1
|
Nagaraj S, Stankiewicz-Drogon A, Darzynkiewicz E, Wojda U, Grzela R. miR-483-5p orchestrates the initiation of protein synthesis by facilitating the decrease in phosphorylated Ser209eIF4E and 4E-BP1 levels. Sci Rep 2024; 14:4237. [PMID: 38378793 PMCID: PMC10879198 DOI: 10.1038/s41598-024-54154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) is a pivotal protein involved in the regulatory mechanism for global protein synthesis in both physiological and pathological conditions. MicroRNAs (miRNAs) play a significant role in regulating gene expression by targeting mRNA. However, the ability of miRNAs to regulate eIF4E and its phosphorylation remains relatively unknown. In this study, we predicted and experimentally verified targets for miR-483-5p, including eukaryotic translation initiation factor eIF4E and its binding proteins, 4E-BPs, that regulate protein synthesis. Using the Web of Science database, we identified 28 experimentally verified miR-483-5p targets, and by the TargetScan database, we found 1818 predicted mRNA targets, including EIF4E, EIF4EBP1, and EIF4EBP2. We verified that miR-483-5p significantly reduced ERK1 and MKNK1 mRNA levels in HEK293 cells. Furthermore, we discovered that miR-483-5p suppressed EIF4EBP1 and EIF4EBP2, but not EIF4E. Finally, we found that miR-483-5p reduced the level of phosphorylated eIF4E (pSer209eIF4E) but not total eIF4E. In conclusion, our study suggests that miR-483-5p's multi-targeting effect on the ERK1/ MKNK1 axis modulates the phosphorylation state of eIF4E. Unlike siRNA, miRNA can have multiple targets in the pathway, and thereby exploring the role of miR-483-5p in various cancer models may uncover therapeutic options.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Edward Darzynkiewicz
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland.
| | - Renata Grzela
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland.
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| |
Collapse
|
2
|
Zha HL, Chen W, Shi W, Liao YY. Inhibition of Eukaryotic Initiating Factor eIF4E Overcomes Abemaciclib Resistance in Gastric Cancer. Curr Med Sci 2023; 43:927-934. [PMID: 37752406 DOI: 10.1007/s11596-023-2789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/18/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Aberrant activating mutations in cyclin-dependent kinases 4 and 6 (CDK4/6) are common in various cancers, including gastroesophageal malignancies. Although CDK4/6 inhibitors, such as abemaciclib and palbociclib, have been approved for breast cancer treatment, their effectiveness as a monotherapy remains limited for gastroesophageal tumors. The present study explored the underlying mechanism of abemaciclib resistance. METHODS Abemaciclib-resistant gastric cancer cell lines were generated, and the phospho-eukaryotic translation initiation factor 4E (p-eIF4E) and eIF4E expression was compared between resistant and parental cell lines. In order to analyze the role of eIF4E in cell resistance, siRNA knockdown was employed. The effectiveness of ribavirin alone and its combination with abemaciclib was evaluated in the gastric cancer xenograft mouse model. RESULTS The upregulation of eIF4E was a common feature in gastric cancer cells exposed to prolonged abemaciclib treatment. Gastric cancer cells with increased eIF4E levels exhibited a better response to eIF4E inhibition, especially those that were resistant to abemaciclib. Ribavirin, which is an approved anti-viral drug, significantly improved the efficacy of abemaciclib, both in vitro and in vivo, by inhibiting eIF4E. Importantly, ribavirin effectively suppressed the abemaciclib-resistant gastric cancer growth in mice without causing toxicity. CONCLUSION These findings suggest that targeting eIF4E can enhance the abemaciclib treatment for gastric cancer, proposing the potential combination therapy of CDK4/6 inhibitors with ribavirin for advanced gastric cancer.
Collapse
Affiliation(s)
- Huo-Long Zha
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Wei Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Wei Shi
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Ying-Ying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
3
|
Yang X, Liu Z, Yin X, Zeng Y, Guo G. Inhibition MNK-eIF4E-β-catenin preferentially sensitizes gastric cancer to chemotherapy. Fundam Clin Pharmacol 2022; 36:712-720. [PMID: 35048413 DOI: 10.1111/fcp.12759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
Aberrant activation of eIF4E contributes to gastric cancer growth and resistance. MAPK-interacting kinases (MNKs) regulate eIF4E phosphorylation and activity in tumor but not normal cells and are potentially safe targets for the treatment of various cancers. Our work reveals that tomivosertib, a potent and highly selective dual MNK1/2 inhibitor, preferentially sensitizes gastric cancer to chemotherapy via suppressing MNK-eIF4E-β-catenin. We firstly demonstrate that tomivosertib displays higher efficacy than other MNK inhibitors in inhibiting gastric cancer cells. In addition, tomivosertib significantly augments the inhibitory effects of 5-FU and paclitaxel but not everolimus, suggesting that tomivosertib preferentially sensitizes gastric cancer to chemotherapy. We next show that eIF4E overexpression and phosphorylation coordinately regulate β-catenin signaling in gastric cancer. Rescue studies confirm that tomivosertib inhibits gastric cancer via targeting MNK- eIF4E-β-catenin. Finally, we demonstrate that the in vitro functional and mechanism observations are translatable to in vivo gastric cancer model in mice. Tomivosertib is now in Phase 2 clinical trials. Our study provides preclinical evidence to initialize clinical trials for gastric cancer using tomivosertib in combination with chemotherapy.
Collapse
Affiliation(s)
- Xiaolin Yang
- Department of Gastroenterology and Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhenyang Liu
- Department of Gastroenterology and Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xianli Yin
- Department of Gastroenterology and Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yidong Zeng
- Department of Gastroenterology and Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Geyang Guo
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
4
|
Jee HY, Lee YG, Lee S, Elvira R, Seo HE, Lee JY, Han J, Lee K. Activation of ERK and p38 Reduces AZD8055-Mediated Inhibition of Protein Synthesis in Hepatocellular Carcinoma HepG2 Cell Line. Int J Mol Sci 2021; 22:ijms222111824. [PMID: 34769253 PMCID: PMC8584319 DOI: 10.3390/ijms222111824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Protein synthesis is important for maintaining cellular homeostasis under various stress responses. In this study, we screened an anticancer drug library to select compounds with translational repression functions. AZD8055, an ATP-competitive mechanistic target of rapamycin complex 1/2 (mTORC1/2) inhibitor, was selected as a translational suppressor. AZD8055 inhibited protein synthesis in mouse embryonic fibroblasts and hepatocellular carcinoma HepG2 cells. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were activated during the early phase of mTORC1/2 inhibition by AZD8055 treatment. Combined treatment of AZD8055 with the MAPK kinase1/2 (MEK1/2) inhibitor refametinib or the p38 inhibitor SB203580 markedly decreased translation in HepG2 cells. Thus, the inhibition of ERK1/2 or p38 may enhance the efficacy of AZD8055-mediated inhibition of protein synthesis. In addition, AZD8055 down-regulated the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AZD8055-induced phosphorylation of ERK1/2 and p38 had no effect on phosphorylation status of 4E-BP1. Interestingly, AZD8055 modulated the 4E-BP1 mRNA pool by up-regulating ERK1/2 and p38 pathways. Together, these results suggest that AZD8055-induced activation of MAPKs interferes with inhibition of protein synthesis at an early stage of mTORC1/2 inhibition, and that it may contribute to the development of resistance to mTORC1/2 inhibitors.
