1
|
Morishita H, Kawai K, Egami Y, Honda K, Araki N. Live-cell imaging and CLEM reveal the existence of ACTN4-dependent ruffle-edge lamellipodia acting as a novel mode of cell migration. Exp Cell Res 2024; 442:114232. [PMID: 39222868 DOI: 10.1016/j.yexcr.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
α-Actinin-4 (ACTN4) expression levels are correlated with the invasive and metastatic potential of cancer cells; however, the underlying mechanism remains unclear. Here, we identified ACTN4-localized ruffle-edge lamellipodia using live-cell imaging and correlative light and electron microscopy (CLEM). BSC-1 cells expressing EGFP-ACTN4 showed that ACTN4 was most abundant in the leading edges of lamellipodia, although it was also present in stress fibers and focal adhesions. ACTN4 localization in lamellipodia was markedly diminished by phosphoinositide 3-kinase inhibition, whereas its localization in stress fibers and focal adhesions remained. Furthermore, overexpression of ACTN4, but not ACTN1, promoted lamellipodial formation. Live-cell analysis demonstrated that ACTN4-enriched lamellipodia are highly dynamic and associated with cell migration. CLEM revealed that ACTN4-enriched lamellipodia exhibit a characteristic morphology of multilayered ruffle-edges that differs from canonical flat lamellipodia. Similar ruffle-edge lamellipodia were observed in A549 and MDA-MB-231 invasive cancer cells. ACTN4 knockdown suppressed the formation of ruffle-edge lamellipodia and cell migration during wound healing in A549 monolayer cultures. Additionally, membrane-type 1 matrix metalloproteinase was observed in the membrane ruffles, suggesting that ruffle-edge lamellipodia have the ability to degrade the extracellular matrix and may contribute to active cell migration/invasion in certain cancer cell types.
Collapse
Affiliation(s)
- Haruka Morishita
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan
| | - Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate of Medicine, Nippon Medical School, Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan.
| |
Collapse
|
2
|
Chen Y, Chen S, Chen K, Ji L, Cui S. Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways. CHINESE HERBAL MEDICINES 2024; 16:94-105. [PMID: 38375055 PMCID: PMC10874772 DOI: 10.1016/j.chmed.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2024] Open
Abstract
Objective This study is designed to investigate the mode of action of the synergistic effect of 5-fluorouracil (5-FU) and magnolol against cervical cancer. Methods Network pharmacological approach was applied to predict the molecular mechanism of 5-FU combined with magnolol against cervical cancer. CCK-8 assay, colony formation assay, immunofluorescence staining, adhesion assay, wound healing mobility assay, cell migration and invasion assay and Western blot analysis were conducted to validate the results of in silico study. Results Phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was identified as the key pathway in silico study. The experimental results showed that 5-FU combined with magnolol strongly inhibited cervical cancer cell proliferation, induced the morphological change of HeLa cells by down-regulating the expression of α-actinin, tensin-2 and vinculin. Moreover, magnolol enhanced inhibitory effect of 5-FU on the cell adhesion, migration and invasion. The phosphorylation of AKT and PI3K and the expression of mTOR were strongly inhibited by the combination of 5-FU and magnolol. Moreover, the expression of E-cadherin and β-catenin was upregulated and the expression of Snail, Slug and vimentin was down-regulated by the 5-FU together with magnolol. Conclusion Taken together, this study suggests that 5-FU combined with magnolol exerts a synergistic anti-cervical cancer effect by regulating the PI3K/AKT/mTOR and epithelial-mesenchymal transition (EMT) signaling pathways.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shanshan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Kaiting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Lanfang Ji
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Jain K, Lim KYE, Sheetz MP, Kanchanawong P, Changede R. Intrinsic self-organization of integrin nanoclusters within focal adhesions is required for cellular mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567975. [PMID: 38045378 PMCID: PMC10690202 DOI: 10.1101/2023.11.20.567975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Upon interaction with the extracellular matrix, the integrin receptors form nanoclusters as a first biochemical response to ligand binding. Here, we uncover a critical biodesign principle where these nanoclusters are spatially self-organized, facilitating effective mechanotransduction. Mouse Embryonic Fibroblasts (MEFs) with integrin β3 nanoclusters organized themselves with an intercluster distance of ∼550 nm on uniformly coated fibronectin substrates, leading to larger focal adhesions. We determined that this spatial organization was driven by cell-intrinsic factors since there was no pre-existing pattern on the substrates. Altering this spatial organization using cyclo-RGD functionalized Titanium nanodiscs (of 100 nm, corroborating to the integrin nanocluster size) spaced at intervals of 300 nm (almost half), 600 nm (normal) or 1000 nm (almost double) resulted in abrogation in mechanotransduction, indicating that a new parameter i.e., an optimal intercluster distance is necessary for downstream function. Overexpression of α-actinin, which induces a kink in the integrin tail, disrupted the establishment of the optimal intercluster distance, while simultaneous co-overexpression of talin head with α-actinin rescued it, indicating a concentration-dependent competition, and that cytoplasmic activation of integrin by talin head is required for the optimal intercluster organization. Additionally, talin head-mediated recruitment of FHOD1 that facilitates local actin polymerization at nanoclusters, and actomyosin contractility were also crucial for establishing the optimal intercluster distance and a robust mechanotransduction response. These findings demonstrate that cell-intrinsic machinery plays a vital role in organizing integrin receptor nanoclusters within focal adhesions, encoding essential information for downstream mechanotransduction signalling.
