated the mRNA levels and protein expression of DNMT1. The MTT assay demonstrated that MGC803 cell proliferation was inhibited by casticin treatment and DNA binding assays indicated that casticin reduced the DNA-binding activity of Sp1. The present study therefore indicated that casticin inhibits the proliferation of gastric cancer MGC803 cells by upregulating RECK gene expression and reducing intracellular methylation levels.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China; Department of Basic Medicine, Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Kefei He
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Li Huang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lingyan Zhang
- Medical Department of Chongqing Bishan People's Hospital, Chongqing 402760, P.R. China
| | - Aixue Liu
- Department of Oncology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, P.R. China
| | - Jiren Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
27
|
RETRACTED ARTICLE: Casticin inhibits epithelial-mesenchymal transition of EBV-infected human retina pigmental epithelial cells through the modulation of intracellular lipogenesis. Graefes Arch Clin Exp Ophthalmol 2016; 255:557. [PMID: 27838737 DOI: 10.1007/s00417-016-3551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
|
28
|
Shih YL, Chou J, Yeh MY, Chou HM, Chou HC, Lu HF, Shang HS, Chueh FS, Chu YL, Hsueh SC, Chung JG. Casticin induces DNA damage and inhibits DNA repair-associated protein expression in B16F10 mouse melanoma cancer cells. Oncol Rep 2016; 36:2094-100. [DOI: 10.3892/or.2016.5027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 11/06/2022] Open
|
29
|
Chung YH, Kim D. RIP kinase-mediated ROS production triggers XAF1 expression through activation of TAp73 in casticin-treated bladder cancer cells. Oncol Rep 2016; 36:1135-42. [PMID: 27349281 DOI: 10.3892/or.2016.4895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/01/2016] [Indexed: 11/05/2022] Open
Abstract
The p53 family protein p73 plays an important role in apoptosis induced by chemotherapeutic drugs. Transcriptionally active (TA) p73 (TAp73) substitutes for p53 in the response to stress. XIAP associated factor 1 (XAF1) is a novel predictive and prognostic factor in patients with bladder cancer, but the association between TAp73 and XAF1 expression in bladder cancer cells is poorly understood. Here, we investigated the status of TAp73 and XAF1 in T24 bladder cancer cells to identify molecular mechanisms in casticin‑exposed T24 cells. Casticin induced activation of JNK/p38 MAPK that preceded activation of the caspase cascade and disruption of the mitochondria membrane potential (∆ψm). Expression of XAF1 and TAp73 was also upregulated in casticin-treated T24 cells. Casticin treatment of T24 cells induced receptor-interacting protein (RIP) kinase expression and increased intracellular production of reactive oxygen species (ROS). Casticin-mediated ROS induced an increase in phosphorylated JNK/p38 MAPK, resulting in progressive upregulation of TAp73, which in turn led to XAF1 expression. Our data suggest that the apoptotic activity of casticin in T24 cells is mediated by activation of the TAp73-XAF1 signaling pathway through RIP kinase-mediated ROS production.
Collapse
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
30
|
Shiue YW, Lu CC, Hsiao YP, Liao CL, Lin JP, Lai KC, Yu CC, Huang YP, Ho HC, Chung JG. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:637-61. [PMID: 27109154 DOI: 10.1142/s0192415x1650035x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a xenotransplantation model. Therefore, casticin might be a potential therapeutic agent for the treatment of skin cancer in the future.
Collapse
Affiliation(s)
- Yin-Wen Shiue
- * Department of Biological Science and Technology, China Medical University Taichung 404, Taiwan
| | - Chi-Cheng Lu
- † School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Ping Hsiao
- ‡ Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.,§ Department of Dermatology, Chung Shan Medical University Hospital Taichung 402, Taiwan
| | - Ching-Lung Liao
- ¶ Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jing-Pin Lin
- ∥ School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Kuang-Chi Lai
- ** School of Medicine, China Medical University, Taichung 404, Taiwan.,†† Department of Surgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan
| | - Chien-Chih Yu
- ‡‡ School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yi-Ping Huang
- §§ Department of Physiology, China Medical University, Taichung 404, Taiwan
| | - Heng-Chien Ho
- ** School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University Taichung 404, Taiwan.,¶¶ Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
31
|
Suo H, Sun P, Wang C, Peng D, Zhao X. Apoptotic effects of insect tea in HepG2 human hepatoma cells. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2015.1076521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Park MH, Hong JE, Park ES, Yoon HS, Seo DW, Hyun BK, Han SB, Ham YW, Hwang BY, Hong JT. Anticancer effect of tectochrysin in colon cancer cell via suppression of NF-kappaB activity and enhancement of death receptor expression. Mol Cancer 2015; 14:124. [PMID: 26123287 PMCID: PMC4487202 DOI: 10.1186/s12943-015-0377-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/01/2015] [Indexed: 12/21/2022] Open
Abstract
Background Flavonoids are a diverse family of natural phenolic compounds commonly found in fruits and vegetables. Epidemiologic studies showed that flavonoids also reduce the risk of colon cancer. Tectochrysin is one of the major flavonoids of Alpinia oxyphylla Miquel. However, the anti-cancer effects and the molecular mechanisms of tectochrysin in colon cancer cells have not yet been reported. We investigated whether tectochrysin could inhibit colon cancer cell growth at 1, 5, 10 μg/ml. In in vivo study, we injected a tectochrysin treatment dose of 5 mg/kg to each mouse. Results Tectochrysin suppressed the growth of SW480 and HCT116 human colon cancer cells. The expression of DR3, DR4 and Fas were significantly increased, and pro-apoptotic proteins were also increased. Tectochrysin treatment also inhibited activity of NF-κB. A docking model indicated that tectochrysin binds directly to the p50 unit. In in vivo, tumor weights and volumes in mice were reduced when treated with tectochrysin. Tectochrysin leads to apoptotic cell death in colon cancer cells through activation of death receptors expression via the inhibition of NF-κB. Conclusions Tectochrysin can be a useful agent for the treatment of colon cancer cell growth as well as an adjuvant agent for chemo-resistant cancer cells growth.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Ji Eun Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Eun Sook Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Hee Sung Yoon