Collapse
Affiliation(s)
- Ha-yeon Jee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Yoon-Gyeong Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Sol Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (R.E.); (J.H.)
| | - Hye-eun Seo
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Ji-Yeon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (R.E.); (J.H.)
| | - Kyungho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-3423; Fax: +82-2-3436-5432
| |
Collapse
|
5
|
Majeed ST, Batool A, Majeed R, Bhat NN, Zargar MA, Andrabi KI. mTORC1 induces eukaryotic translation initiation factor 4E interaction with TOS-S6 kinase 1 and its activation. Cell Cycle 2021; 20:839-854. [PMID: 33938392 DOI: 10.1080/15384101.2021.1901038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Eukaryotic translation initiation factor 4E was recently shown to be a substrate of mTORC1, suggesting it may be a mediator of mTORC1 signaling. Here, we present evidence that eIF4E phosphorylated at S209 interacts with TOS motif of S6 Kinase1 (S6K1). We also show that this interaction is sufficient to overcome rapamycin sensitivity and mTORC1 dependence of S6K1. Furthermore, we show that eIF4E-TOS interaction relieves S6K1 from auto-inhibition due to carboxy terminal domain (CTD) and primes it for hydrophobic motif (HM) phosphorylation and activation in mTORC1 independent manner. We conclude that the role of mTORC1 is restricted to engaging eIF4E with S6K1-TOS motif to influence its state of HM phosphorylation and inducing its activation.
Collapse
Affiliation(s)
- Sheikh Tahir Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Asiya Batool
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, India
| | - Rabiya Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Nadiem Nazir Bhat
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India
| | | | - Khurshid Iqbal Andrabi
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
6
|
Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-Azar A, Zali MR, Bashash D. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol 2021; 898:173983. [PMID: 33647255 DOI: 10.1016/j.ejphar.2021.173983] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Genetic and epigenetic alterations have been under concentrated investigations for many years in order to unearth the molecules regulating human cancer pathogenesis. However, the identification of a wide range of dysregulated genes and their protein products has raised a question regarding how the results of this large collection of alterations could converge into a formation of one malignancy. The answer may be found in the signaling cascades that regulate the survival and metabolism of the cells. Aberrancies of each participant molecule of such cascades may well result in augmented viability and unlimited proliferation of cancer cells. Among various signaling pathways, the phosphatidylinositol-3-kinase (PI3K) axis has been shown to be activated in about one-third of human cancers. One of the malignancies that is mostly affected by this axis is gastric cancer (GC), one of the most fatal cancers worldwide. In the present review, we aimed to illustrate the significance of the PI3K/Akt/mTOR axis in the pathogenesis of GC and also provided a wide perspective about the application of the inhibitors of this axis in the therapeutic strategies of this malignancy.
Collapse
Affiliation(s)
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pirsalehi
- Department of Internal Medicine, School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci 2020; 262:118513. [PMID: 33011222 DOI: 10.1016/j.lfs.2020.118513] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
PI3K/AKT/mTOR pathway is one of the most important signaling pathways involved in normal cellular processes. Its aberrant activation modulates autophagy, epithelial-mesenchymal transition, apoptosis, chemoresistance, and metastasis in many human cancers. Emerging evidence demonstrates that some infections as well as epigenetic regulatory mechanisms can control PI3K/AKT/mTOR signaling pathway. In this review, we focused on the role of this pathway in gastric cancer development, prognosis, and metastasis, with an emphasis on epigenetic alterations including DNA methylation, histone modifications, and post-transcriptional modulations through non-coding RNAs fluctuations as well as H. pylori and Epstein-Barr virus infections. Finally, we reviewed different molecular targets and therapeutic agents in clinical trials as a potential strategy for gastric cancer treatment through the PI3K/AKT/mTOR pathway.
Collapse
|
8
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
9
|
Zhai S, Lin S, Lin Z, Xu J, Ji T, Chen K, Wu K, Liu H, Ying H, Fei W, Wang J, Fu G, Wang Y, Hu X, Cai X. eIF4EBP3 was downregulated by methylation and acted as a tumor suppressor by targeting eIF4E/β-catenin in gastric cancer. Gastric Cancer 2020; 23:483-496. [PMID: 31853750 DOI: 10.1007/s10120-019-01030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epigenetic aberrations of tumor suppressor genes (TSGs), particularly DNA methylation, are frequently involved in the pathogenesis of gastric cancer (GC). Through a methylome study, we identified eIF4EBP3 as a methylated gene in GC. However, the role of eIF4EBP3 in GC progression has not been explored. METHODS The expression and promoter region methylation of eIF4EBP3 in GC and healthy tissues were analyzed in public datasets. eIF4EBP3 expression in GC was detected by semi-quantitative RT-PCR, western blot and immunohistochemistry. We also studied epigenetic alterations and functions in GC. The effects of eIF4EBP3 on cell proliferation, migration and invasion were conducted by functional experiments in vitro and in vivo. Label-free proteomic analysis was applied to identify targets of eIF4EBP3. RESULTS The expression level of eIF4EBP3 was downregulated in gastric cancer due to promoter region methylation, and was associated with poor survival and tumor progression. Ectopic expression of eIF4EBP3 significantly inhibited tumor cell growth, migration and invasion both in vitro and in vivo. Label-free proteomic analysis indicated eIF4EBP3 downregulated the protein level of β-catenin, which was confirmed by western blot. Overexpression of β-catenin reversed the inhibitory effects of eIF4EBP3 on cell growth and migration, indicating that eIF4EBP3 acts on GC cells by targeting the eIF4E/β-catenin axis. CONCLUSION These results suggest that eIF4EBP3 is a novel TSG methylated in gastric cancer that may play important roles in GC development and liver metastasis and indicate eIF4EBP3 as a potential metastasis and survival biomarker for GC.