Collapse
|
4
|
Nolan JC, Salvucci M, Carberry S, Barat A, Segura MF, Fenn J, Prehn JHM, Stallings RL, Piskareva O. A Context-Dependent Role for MiR-124-3p on Cell Phenotype, Viability and Chemosensitivity in Neuroblastoma in vitro. Front Cell Dev Biol 2020; 8:559553. [PMID: 33330445 PMCID: PMC7714770 DOI: 10.3389/fcell.2020.559553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) is a neural crest-derived tumor, which develops before birth or in early childhood, with metastatic dissemination typically preceding diagnosis. Tumors are characterized by a highly heterogeneous combination of cellular phenotypes demonstrating varying degrees of differentiation along different lineage pathways, and possessing distinct super-enhancers and core regulatory circuits, thereby leading to highly varied malignant potential and divergent clinical outcomes. Cytoskeletal reorganization is fundamental to cellular transformations, including the processes of cellular differentiation and epithelial to mesenchymal transition (EMT), previously reported by our lab and others to coincide with chemotherapy resistance and enhanced metastatic ability of tumor cells. This study set out to investigate the ability of the neuronal miR-124-3p to reverse the cellular transformation associated with drug resistance development and assess the anti-oncogenic role of this miRNA in in vitro models of drug-resistant adrenergic (ADRN) and mesenchymal (MES) neuroblastoma cell lines. Low expression of miR-124-3p in a cohort of neuroblastomas was significantly associated with poor overall and progression-free patient survival. Over-expression of miR-124-3p in vitro inhibited cell viability through the promotion of cell cycle arrest and induction of apoptosis in addition to sensitizing drug-resistant cells to chemotherapeutics in a panel of morphologically distinct neuroblastoma cell lines. Finally, we describe miR-124-3p direct targeting and repression of key up-regulated cytoskeletal genes including MYH9, ACTN4 and PLEC and the reversal of the resistance-associated EMT and enhanced invasive capacity previously reported in our in vitro model (SK-N-ASCis24).