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Doo Won Seo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Byung Kook Hyun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Young Won Ham
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Bang Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| |
Collapse
|
33
|
Rasul A, Zhao BJ, Liu J, Liu B, Sun JX, Li J, Li XM. Molecular Mechanisms of Casticin Action: an Update on its Antitumor Functions. Asian Pac J Cancer Prev 2014; 15:9049-58. [DOI: 10.7314/apjcp.2014.15.21.9049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Oh SB, Hwang CJ, Song SY, Jung YY, Yun HM, Sok CH, Sung HC, Yi JM, Park DH, Ham YW, Han SB, Hwang BY, Hong JT. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett 2014; 353:95-103. [DOI: 10.1016/j.canlet.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/01/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023]
|
35
|
Prasad S, Kim JH, Gupta SC, Aggarwal BB. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci 2014; 35:520-36. [PMID: 25128958 DOI: 10.1016/j.tips.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Selective killing of cancer cells is one of the major goals of cancer therapy. Although chemotherapeutic agents are being used for cancer treatment, they lack selectivity toward tumor cells. Among the six different death receptors (DRs) identified to date, DR4 and DR5 are selectively expressed on cancer cells. Therefore, unlike chemotherapeutic agents, these receptors can potentially mediate selective killing of tumor cells. In this review we outline various nutraceuticals derived from 'Mother Nature' that can upregulate DRs and thus potentiate apoptosis. These nutraceuticals increase tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of cancer cells through different mechanisms. First, nutraceuticals have been found to induce DRs through the upregulation of various signaling molecules. Second, nutraceuticals can downregulate tumor cell-survival pathways. Third, nutraceuticals alone have been found to activate cell-death pathways. Although both TRAIL and agonistic antibodies against DR4 and DR5 are in clinical trials, combination with nutraceuticals is likely to boost their anticancer potential.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Digitoxin sensitizes glioma cells to TRAIL-mediated apoptosis by upregulation of death receptor 5 and downregulation of survivin. Anticancer Drugs 2014; 25:44-52. [PMID: 24045365 DOI: 10.1097/cad.0000000000000015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme is the most lethal and aggressive astrocytoma among primary brain tumors in adults. However, most glioblastoma cells have been reported to be resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Here, we have shown that digitoxin (DT), a clinically approved cardiac glycoside for heart failure, can induce TRAIL-mediated apoptosis of glioblastoma cells. DT in noncytotoxic doses (20 nmol/l) can increase TRAIL-induced apoptosis in TRAIL-resistant U87MG glioblastoma cells. Treatment with DT led to apoptosis and a robust reduction in the levels of the antiapoptotic protein survivin by inducing its proteasomal degradation; however, it did not affect the levels of many other apoptosis regulators. Moreover, silencing survivin with small interfering RNAs sensitized glioma cells to TRAIL-induced apoptosis, underscoring the functional role of survivin depletion in the TRAIL-sensitizing actions of DT. We demonstrate that inactivation of survivin and death receptor 5 expression by DT is sufficient to restore TRAIL sensitivity in resistant glioma cells. Our results suggest that combining DT with TRAIL treatments may be useful in the treatment of TRAIL-resistant glioma cells.
Collapse
|
37
|
Liu F, Cao X, Liu Z, Guo H, Ren K, Quan M, Zhou Y, Xiang H, Cao J. Casticin suppresses self-renewal and invasion of lung cancer stem-like cells from A549 cells through down-regulation of pAkt. Acta Biochim Biophys Sin (Shanghai) 2014; 46:15-21. [PMID: 24247269 DOI: 10.1093/abbs/gmt123] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A subpopulation of cancer stem cells is recognized as the cause of tumorigenesis and spreading. To investigate the effects of casticin (5,3'-dihydroxy-3,6,7,4'-tetramethoxyflavone), derived from Fructus Viticis Simplicifoliae, on lung cancer stem cells, we isolated and identified a subpopulation of lung cancer stem-like cells (LCSLCs) from non-small-cell lung carcinoma A549 cells with the features including self-renewal capacity and high invasiveness in vitro, elevated tumorigenic activity in vivo, and high expression of stemness markers CD133, CD44, and aldehyde dehydrogenase 1 (ALDH1), using serum-free suspension sphere-forming culture method. We then found that casticin could suppress the proliferation of LCSLCs in a concentration-dependent manner with an IC50 value of 0.4 μmol/L, being much stronger than that in parental A549 cells. In addition, casticin could suppress the self-renewal and invasion of LCSLCs concomitant with decreased CD133, CD44, and ALDH1 protein expression and reduced MMP-9 activity. Further experiments showed that casticin suppressed self-renewal and invasion at least partly through down-regulation of Akt phosphorylation. In conclusion, casticin suppressed the characteristics of LCSLCs, suggesting that casticin may be a candidate compound for curing lung cancer via eliminating cancer stem cells.
Collapse
Affiliation(s)
- Fei Liu
- College of Medicine, Hunan Normal University, Changsha 410013, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tang S, Yuan G, Yu Z, Yin L, Jiang H. The flavonoid casticin enhances TRAIL-induced apoptosis of colon cancer cells through endoplasmic reticulum stress-mediated up-regulation of DR5. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s10330-013-1180-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|