Collapse
Affiliation(s)
- Shuting Zhai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Shuang Lin
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zhongjie Lin
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Tong Ji
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Ke Chen
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Ke Wu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hui Liu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hanning Ying
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Weiqiang Fei
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Jin Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Yifan Wang
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
10
|
Abdelaziz AM, Diab S, Islam S, Basnet SKC, Noll B, Li P, Mekonnen LB, Lu J, Albrecht H, Milne RW, Gerber C, Yu M, Wang S. Discovery of N-Phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine Derivatives as Potent Mnk2 Inhibitors: Design, Synthesis, SAR Analysis, and Evaluation of in vitro Anti-leukaemic Activity. Med Chem 2019; 15:602-623. [PMID: 30569866 DOI: 10.2174/1573406415666181219111511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer. METHODS A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined. RESULTS These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability. CONCLUSION This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sarah Diab
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Saiful Islam
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Benjamin Noll
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Peng Li
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Laychiluh B Mekonnen
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Jingfeng Lu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Robert W Milne
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Cobus Gerber
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
11
|
Positive Correlative over-Expression between eIF4E and Snail in Nasopharyngeal Carcinoma Promotes its Metastasis and Resistance to Cisplatin. Pathol Oncol Res 2019; 26:1639-1649. [PMID: 31512056 DOI: 10.1007/s12253-019-00733-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
EIF4E is the rate-limiting factor in the mRNA translation of specific set of oncogenes. Snail is the core transcription factor of epithelial-mesenchymal transition (EMT), a key step of cancer metastasis. The connection between the two oncoproteins has not been well established in the human cancer tissues and in nasopharyngeal carcinoma (NPC). Here we showed that the positive correlative over-expression was seen between eIF4E and Snail in NPC tissues, and the expression was significantly higher in the metastatic NPC than in the un-metastatic NPC. In NPC cells, eIF4E knockdown significantly reduced Snail mRNA and protein levels, increased the mRNA level of E-cad (a direct downstream gene of Snail and a negative EMT marker), attenuated the invasive ability of the cells, and sensitized the cells to cisplatin in invasion. In contrast, enforced the expression of eIF4E significantly increased Snail mRNA and protein levels, and promoted the invasive ability in NPC cells. Under the condition of the high eIF4E expression, Snail knockdown significantly increased E-cad mRNA level and weaken the invasive ability of NPC cells. Finally, eIF4E directly bound Snail mRNA for translation initiation displayed by the RIP assay. Therefore, the results firstly suggested that eIF4E enhanced the Snail expression in both transcription and translation manner in human cancer tissues and targeting the eIF4E/Snail axis might intervene with the EMT and metastasis of NPC. This finding provided a new clue for further understanding the metastatic mechanism of human cancers and for preventing and treating NPC metastasis.
Collapse
|
12
|
Wu S, Zhang Z, Wu D, Chen H, Qian X, Wang X, Huang W. AEG-1 promotes the growth of gastric cancer through the upregulation of eIF4E expression. Onco Targets Ther 2019; 12:5887-5895. [PMID: 31413586 PMCID: PMC6659790 DOI: 10.2147/ott.s213604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background: AEG-1 has been proven to be tumor enhancer in gastric cancer. However, its mechanism has not yet been fully clarified. Methods: Gain-of-function and loss-of-function experiments were conducted to determine the role of eIF4E in AEG-1-induced growth of gastric cancer cells and xenografts of a nude mouse model. Western blot analysis and SRB assay were used to determine the protein expression levels and survival cell numbers. Results: Silencing the expression of AEG-1 inhibited the growth of gastric cancer cells in parallel with a decreased eIF4E and cyclin D1 expression; however, the overexpression of AEG-1 promoted cell growth and increased eIF4E and cyclin D1 expression. Moreover, the overexpression of eIF4E partially reversed the AEG-1 silencing-induced reduction of cyclin D1 and the inhibition of cell growth. An eIF4E knockdown also partially reversed the AEG-1 overexpression-induced upregulation of cyclin D1 and cell growth. Notably, manipulating the expression of eIF4E did not affect the expression of AEG-1. Finally, the silencing of AEG-1 expression inhibited the growth of SGC-7901 xenografts in parallel with the downregulation of eIF4E and cyclin D1 expression in the nude mouse model. Conclusion: AEG-1 promoted the growth of gastric cancer through upregulation of eIF4E/cyclin D1 signaling pathway.
Collapse
Affiliation(s)
- Shengjie Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, People's Republic of China.,Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, People's Republic of China
| | - Zuhao Zhang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, People's Republic of China
| | - Dandan Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, People's Republic of China.,Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu Province 222000, People's Republic of China
| | - Hongling Chen
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, People's Republic of China
| | - Xixi Qian
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, People's Republic of China
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, People's Republic of China
| | - Wenbin Huang
- Department of Pathology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, Jiangsu Province 210006, People's Republic of China
| |
Collapse
|
13
|
Wang H, Liu Y, Ding J, Huang Y, Liu J, Liu N, Ao Y, Hong Y, Wang L, Zhang L, Wang J, Zhang Y. Targeting mTOR suppressed colon cancer growth through 4EBP1/eIF4E/PUMA pathway. Cancer Gene Ther 2019; 27:448-460. [PMID: 31257364 DOI: 10.1038/s41417-019-0117-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/04/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
Colorectal cancer is the third most frequently diagnosed malignancies among both men and women, which has an increased mortality but a poor prognosis. Targeting mTOR becomes an effective approach that shows promising antitumor activities in various cancers including colonic carcinoma. However, the potential mechanism against colon cancer remains incompletely understood. Here, we demonstrated that the anti-cancer effect of AZD8055 and OSI-027 is at least in part modulated by the gradual process of apoptosis initiation, progressing from mTOR suppression, 4EBP1 dephosphorylation, or EZH2 suppression, thereby leading to PUMA-dependent apoptosis via the intrinsic mitochondrial pathway. Furthermore, AZD8055 inhibited colorectal cancer tumor growth in mice significantly. PUMA deletion caused resistance of dual mTOR inhibitors, suggesting PUMA mediated carcinogenesis in vitro and in vivo. Collectively, these findings established a vital status of PUMA in driving the antineoplastic efficacy of targeting mTOR by AZD8055 and OSI-027 and offered the rationales for the current clinical assessment.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,College of Biology, Hunan University, Changsha, China
| | - Yeying Liu
- College of Biology, Hunan University, Changsha, China.,Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ding
- Department of Emergency Surgery, The Second Military Medical University, Shanghai, China
| | - Yuan Huang
- College of Biology, Hunan University, Changsha, China
| | - Jing Liu
- College of Biology, Hunan University, Changsha, China
| | - Nannan Liu
- College of Biology, Hunan University, Changsha, China
| | - Yue Ao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi Hong
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lefeng Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lingling Zhang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yingjie Zhang
- College of Biology, Hunan University, Changsha, China. .,Shenzhen Institute, Hunan University, Shenzhen, China.
| |
Collapse
|
14
|
Qi NN, Tian S, Li X, Wang FL, Liu B. Up-regulation of microRNA-496 suppresses proliferation, invasion, migration and in vivo tumorigenicity of human osteosarcoma cells by targeting eIF4E. Biochimie 2019; 163:1-11. [PMID: 30998968 DOI: 10.1016/j.biochi.2019.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Osteosarcoma is an aggressive bone tumor characterized by a high level of genetic instability and recurring DNA deletions and amplifications. This study aims to investigate how microRNA-496 (miR-496) affects proliferation, invasion, and migration of human osteosarcoma (OS) cells and in vivo tumorigenicity by targeting eukaryotic translation initiation factor 4E (eIF4E). Microarray-based gene expression profiling involving OS was used in order to identify differentially expressed genes. After that, the interaction between miR-496 expression and OS patients' survival rate was determined. The expression pattern of miR-496 and eIF4E was determined in OS tissues and cells, and their potential relationship was further analyzed by using the dual luciferase reporter gene assay. With the purpose of identifying the functional role miR-496 in OS, cell proliferation, migration, and invasion were measured in cells treated with miR-496 mimic or inhibitor. A nude mouse model was constructed in order to investigate the regulatory effects of miR-496 on tumor growth in vivo by regulating eIF4E. OS cells exhibited a down-regulated expression of miR-496 and an up-regulated expression of eIF4E. miR-496 expression was positively correlated to OS patients' survival rate. Bioinformatics analysis suggested eIF4E would be a direct target of miR-496, and the expression of eIF4E was inhibited by overexpression of miR-496. miR-496 elevation was found to exert suppressive effects on OS cell proliferation, migration and invasion in vitro and tumor growth in vivo, with the effects being reversed using miR-496 depletion. Altogether, the above findings support a conclusion that miR-496 could work as a tumor suppressor in OS through down-regulation of eIF4E. This study may provide a novel target for treatment of OS.