Collapse
Affiliation(s)
- John C Nolan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Steven Carberry
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ana Barat
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Justine Fenn
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Raymond L Stallings
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Olga Piskareva
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
5
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Integrated analysis of lncRNAs and mRNAs reveals key trans-target genes associated with ETEC-F4ac adhesion phenotype in porcine small intestine epithelial cells. BMC Genomics 2020; 21:780. [PMID: 33172394 PMCID: PMC7653856 DOI: 10.1186/s12864-020-07192-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation at the transcriptional and post-transcriptional levels. LncRNAs are belonging to a large class of transcripts with ≥200 nt in length which do not code for proteins, have been widely investigated in various physiological and pathological contexts by high-throughput sequencing techniques and bioinformatics analysis. However, little is known about the regulatory mechanisms by which lncRNAs regulate genes that are associated with Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotype in small intestine epithelial cells of Large White piglets. To address this, we used RNA sequencing to profile lncRNAs and mRNAs of small intestine epithelial cells in Large White piglets differing in their ETEC-F4 adhesion phenotypes and ITGB5 genotypes. Eight male piglets were used in this study and were divided into two groups on the basis of their adhesion phenotype and ITGB5 genotypes, a candidate gene for F4ac receptor. Non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS In total, 78 differentially expressed lncRNAs (DE-lncRNA) and 223 differentially expressed mRNAs (log2 |FC| > 1, P < 0.05) were identified in the comparison of non-adhesive vs. adhesive small intestine epithelial cells. Furthermore, cis- and trans-regulatory target genes of DE-lncRNAs were identified, then interaction networks of lncRNAs and their cis- and trans-target differentially expressed genes (DEGs) were constructed separately. A total of 194 cis-targets were involved in the lncRNAs-cis genes interaction network and 61 trans-targets, were involved in lncRNA-trans gene interaction network that we constructed. We determined that cis-target genes were involved in alcoholism, systemic lupus erythematosus, viral carcinogenesis and malaria. Whereas trans-target DEGs were engaged in three important pathways related to the ETEC-F4 adhesion phenotype namely cGMP-PKG signaling pathway, focal adhesion, and adherens junction. The trans-target DEGs which directly involved in these pathways are KCNMB1 in cGMP-PKG signaling pathway, GRB2 in focal adhesion pathway and ACTN4 in focal adhesion and adherens junction pathways. CONCLUSION The findings of the current study provides an insight into biological functions and epigenetic regulatory mechanism of lncRNAs on porcine small intestine epithelial cells adhesion to ETEC-F4-ac and piglets' diarrhea susceptibility/resistance.
Collapse
|
7
|
Cao Y, Cao W, Qiu Y, Zhou Y, Guo Q, Gao Y, Lu N. Oroxylin A suppresses ACTN1 expression to inactivate cancer-associated fibroblasts and restrain breast cancer metastasis. Pharmacol Res 2020; 159:104981. [PMID: 32492489 DOI: 10.1016/j.phrs.2020.104981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/26/2020] [Indexed: 02/09/2023]
Abstract
Tumor initiation and progression are not only ascribed to the behavior of cancer cells, but also profoundly influenced by the tumor microenvironment. Inside, cancer-associated fibroblasts (CAFs) have become key factors to accelerate growth and metastasis for the abundance in most solid tumors. Our group previously reported that Oroxylin A (OA), a flavone from Scutellaria Baicalensis Georgi, possess the ability to suppress growth and invasion of several tumor cells. However, the regulatory effect of OA on stromal microenvironment is poorly understood. In this study, breast cancer-induced fibroblasts and primary breast CAFs from MMTV-PyMT mice were used to evaluate the influence of OA on the activation of fibroblasts. Results showed that OA could decrease the expression of α-SMA, fibronectin, vimentin and matrix metalloproteinases (MMPs). Thus, OA-deactivated CAFs did not further promote the proliferation and invasion in breast cancer cells. In vivo experiments, OA could also impede tumor metastasis through exhausting progressive CAFs. Mechanically, OA could specifically bind ACTN1 and significantly inhibit its expression to prevent CAF activation. As a consequence, OA could decrease the phosphorylation of FAK and STAT3, and reduce the secretion of CCL2 in CAFs. Altogether, OA could remodel stromal microenvironment and it is a potential therapeutic agent in breast cancer.
Collapse
Affiliation(s)
- Yue Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wangjia Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yangmin Qiu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuan Gao
- Pharmaceutical Animal Experimental Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
8
|
Tentler D, Lomert E, Novitskaya K, Barlev NA. Role of ACTN4 in Tumorigenesis, Metastasis, and EMT. Cells 2019; 8:cells8111427. [PMID: 31766144 PMCID: PMC6912194 DOI: 10.3390/cells8111427] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022] Open
Abstract
The actin-binding protein ACTN4 belongs to a family of actin-binding proteins and is a non-muscle alpha-actinin that has long been associated with cancer development. Numerous clinical studies showed that changes in ACTN4 gene expression are correlated with aggressiveness, invasion, and metastasis in certain tumors. Amplification of the 19q chromosomal region where the gene is located has also been reported. Experimental manipulations with ACTN4 expression further confirmed its involvement in cell proliferation, motility, and epithelial-mesenchymal transition (EMT). However, both clinical and experimental data suggest that the effects of ACTN4 up- or down-regulation may vary a lot between different types of tumors. Functional studies demonstrated its engagement in a number of cytoplasmic and nuclear processes, ranging from cytoskeleton reorganization to regulation of different signaling pathways. Such a variety of functions may be the reason behind cell type and cell line specific responses. Herein, we will review research progress and controversies regarding the prognostic and functional significance of ACTN4 for tumorigenesis.