Collapse
Affiliation(s)
- Ni-Nan Qi
- The Third Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China
| | - Shuo Tian
- The Third Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China
| | - Xin Li
- Operating Theater, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China
| | - Fu-Li Wang
- The Third Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China
| | - Bin Liu
- The Second Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China.
| |
Collapse
|
15
|
Han B, Yang Y, Chen J, He X, Lv N, Yan R. PRSS23 knockdown inhibits gastric tumorigenesis through EIF2 signaling. Pharmacol Res 2019; 142:50-57. [PMID: 30769097 DOI: 10.1016/j.phrs.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
Abstract
PRSS23 is a newly discovered serine protease that has been associated with tumor progression in various types of cancers. Our previous study showed PRSS23 is down-regulated obviously in Hedgehog pathway blocked gastric cancer cells. However, the correlation between PRSS23 and tumor progression of gastric cancer remains unclear. Here, the role and mechanism of PRSS23 in tumor progression of gastric cancer were determined. PRSS23 protein levels were significantly increased in gastric cancer tissues compared with the paired adjacent normal gastric mucosa tissues. The high expression of PRSS23 correlated strongly with both poor differentiated histology and cancer region of sinus ventriculi. Gastric cancer patients with low PRSS23 expression displayed a better prognosis. In gastric cancer cells, PRSS23 knockdown inhibited cell proliferation and induced apoptosis. In xenograft tumor model, PRSS23 knockdown led to dramatic decreases of the average tumor volume and the average tumor weight. In addition, PRSS23 knockdown suppressed gastric cancer growth through inhibiting EIF2 signaling using gene expression microarray analysis. Taken together, our results suggest PRSS23 is highly associated with human gastric tumorigenesis and progression. PRSS23 knockdown could suppress tumor growth of gastric cancer in vitro and in vivo through inhibiting EIF2 signaling, and EIF4E maybe a potential target of PRSS23. PRSS23 could serve as a potential target for gastric cancer therapy, and also a biomarker for the prediction of prognosis of gastric cancer.
Collapse
Affiliation(s)
- Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China; Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yang Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China; Guilin Medical University, Guilin, China
| | - Jiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Xingxing He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Nonghua Lv
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China.
| | - Runwei Yan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China.
| |
Collapse
|
16
|
Gao Z, Yuan T, Zhou X, Ni P, Sun G, Li P, Cheng Z, Wang X. Targeting BRD4 proteins suppresses the growth of NSCLC through downregulation of eIF4E expression. Cancer Biol Ther 2018; 19:407-415. [PMID: 29333921 DOI: 10.1080/15384047.2018.1423923] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Bromodomain and extraterminal domain (BET) proteins act as epigenome readers for gene transcriptional regulation. Among BET family members, BRD4 was well studied, but for its mechanism in non-small cell lung carcinoma has not been elucidated. eIF4E regulates gene translation and has been proved to play an important role in the progression of lung cancer. In this study, we first confirmed that BET inhibitors JQ1 and I-BET151 suppressed the growth of NSCLCs, in parallel with downregulated eIF4E expression. Then we found that knockdown of BRD4 expression using siRNAs inhibited the growth of NSCLCs as well as decreased eIF4E protein levels. Moreover, overexpression of eIF4E partially abrogated the growth inhibitory effect of JQ1, while knockdown of eIF4E enhanced the inhibitory effect of JQ1. Furthermore, JQ1 treatment or knockdown of BRD4 expression decreased eIF4E mRNA levels and inhibited its promoter activity by luciferase reporter assay. JQ1 treatment significantly decreased the binding of eIF4E promoter with BRD4. Finally, JQ1 inhibited the growth of H460 tumors in parallel with downregulated eIF4E mRNA and protein levels in a xenograft mouse model. These findings suggest that inhibition of BET by JQ1, I-BET151, or BRD4 silencing suppresses the growth of non-small cell lung carcinoma through decreasing eIF4E transcription and subsequent mRNA and protein expression. Considering that BET regulates gene transcription epigenetically, our findings not only reveal a new mechanism of BET-regulated eIF4E in lung cancer, but also indicate a novel strategy by co-targeting eIF4E for enhancing BET-targeted cancer therapy.
Collapse
Affiliation(s)
- Zhongyuan Gao
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Ting Yuan
- b Department of Pain Management , The Second Affiliated Hospital, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Xiao Zhou
- b Department of Pain Management , The Second Affiliated Hospital, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Ping Ni
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Geng Sun
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Ping Li
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Zhixiang Cheng
- b Department of Pain Management , The Second Affiliated Hospital, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Xuerong Wang
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China.,c Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University , Nanjing , Jiangsu Province , China
| |
Collapse
|
17
|
Ali MU, Ur Rahman MS, Jia Z, Jiang C. Eukaryotic translation initiation factors and cancer. Tumour Biol 2017; 39:1010428317709805. [PMID: 28653885 DOI: 10.1177/1010428317709805] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent technological advancements have shown tremendous mechanistic accomplishments in our understanding of the mechanism of messenger RNA translation in eukaryotic cells. Eukaryotic messenger RNA translation is very complex process that includes four phases (initiation, elongation, termination, and ribosome recycling) and diverse mechanisms involving protein and non-protein molecules. Translation regulation is principally achieved during initiation step of translation, which is organized by multiple eukaryotic translation initiation factors. Eukaryotic translation initiation factor proteins help in stabilizing the formation of the functional ribosome around the start codon and provide regulatory mechanisms in translation initiation. Dysregulated messenger RNA translation is a common feature of tumorigenesis. Various oncogenic and tumor suppressive genes affect/are affected by the translation machinery, making the components of the translation apparatus promising therapeutic targets for the novel anticancer drug. This review provides details on the role of eukaryotic translation initiation factors in messenger RNA translation initiation, their contribution to onset and progression of tumor, and how dysregulated eukaryotic translation initiation factors can be used as a target to treat carcinogenesis.