Collapse
Affiliation(s)
- Dmitri Tentler
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Correspondence: or ; Tel.: +7-921-406-2058
| | - Ekaterina Lomert
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Ksenia Novitskaya
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Nikolai A. Barlev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| |
Collapse
|
9
|
Wang G, Huang W, Li W, Chen S, Chen W, Zhou Y, Peng P, Gu W. TFPI-2 suppresses breast cancer cell proliferation and invasion through regulation of ERK signaling and interaction with actinin-4 and myosin-9. Sci Rep 2018; 8:14402. [PMID: 30258071 PMCID: PMC6158255 DOI: 10.1038/s41598-018-32698-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/13/2018] [Indexed: 02/05/2023] Open
Abstract
TFPI-2 has been recognized as a potent tumor suppressor gene. Low expression of TFPI-2 results in enhanced growth and metastasis of a variety of human tumors. In the present study, we investigated the mechanism responsible for the tumor suppressive effect of TFPI-2. Overexpression of TFPI-2 decreased phosphorylation of ERK1/2 and the translocation of p-ERK1/2 from cytoplasm into the nucleus, and eventually resulted in a reduced cell proliferation. Immunoprecipitation assays identified myosin-9 and actinin-4 as TFPI-2-interacting proteins. Full-length TFPI-2 was required for binding to actinin-4, whereas the N + KD1 regions of TFPI-2 were sufficient to interact with myosin-9. Although overexpression of TFPI-2 or TFPI-2/N + KD1 does not affect the expression of actinin-4 and myosin-9, it inhibits the migration and invasion of human breast cancer cells. Our results suggest that TFPI-2 suppresses cancer cell proliferation and invasion partly through the regulation of the ERK1/2 signaling and through interactions with myosin-9 and actinin-4.
Collapse
Affiliation(s)
- Guangli Wang
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
- Department of Prepotency and Genetics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Wenhe Huang
- Tumor Hospital, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
- Xiang'an Hospital of Xiamen University, Xiamen, Fujian Province, 361101, China
| | - Wei Li
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Shaoying Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Weibin Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Yanchun Zhou
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Pei Peng
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515041, China.
| |
Collapse
|
10
|
Shoji H, Miura N, Ueno H, Honda K. Measurement of copy number of ACTN4 to optimize the therapeutic strategy for locally advanced pancreatic cancer. Pancreatology 2018; 18:624-629. [PMID: 29921500 DOI: 10.1016/j.pan.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/10/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
The standard therapeutic strategy recommended for locally advanced pancreatic cancer (LAPC) is typically chemotherapy or chemoradiotherapy (CRT). Although the clinical benefit of chemotherapy alone versus CRT for LAPC has been compared in a number of clinical trials, the optimal therapy for LAPC remains unclear. Moreover, the clinical benefit derived from treatment in each clinical trial is a matter of controversy, and the superiority of one treatment over another has yet to be definitively demonstrated. The poor outcomes seen among patients with LAPC owe largely to the emergence of metastatic disease; therefore, accurately evaluating occult distant metastasis before choosing a therapeutic strategy could be expected to help stratify patients with LAPC into the most appropriate treatment regimen, namely local control or systemic therapy. In 1998, we identified the actinin-4 gene (ACTN4) as an actin-binding protein and showed its molecular mechanisms had clinical implications for cancer metastasis. We also identified ACTN4 gene amplification in pancreatic, ovarian, and salivary gland cancer, and demonstrated its utility as a strong prognostic biomarker for stage I lung adenocarcinoma in patients who had never received chemotherapy. Moreover, we recently reported that ACTN4 gene amplification could be a useful biomarker for predicting the efficacy of CRT for LAPC. In the present review, we summarize current knowledge regarding therapeutic strategies for LAPC and discuss the potential development of personalized medicine using ACTN4 measurement for patients with LAPC.