Collapse
Affiliation(s)
- Muhammad Umar Ali
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muhammad Saif Ur Rahman
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyu Jia
- 2 Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Cao Jiang
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Wu S, Yang L, Wu D, Gao Z, Li P, Huang W, Wang X. AEG-1 induces gastric cancer metastasis by upregulation of eIF4E expression. J Cell Mol Med 2017; 21:3481-3493. [PMID: 28661037 PMCID: PMC5706588 DOI: 10.1111/jcmm.13258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related deaths worldwide, and patients with lymph node, peritoneal and distant metastasis have a poor prognosis. Overexpression of Astrocyte-elevated gene-1 (AEG-1) has been reported to be correlated with the progression and metastasis of gastric cancer. However, its mechanisms are quite unclear. In this study, we found that elevated expression of AEG-1 was correlated with metastasis in human gastric cancer tissues. Moreover, gain- or loss-of-function of AEG-1, respectively, promoted or suppressed epithelial-mesenchymal transition (EMT), migration and invasion of gastric cancer cells. AEG-1 positively regulated eIF4E, MMP-9 and Twist expression. Manipulating eIF4E expression by transfection of overexpression constructs or siRNAs partially eliminated AEG-1-regulated EMT, cell migration and invasion. In addition, overexpression or knockdown of eIF4E promoted or suppressed EMT, cell migration and invasion in parallel with upregulation of MMP-9 and Twist expression, while manipulating eIF4E expression partially abrogated AEG-1-induced MMP-9 and Twist. Finally, silencing of AEG-1 expression not only inhibited tumour growth in parallel with downregulation of eIF4E, MMP-9 and Twist expression in a xenograft nude mouse model, but also suppressed lymph node and peritoneal metastasis of gastric cancer in an orthotopic nude mouse model. These findings suggest that AEG-1 promotes gastric cancer metastasis through upregulation of eIF4E-mediated MMP-9 and Twist, which provides new diagnostic markers and therapeutic targets for cancer metastasis.
Collapse
Affiliation(s)
- Shengjie Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yang
- Department of General Surgery, Medical Oncology and Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dandan Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Zhongyuan Gao
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbin Huang
- Department of Pathology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, Jiangsu, China
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Wang L, Arras J, Katsha A, Hamdan S, Belkhiri A, Ecsedy J, El-Rifai W. Cisplatin-resistant cancer cells are sensitive to Aurora kinase A inhibition by alisertib. Mol Oncol 2017; 11:981-995. [PMID: 28417568 PMCID: PMC5537695 DOI: 10.1002/1878-0261.12066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/23/2017] [Accepted: 04/09/2017] [Indexed: 12/13/2022] Open
Abstract
De novo and acquired resistance to platinum therapy such as cisplatin (CDDP) is a clinical challenge in gastric cancer treatment. Aberrant expression and activation of aurora kinase A (AURKA) and eukaryotic translation initiation factor 4E (eIF4E) are detected in several cancer types. Herein, we investigated the role of AURKA in CDDP resistance in gastric cancer. Western blot analysis demonstrated overexpression of AURKA and phosphorylation of eIF4E in acquired and de novo CDDP‐resistant gastric cancer models. Inhibition of AURKA with MLN8237 (alisertib) alone or in combination with CDDP significantly suppressed viability of CDDP‐resistant cancer cells (P < 0.01). Additionally, inhibition or knockdown of AURKA decreased protein expression of p‐eIF4E (S209), HDM2, and c‐MYC in CDDP‐resistant cell models. This was associated with a significant decrease in cap‐dependent translation levels (P < 0.01). In vivo tumor xenografts data corroborated these results and confirmed that inhibition of AURKA was sufficient to overcome CDDP resistance in gastric cancer. Our data demonstrate that AURKA promotes acquired and de novo resistance to CDDP through regulation of p‐eIF4E (S209), c‐MYC, HDM2, and cap‐dependent translation. Targeting AURKA could be an effective therapeutic approach to overcome CDDP resistance in refractory gastric cancer and possibly other cancer types.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Surgery and Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Janet Arras
- Department of Surgery and Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ahmed Katsha
- Department of Surgery and Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Science and Engineering Department, Raritan Valley Community College, Branchburg, NJ, USA
| | - Saif Hamdan
- Department of Surgery and Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abbes Belkhiri
- Department of Surgery and Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey Ecsedy
- Translational Medicine, Millennium Pharmaceuticals, Inc., Cambridge, MA, USA a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Wael El-Rifai
- Department of Surgery and Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
20
|
Bersani C, Huss M, Giacomello S, Xu LD, Bianchi J, Eriksson S, Jerhammar F, Alexeyenko A, Vilborg A, Lundeberg J, Lui WO, Wiman KG. Genome-wide identification of Wig-1 mRNA targets by RIP-Seq analysis. Oncotarget 2016; 7:1895-911. [PMID: 26672765 PMCID: PMC4811505 DOI: 10.18632/oncotarget.6557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/15/2015] [Indexed: 02/06/2023] Open
Abstract
RNA-binding proteins (RBPs) play important roles in the regulation of gene expression through a variety of post-transcriptional mechanisms. The p53-induced RBP Wig-1 (Zmat3) binds RNA through its zinc finger domains and enhances stability of p53 and N-Myc mRNAs and decreases stability of FAS mRNA. To identify novel Wig-1-bound RNAs, we performed RNA-immunoprecipitation followed by high-throughput sequencing (RIP-Seq) in HCT116 and Saos-2 cells. We identified 286 Wig-1-bound mRNAs common between the two cell lines. Sequence analysis revealed that AU-rich elements (AREs) are highly enriched in the 3′UTR of these Wig-1-bound mRNAs. Network enrichment analysis showed that Wig-1 preferentially binds mRNAs involved in cell cycle regulation. Moreover, we identified a 2D Wig-1 binding motif in HIF1A mRNA. Our findings confirm that Wig-1 is an ARE-BP that regulates cell cycle-related processes and provide a novel view of how Wig-1 may bind mRNA through a putative structural motif. We also significantly extend the repertoire of Wig-1 target mRNAs. Since Wig-1 is a transcriptional target of the tumor suppressor p53, these results have implications for our understanding of p53-dependent stress responses and tumor suppression.
Collapse
Affiliation(s)
- Cinzia Bersani
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
| | - Mikael Huss
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden
| | - Stefania Giacomello
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden
| | - Li-Di Xu
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
| | - Julie Bianchi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
| | - Sofi Eriksson
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
| | - Fredrik Jerhammar
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumour and Cell biology, Bioinformatics Infrastructure for Life Sciences, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Anna Vilborg
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
| | - Klas G Wiman
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
| |
Collapse
|
21
|
Chen B, Zhao J, Zhang S, Zhang Y, Huang Z. HPIP promotes gastric cancer cell proliferation through activation of cap-dependent translation. Oncol Rep 2016; 36:3664-3672. [DOI: 10.3892/or.2016.5157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/07/2016] [Indexed: 11/05/2022] Open
|
22
|
Riquelme I, Tapia O, Espinoza JA, Leal P, Buchegger K, Sandoval A, Bizama C, Araya JC, Peek RM, Roa JC. The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines. Pathol Oncol Res 2016; 22:797-805. [PMID: 27156070 DOI: 10.1007/s12253-016-0066-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/26/2016] [Indexed: 01/04/2023]
Abstract
The PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism and angiogenesis. Emerging evidence has shown that deregulation of this pathway has a role promoting gastric cancer (GC). The aim was to assess the expression of genes involved in this pathway by qPCR in 23 tumor and 23 non-tumor gastric mucosa samples from advanced GC patients, and in AGS, MKN28 and MKN45 gastric cancer cell lines. Results showed a slight overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1, EIF4EBP1 and EIF4E genes, and a slightly decreased PTEN and TSC1 expression. In AGS, MKN28 and MKN45 cells a significant gene overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1 and EIF4E, and a significant repression of PTEN gene expression were observed. Immunoblotting showed that PI3K-β, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E and p-eIF4E proteins were present in cell lines at different levels, confirming activation of this pathway in vitro. This is the first time this extensive panel of 9 genes within PI3K/AKT/mTOR pathway has been studied in GC to clarify the biological role of this pathway in GC and develop new strategies for this malignancy.
Collapse
Affiliation(s)
- Ismael Riquelme
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Avenida Alemania 0458, Postal Code, 4810296, Temuco, Chile.,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145,Casilla 54-D, Temuco, Chile
| | - Oscar Tapia
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Avenida Alemania 0458, Postal Code, 4810296, Temuco, Chile
| | - Jaime A Espinoza
- Department of Pathology, Pontificia Universidad Católica de Chile, Marcoleta 377, 7th Floor, Postal Code, 8330024, Santiago, Chile.,UC Centre for Investigational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Portugal 61, Postal Code, 8330034, Santiago, Chile.,Advanced Centre for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Marcoleta 377, 7th Floor, Postal Code, 8330024, Santiago, Chile
| | - Pamela Leal
- Molecular Biology and Biomedicine Lab, CEGIN-BIOREN, Universidad de La Frontera, Avenida Alemania 0458, Postal Code, 4810296, Temuco, Chile
| | - Kurt Buchegger
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Avenida Alemania 0458, Postal Code, 4810296, Temuco, Chile.,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145,Casilla 54-D, Temuco, Chile
| | - Alejandra Sandoval
- UC Centre for Investigational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Portugal 61, Postal Code, 8330034, Santiago, Chile.,Advanced Centre for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Marcoleta 377, 7th Floor, Postal Code, 8330024, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, Pontificia Universidad Católica de Chile, Marcoleta 377, 7th Floor, Postal Code, 8330024, Santiago, Chile.,UC Centre for Investigational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Portugal 61, Postal Code, 8330034, Santiago, Chile.,Advanced Centre for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Marcoleta 377, 7th Floor, Postal Code, 8330024, Santiago, Chile
| | - Juan Carlos Araya
- Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Avenida Alemania 0458, Postal Code, 4810296, Temuco, Chile
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine and Cancer Biology, School of Medicine, Vanderbilt University, 2215 Garland Avenue Nashville, Postal Code, Nashville, TN, 37232, USA
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Católica de Chile, Marcoleta 377, 7th Floor, Postal Code, 8330024, Santiago, Chile. .,UC Centre for Investigational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Portugal 61, Postal Code, 8330034, Santiago, Chile. .,Advanced Centre for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Marcoleta 377, 7th Floor, Postal Code, 8330024, Santiago, Chile.
| |
Collapse
|
23
|
Xu T, Zong Y, Peng L, Kong S, Zhou M, Zou J, Liu J, Miao R, Sun X, Li L. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis. Onco Targets Ther 2016; 9:815-22. [PMID: 26929650 PMCID: PMC4767060 DOI: 10.2147/ott.s98330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Liver metastasis is one of the leading causes of death in colorectal cancer (CRC) patients. The present study aimed to evaluate the value of eIF4E as a prognostic marker of colorectal liver metastasis (CLM) and identify the functional role of eIF4E in CRC metastasis. Patients and methods The expression level of eIF4E in CRC tissues was analyzed by immunohistochemical staining and Western blot. Expression of eIF4E in CRC cell lines was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot. Cell Counting Kit-8 (CCK-8) and Transwell assays were performed to assess the effects of eIF4E on cell proliferation, migration, and invasion. Western blot was further used to investigate the mechanism of eIF4E in tumor metastasis. Results The upregulation frequency of eIF4E in the CLM group (82.5%) was higher than that in the non-CLM group (65.0%). Of the 80 patients recruited for the follow-up study, 23 were in the low eIF4E group (ratio of tumor to nontumor tissue <twofold), and 57 were in the high eIF4E group (ratio of tumor to nontumor tissue ≥twofold). In addition, the group exhibiting high eIF4E expression had a higher rate of liver metastasis (47.4%) than the group exhibiting low eIF4E expression (13.0%). In CRC cell lines, the expression of eIF4E was higher than in the normal cells. In vitro functional studies indicated that eIF4E knockdown inhibited the proliferation, migration, and invasion of Lovo and SW480 cells, and suppressed the expression of cyclin D1, VEGF, MMP-2, and MMP-9. Conclusion The results of the present study indicated that high eIF4E levels in CRC patients predicted a high risk of liver metastasis. Knockdown of eIF4E inhibited CRC cell metastasis in part through regulating the expression of cyclin D1, VEGF, MMP-2, and MMP-9.
Collapse
Affiliation(s)
- Tao Xu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Yuanyuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Mingliang Zhou
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Jianqiang Zou
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Jinglei Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Ruizheng Miao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Xichao Sun
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
24
|
Singh SS, Yap WN, Arfuso F, Kar S, Wang C, Cai W, Dharmarajan AM, Sethi G, Kumar AP. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine? World J Gastroenterol 2015; 21:12261-12273. [PMID: 26604635 PMCID: PMC4649111 DOI: 10.3748/wjg.v21.i43.12261] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/11/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
Frequent activation of phosphatidylinositol-3 kinases (PI3K)/Akt/mTOR signaling pathway in gastric cancer (GC) is gaining immense popularity with identification of mutations and/or amplifications of PIK3CA gene or loss of function of PTEN, a tumor suppressor protein, to name a few; both playing a crucial role in regulating this pathway. These aberrations result in dysregulation of this pathway eventually leading to gastric oncogenesis, hence, there is a need for targeted therapy for more effective anticancer treatment. Several inhibitors are currently in either preclinical or clinical stages for treatment of solid tumors like GC. With so many inhibitors under development, further studies on predictive biomarkers are needed to measure the specificity of any therapeutic intervention. Herein, we review the common dysregulation of PI3K/Akt/mTOR pathway in GC and the various types of single or dual pathway inhibitors under development that might have a superior role in GC treatment. We also summarize the recent developments in identification of predictive biomarkers and propose use of predictive biomarkers to facilitate more personalized cancer therapy with effective PI3K/Akt/mTOR pathway inhibition.