Collapse
Affiliation(s)
- Hirokazu Shoji
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Nami Miura
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hideki Ueno
- Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Kazufumi Honda
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Japan Agency for Medical Research and Development: AMED-CREST, AMED, Tokyo, 100-0004, Japan.
| |
Collapse
|
11
|
Qin WS, Wu J, Chen Y, Cui FC, Zhang FM, Lyu GT, Zhang HM. The Short Isoform of Nuclear Mitotic Apparatus Protein 1 Functions as a Putative Tumor Suppressor. Chin Med J (Engl) 2018; 130:1824-1830. [PMID: 28748856 PMCID: PMC5547835 DOI: 10.4103/0366-6999.211535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Nuclear mitotic apparatus protein 1 (NuMA1) had been reported to produce three groups of isoforms categorized as long, middle, and short groups, of which short NuMA displayed distinct localization patterns compared to long and middle isoforms. However, the function of short NuMA was not clear in the progress of cancer formation. This study aimed to unveil the role of short NuMA in cancer pathogenesis. Methods: The expression levels of short isoforms were explored in paired gastric carcinoma (GC) samples and different cell lines. Furthermore, the short isoform behaved as a putative tumor suppressor based on cell proliferation and cell colony formation assays. Pull-down assay and whole-genome gene expression analysis were carried out to search candidate interaction partners of short NuMA. Results: The expression of short NuMA was highly expressed in S and G2 phases of the cell cycle; compared with nontumor tissues, short NuMA downregulated in nine GCs (GC1 [0.131, P = 5 × 10−4]; GC2 [0.316, P = 3 × 10−5]; GC3 [0.111, P = 6 × 10−4]; GC4 [0.456, P = 0.011]; GC5 [0.474, P = 0.001]; GC6 [0.311, P = 0.004]; GC7 [0.28, P = 3 × 10−5]; GC8 [0.298, P = 0.007]; and GC9 [0.344, P = 0.002]). Besides, high expression of short NuMA significantly inhibits cell growth (2.43 × 105 vs. 2.97 × 105, P = 0.0029) and cell clone information in vitro (70 vs. 2, P = 1.67 × 10−45). Short NuMA could bind with alpha–actinin-4 (ACTN4), a putative tumor promoting gene. Overexpression of short NuMA could tremendously decrease the expression of MYB proto-oncogene like 2 (MYBL2) of about 92-fold, which played an important role in the cell cycles. Conclusions: Short isoform of NuMA might be functioned as a putative role of tumor suppressor. Further studies should be made to illuminate the relationship between ACTN4, MYBL2, and tumor progression.
Collapse
Affiliation(s)
- Wang-Sen Qin
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jin Wu
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yang Chen
- Central Laboratory, Haikou People's Hospital, Haikou, Hainan 570208, China
| | - Fa-Cai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Fu-Ming Zhang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Guan-Ting Lyu
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
12
|
Liao Q, Li R, Zhou R, Pan Z, Xu L, Ding Y, Zhao L. LIM kinase 1 interacts with myosin-9 and alpha-actinin-4 and promotes colorectal cancer progression. Br J Cancer 2017; 117:563-571. [PMID: 28664914 PMCID: PMC5558682 DOI: 10.1038/bjc.2017.193] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 01/05/2023] Open
Abstract
Background: LIM kinase 1 (LIMK1) is a key regulator of the cytoskeletal organisation involved in cell proliferation and migration. Even though LIMK1 is frequently dysregulated in epithelial cancers, the role and mechanisms of LIMK1 in colorectal cancer (CRC) remains unclear. Methods: Immunohistochemical analysis was performed to examine the expression and clinical significance of LIMK1 in CRC samples. Loss- and gain-of-function assay was performed to investigate the effects of aberrant expression on cellular biological behaviour of CRC cells in vitro and in vivo. Immunoblotting and immunoprecipitation was used to screen LIMK1-related signalling pathways and downstream factors. Results: In this study, our results showed that LIMK1 was upregulated in CRC tissues and localised in both the cytoplasm and the nucleus of CRC cells. Overexpression of LIMK1 in cytoplasmic and nuclear subcellular compartments was closely related to tumour metastasis and poor prognosis of CRC patients. Enhanced expression of cytoplasmic and nuclear LIMK1 significantly increased cell proliferation and migration by driving epithelial–mesenchymal transition and activating the PI3K/Akt signal pathway in vitro as well as promoting growth and metastasis of CRC xenografts, whereas opposite effects were achieved in LIMK1-silenced cells. Furthermore, we identified two tumour metastasis-associated proteins, MYH9 and ACTN4, as direct targets of LIMK1, which were required for a LIMK1-mediated aggressive phenotype. Conclusions: These findings indicate that LIMK1 plays a critical role in promoting CRC progression at subcellular level. Our findings provide new insights into the metastasis of CRC and advocate for the development of clinical intervention strategies against advanced CRC.
Collapse
Affiliation(s)
- Qing Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rui Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhihua Pan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijun Xu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
13
|
Kakuya T, Mori T, Yoshimoto S, Watabe Y, Miura N, Shoji H, Onidani K, Shibahara T, Honda K. Prognostic significance of gene amplification of ACTN4 in stage I and II oral tongue cancer. Int J Oral Maxillofac Surg 2017; 46:968-976. [PMID: 28385383 DOI: 10.1016/j.ijom.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 02/08/2023]
Abstract
Despite complete resection of the early stage of oral tongue cancer by partial glossectomy, late cervical lymph node metastasis is frequently observed. Gene amplification of ACTN4 (protein name: actinin-4) is closely associated with the metastatic potential of various cancers. This retrospective study was performed to demonstrate the potential usefulness of ACTN4 gene amplification as a prognostic biomarker in patients with stage I/II oral tongue cancer. Fifty-four patients with stage I/II oral tongue cancer were enrolled retrospectively, in accordance with the reporting recommendations for tumour marker prognostic studies (REMARK) guidelines. The copy number of ACTN4 and the protein expression of actinin-4 were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), respectively. The overall survival time of patients with gene amplification of ACTN4 was significantly shorter than that of patients without gene amplification (P=0.0010, log-rank test). Gene amplification of ACTN4 was a significant independent risk factor for death in patients with stage I/II oral tongue cancer (hazard ratio 6.08, 95% confidence interval 1.66-22.27). Gene amplification of ACTN4 is a potential prognostic biomarker for overall survival in oral tongue cancer.
Collapse
Affiliation(s)
- T Kakuya
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - T Mori
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - S Yoshimoto
- Department of Head and Neck Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Y Watabe
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - N Miura
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - H Shoji
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - K Onidani
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - T Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - K Honda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan; Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan.
| |
Collapse
|
14
|
Proteomics analysis of bladder cancer invasion: Targeting EIF3D for therapeutic intervention. Oncotarget 2017; 8:69435-69455. [PMID: 29050215 PMCID: PMC5642490 DOI: 10.18632/oncotarget.17279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced bladder cancer have poor outcomes, indicating a need for more efficient therapeutic approaches. This study characterizes proteomic changes underlying bladder cancer invasion aiming for the better understanding of disease pathophysiology and identification of drug targets. High resolution liquid chromatography coupled to tandem mass spectrometry analysis of tissue specimens from patients with non-muscle invasive (NMIBC, stage pTa) and muscle invasive bladder cancer (MIBC, stages pT2+) was conducted. Comparative analysis identified 144 differentially expressed proteins between analyzed groups. These included proteins previously associated with bladder cancer and also additional novel such as PGRMC1, FUCA1, BROX and PSMD12, which were further confirmed by immunohistochemistry. Pathway and interactome analysis predicted strong activation in muscle invasive bladder cancer of pathways associated with protein synthesis e.g. eIF2 and mTOR signaling. Knock-down of eukaryotic translation initiation factor 3 subunit D (EIF3D) (overexpressed in muscle invasive disease) in metastatic T24M bladder cancer cells inhibited cell proliferation, migration, and colony formation in vitro and decreased tumor growth in xenograft models. By contrast, knocking down GTP-binding protein Rheb (which is upstream of EIF3D) recapitulated the effects of EIF3D knockdown in vitro, but not in vivo. Collectively, this study represents a comprehensive analysis of NMIBC and MIBC providing a resource for future studies. The results highlight EIF3D as a potential therapeutic target.
Collapse
|
15
|
Macklin R, Wang H, Loo D, Martin S, Cumming A, Cai N, Lane R, Ponce NS, Topkas E, Inder K, Saunders NA, Endo-Munoz L. Extracellular vesicles secreted by highly metastatic clonal variants of osteosarcoma preferentially localize to the lungs and induce metastatic behaviour in poorly metastatic clones. Oncotarget 2016; 7:43570-43587. [PMID: 27259278 PMCID: PMC5190045 DOI: 10.18632/oncotarget.9781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/25/2016] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most common pediatric bone tumor and is associated with the emergence of pulmonary metastasis. Unfortunately, the mechanistic basis for metastasis remains unclear. Tumor-derived extracellular vesicles (EVs) have been shown to play critical roles in cell-to-cell communication and metastatic progression in other cancers, but their role in OS has not been explored. We show that EVs secreted by cells derived from a highly metastatic clonal variant of the KHOS cell line can be internalized by a poorly metastatic clonal variant of the same cell line and induce a migratory and invasive phenotype. This horizontal phenotypic transfer is unidirectional and provides evidence that metastatic potential may arise via interclonal co-operation. Proteomic analysis of the EVs secreted by highly metastatic OS clonal variants results in the identification of a number of proteins and G-protein coupled receptor signaling events as potential drivers of OS metastasis and novel therapeutic targets. Finally, multiphoton microscopy with fluorescence lifetime imaging in vivo, demonstrated a preferential seeding of lung tissue by EVs derived from highly metastatic OS clonal variants. Thus, we show that EVs derived from highly metastatic clonal variants of OS may drive metastatic behaviour via interclonal co-operation and preferential colonization of the lungs.