Collapse
|
25
|
Chen B, Zhang B, Xia L, Zhang J, Chen Y, Hu Q, Zhu C. Knockdown of eukaryotic translation initiation factor 4E suppresses cell growth and invasion, and induces apoptosis and cell cycle arrest in a human lung adenocarcinoma cell line. Mol Med Rep 2015; 12:7971-8. [PMID: 26498338 PMCID: PMC4758288 DOI: 10.3892/mmr.2015.4468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) was shown to be upregulated in malignant human tumors. To assess the effect of downregulation of eIF4E on the proliferation and invasiveness of a human lung adenocarcinoma cell line, a short hairpin (sh)RNA targeting eIF4E was constructed and transfected into A549 human lung adenocarcinoma cells. The expression of eIF4E was determined by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell viability was assessed using a Cell Counting kit-8, and apoptosis levels and cell cycle distribution were assessed by flow cytometry. Invasiveness was assessed using Transwell chambers. Transfection of the A549 cells with eIF4E targeting shRNA reduced the mRNA and protein expression levels of eIF4E by >70% 48 and 72 h following transfection, and eIF4E targeting shRNA-transfected cells were significantly less viable compared with the cells transfected with scrambled shRNA. The rate of apoptosis was also significantly increased, significantly more cells were in the G0/G1 phase and fewer were in the S phase, indicating cell cycle arrest. The fraction of transfected cells migrating across Transwell inserts were also reduced. In conclusion, inhibition of eIF4E suppressed cell growth and invasion, induced apoptosis and cell cycle arrest, suggesting that eIF4E may be a potential therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Baofu Chen
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Bo Zhang
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jian Zhang
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Yu Chen
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Quanteng Hu
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
26
|
Wang X, Li Y, Xu G, Liu M, Xue L, Liu L, Hu S, Zhang Y, Nie Y, Liang S, Wang B, Ding J. Mechanism study of peptide GMBP1 and its receptor GRP78 in modulating gastric cancer MDR by iTRAQ-based proteomic analysis. BMC Cancer 2015; 15:358. [PMID: 25943993 PMCID: PMC4430905 DOI: 10.1186/s12885-015-1361-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/23/2015] [Indexed: 12/28/2022] Open
Abstract
Background Multidrug resistance (MDR) is a major obstacle to the treatment of gastric cancer (GC). Using a phage display approach, we previously obtained the peptide GMBP1, which specifically binds to the surface of MDR gastric cancer cells and is subsequently internalized. Furthermore, GMBP1 was shown to have the potential to reverse the MDR phenotype of gastric cancer cells, and GRP78 was identified as the receptor for this peptide. The present study aimed to investigate the mechanism of peptide GMBP1 and its receptor GRP78 in modulating gastric cancer MDR. Methods Fluorescence-activated cell sorting (FACS) and immunofluorescence staining were used to investigate the subcellular location and mechanism of GMBP1 internalization. iTRAQ was used to identify the MDR-associated downstream targets of GMBP1. Differentially expressed proteins were identified in GMBP1-treated compared to untreated SGC7901/ADR and SGC7901/VCR cells. GO and KEGG pathway analyses of the differentially expressed proteins revealed the interconnection of these proteins, the majority of which are involved in MDR. Two differentially expressed proteins were selected and validated by western blotting. Results GMBP1 and its receptor GRP78 were found to be localized in the cytoplasm of GC cells, and GRP78 can mediate the internalization of GMBP1 into MDR cells through the transferrin-related pathway. In total, 3,752 and 3,749 proteins were affected in GMBP1-treated SGC7901/ADR and SGC7901/VCR cells, respectively, involving 38 and 79 KEGG pathways. Two differentially expressed proteins, CTBP2 and EIF4E, were selected and validated by western blotting. Conclusion This study explored the role and downstream mechanism of GMBP1 in GC MDR, providing insight into the role of endoplasmic reticulum stress protein GRP78 in the MDR of cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1361-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaojuan Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Yani Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Guanghui Xu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Muhan Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Lin Xue
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Lijuan Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Sijun Hu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Ying Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Shuhui Liang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Biaoluo Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Jie Ding
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| |
Collapse
|
27
|
Tapia O, Riquelme I, Leal P, Sandoval A, Aedo S, Weber H, Letelier P, Bellolio E, Villaseca M, Garcia P, Roa JC. The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch 2014; 465:25-33. [PMID: 24844205 DOI: 10.1007/s00428-014-1588-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/31/2014] [Accepted: 04/28/2014] [Indexed: 12/13/2022]
Abstract
Signaling pathway alterations are important in the development of gastric cancer (GC). Deregulation of the PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism, and angiogenesis. Our goal was to assess expression of proteins involved in the PI3K/AKT/mTOR pathway by immunohistochemistry (IHC) in tumor and nontumor gastric mucosa from patients with advanced GC. We evaluated 71 tumor and 71 nontumor gastric mucosa samples from advanced GC patients, selected from Hernán Henríquez Aravena Hospital (Temuco, Chile). The targets studied were PI3K, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E, and p-eIF4E. Expression data were correlated with clinicomorphological data. Descriptive and analytical statistics were used (95 % confidence interval, p < 0.05). For survival analyses, the Kaplan-Meier method and the log-rank test were used. PI3K, AKT, p-AKT, p-mTOR, p-4E-BP1, P70S6K1, p-P70S6K1, eIF-4E, and p-eIF-4E proteins were significantly overexpressed in tumor tissue. Conversely, PTEN was underexpressed in tumor tissue, notably in pT3-pT4 tumors (p = 0.02) and tumors with lymph node metastases (p < 0.001). P70S6K1 expression was associated with pT3-pT4 tumors (p = 0.03). Moreover, PI3K (p = 0.004), AKT (p = 0.01), p-AKT (p = 0.01), P70S6K1 (p = 0.04), p-P70S6K1 (p = 0.001), and eIF-4E (p = 0.004) were overexpressed in tumors with lymph node metastases. Low expression of 4E-BP1 was associated with poor overall survival (p = 0.03). Our results suggest that the PI3K/AKT/mTOR pathway is activated in GC, with overexpression in tumor tissue of most of the studied proteins (total and phosphorylated). These might be considered as target for specific targeted therapy in GC.
Collapse
Affiliation(s)
- Oscar Tapia
- Department of Pathology, Universidad de La Frontera, CEGIN-BIOREN, Temuco, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li W, Jin X, Deng X, Zhang G, Zhang B, Ma L. The putative tumor suppressor microRNA-497 modulates gastric cancer cell proliferation and invasion by repressing eIF4E. Biochem Biophys Res Commun 2014; 449:235-40. [PMID: 24845562 DOI: 10.1016/j.bbrc.2014.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 01/01/2023]
Abstract
Accumulating evidence has shown that microRNAs are involved in multiple processes in gastric cancer (GC) development and progression. Aberrant expression of miR-497 has been frequently reported in cancer studies; however, the role and mechanism of its function in GC remains unknown. Here, we reported that miR-497 was frequently downregulated in GC tissues and associated with aggressive clinicopathological features of GC patients. Further in vitro observations showed that the enforced expression of miR-497 inhibited cell proliferation by blocking the G1/S transition and decreased the invasion of GC cells, implying that miR-497 functions as a tumor suppressor in the progression of GC. In vivo study indicated that restoration of miR-497 inhibited tumor growth and metastasis. Luciferase assays revealed that miR-497 inhibited eIF4E expression by targeting the binding sites in the 3'-untranslated region of eIF4E mRNA. qRT-PCR and Western blot assays verified that miR-497 reduced eIF4E expression at both the mRNA and protein levels. A reverse correlation between miR-497 and eIF4E expression was noted in GC tissues. Taken together, our results identify a crucial tumor suppressive role of miR-497 in the progression of GC and suggest that miR-497 might be an anticancer therapeutic target for GC patients.
Collapse
Affiliation(s)
- Weidong Li
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU), Guangzhou, People's Republic of China
| | - Xuejun Jin
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU), Guangzhou, People's Republic of China
| | - Xubin Deng
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU), Guangzhou, People's Republic of China
| | - Gong Zhang
- Department of Radiotherapy, People's Hospital of Shanxi Province, Taiyuan, People's Republic of China
| | - Bingqian Zhang
- Cancer Research Institution, Southern Medical University, Guangzhou, People's Republic of China
| | - Lei Ma
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU), Guangzhou, People's Republic of China.
| |
Collapse
|
29
|
Diab S, Kumarasiri M, Yu M, Teo T, Proud C, Milne R, Wang S. MAP kinase-interacting kinases--emerging targets against cancer. ACTA ACUST UNITED AC 2014; 21:441-452. [PMID: 24613018 DOI: 10.1016/j.chembiol.2014.01.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/16/2022]
Abstract
Mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) regulate the initiation of translation through phosphorylation of eukaryotic initiation factor 4E (eIF4E). Mnk-mediated eIF4E activation promotes cancer development and progression. While the phosphorylation of eIF4E is necessary for oncogenic transformation, the kinase activity of Mnks seems dispensable for normal development. For this reason, pharmacological inhibition of Mnks could represent an ideal mechanism-based and nontoxic therapeutic strategy for cancer treatment. In this review, we discuss the current understanding of Mnk biological roles, structures, and functions, as well as clinical implications. Importantly, we propose different strategies for identification of highly selective small molecule inhibitors of Mnks, including exploring a structural feature of their kinase domain, DFD motif, which is unique within the human kinome. We also argue that a combined targeting of Mnks and other pathways should be considered given the complexity of cancer.
Collapse
Affiliation(s)
- Sarah Diab
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Malika Kumarasiri
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Theodosia Teo
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Christopher Proud
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Robert Milne
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
30
|
Zheng J, Li J, Xu L, Xie G, Wen Q, Luo J, Li D, Huang D, Fan S. Phosphorylated Mnk1 and eIF4E are associated with lymph node metastasis and poor prognosis of nasopharyngeal carcinoma. PLoS One 2014; 9:e89220. [PMID: 24551240 PMCID: PMC3925237 DOI: 10.1371/journal.pone.0089220] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/17/2014] [Indexed: 01/13/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck malignant tumor rare throughout most of the world but common in Southeast Asia, especially in Southern China. The phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) by MAP kinase-interacting kinases (Mnk) on Ser-209 promotes cellular proliferation, survival, malignant transformation and metastasis. However, whether the alterations of the expression of p-eIF4E and p-Mnk1 protein are associated with clinicopathologic/prognostic implication for NPC has not been reported. The purposes of the present study are to examine the expression of p-eIF4E and p-Mnk1 protein in NPC and non-cancerous nasopharyngeal epithelial tissues by immunohistochemistry and evaluate the association between the expression of p-eIF4E and p-Mnk1 protein and clinicopathological characteristics of NPC. The results showed that the positive percentage of p-Mnk1 and p-eIF4E proteins expression in NPC (83.5% and 75.4%, respectively) was significantly higher than that in non-cancerous nasopharyngeal epithelium (40.0% and 32.9%, respectively). The positive expression of p-eIF4E and p-Mnk1 in the NPC with cervical lymph node metastasis was significantly higher than those without lymph node metastasis. Additionally, p-eIF4E expression was more pronouncedly increased in metastatic NPC than the matched primary NPC. Increase of p-eIF4E and p-Mnk1 expression was significantly correlated inversely with overall survival. Spearman’s rank correlation test further showed that expression of p-Mnk1 was strongly positive correlated with expression of p-eIF4E in NPC. The expression of p-Mnk1 and p-eIF4E in NPC was proved to be the independent prognostic factors regardless of lymph node metastasis, clinical stages and combination of radiotherapy and chemotherapy, histological type, age and gender by multivariate analysis. Taken together, high expression of p-Mnk1 and p-eIF4E might be novel valuable biomarkers to predict poor prognosis of NPC and therapeutic targets for developing the valid treatment strategies.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry of Changzhi Medical College, Changzhi, Shanxi, China
| | - Jiao Li
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lina Xu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Xie
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duo Li
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Donghai Huang
- Department of Otorhinolaryngology, the Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
31
|
Huang W, Yang L, Liang S, Liu D, Chen X, Ma Z, Zhai S, Li P, Wang X. AEG-1 is a target of perifosine and is over-expressed in gastric dysplasia and cancers. Dig Dis Sci 2013; 58:2873-80. [PMID: 23912246 DOI: 10.1007/s10620-013-2735-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Perifosine, an alkylphospholipid, is an Akt inhibitor which inhibits the growth of diverse cancer cells. We have reported its inhibitory effects on the growth of gastric cancer cells recently, but its molecular mechanisms are still largely unknown. AIMS The purpose of this study was to investigate the effect and regulatory mechanism of perifosine in gastric cancer. METHODS Cell viability was determined by sulforhodamine B assay after transiently transfected with AEG-1 specific siRNAs. qRT-PCR and western blot assay were used to determine the mRNA expression and proteins levels of cell signaling molecules examined. Immunohistochemistry was used to detect the AEG-1 expression in 87 gastric carcinomas, 60 dysplasia, and 47 normal gastric mucosa. RESULTS Perifosine decreased AEG-1 gene expression along with inhibition of Akt/GSK3β/C-MYC signaling pathway. Knockdown of AEG-1 using siRNA led to significant down-regulation of cyclin D1 expression at both mRNA level and protein level, and inhibited the growth of gastric cancer cells. AEG-1 expression was elevated in gastric dysplasia and cancer tissues compared to normal gastric mucosa (P < 0.01). AEG-1 over-expression correlated with diffuse type of gastric cancer and advanced tumor stages. CONCLUSIONS Perifosine inhibits the growth of gastric cancer cells possibly through inhibition of the Akt/GSK3β/C-MYC signaling pathway-mediated down-regulation of AEG-1 that subsequently down-regulated cyclin D1. AEG-1 may play an important role in the carcinogenesis and progression of gastric cancer and could be a therapeutic target of perifosine.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Pathology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, 210006, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|