Collapse
Affiliation(s)
- Rebecca Macklin
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Haolu Wang
- Therapeutics Research Centre, School of Medicine, University of Queensland, Brisbane, Australia
| | - Dorothy Loo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Sally Martin
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Andrew Cumming
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Na Cai
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Rebecca Lane
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Natalia Saenz Ponce
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Eleni Topkas
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Kerry Inder
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Nicholas A Saunders
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Liliana Endo-Munoz
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
16
|
Honda K. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci 2015; 5:41. [PMID: 26288717 PMCID: PMC4539665 DOI: 10.1186/s13578-015-0031-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Invasion and metastasis are malignant phenotypes in cancer that lead to patient death. Cell motility is involved in these processes. In 1998, we identified overexpression of the actin-bundling protein actinin-4 in several types of cancer. Protein expression of actinin-4 is closely associated with the invasive phenotypes of cancers. Actinin-4 is predominantly expressed in the cellular protrusions that stimulate the invasive phenotype in cancer cells and is essential for formation of cellular protrusions such as filopodia and lamellipodia. ACTN4 (gene name encoding actinin-4 protein) is located on human chromosome 19q. ACTN4 amplification is frequently observed in patients with carcinomas of the pancreas, ovary, lung, and salivary gland, and patients with ACTN4 amplifications have worse outcomes than patients without amplification. In addition, nuclear distribution of actinin-4 is frequently observed in small cell lung, breast, and ovarian cancer. Actinin-4, when expressed in cancer cell nuclei, functions as a transcriptional co-activator. In this review, we summarize recent developments regarding the biological roles of actinin-4 in cancer invasion.
Collapse
Affiliation(s)
- Kazufumi Honda
- Department of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji Chuoku, Tokyo, 104-0045 Japan ; AMED-CREST AMED, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo, 100-0004 Japan
| |
Collapse
|
17
|
Piskareva O, Harvey H, Nolan J, Conlon R, Alcock L, Buckley P, Dowling P, Henry M, O'Sullivan F, Bray I, Stallings RL. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett 2015; 364:142-55. [PMID: 25960282 DOI: 10.1016/j.canlet.2015.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/10/2015] [Accepted: 05/04/2015] [Indexed: 12/30/2022]
Abstract
Neuroblastoma is a challenging childhood malignancy, with a very high percentage of patients relapsing following acquisition of drug resistance, thereby necessitating the identification of mechanisms of drug resistance as well as new biological targets contributing to the aggressive pathogenicity of the disease. In order to investigate the molecular pathways that are involved with drug resistance in neuroblastoma, we have developed and characterised cisplatin resistant sublines SK-N-ASCis24, KellyCis83 and CHP-212Cis100, integrating data of cell behaviour, cytotoxicity, genomic alterations and modulation of protein expression. All three cisplatin resistant cell lines demonstrated cross resistance to temozolomide, etoposide and irinotecan, all of which are drugs in re-initiation therapy. Array CGH analysis indicated that resistant lines have acquired additional genomic imbalances. Differentially expressed proteins were identified by mass spectrometry and classified by bioinformatics tools according to their molecular and cellular functions and their involvement into biological pathways. Significant changes in the expression of proteins involved with pathways such as actin cytoskeletal signalling (p = 9.28E-10), integrin linked kinase (ILK) signalling (p = 4.01E-8), epithelial adherens junctions signalling (p = 5.49E-8) and remodelling of epithelial adherens junctions (p = 5.87E-8) pointed towards a mesenchymal phenotype developed by cisplatin resistant SK-N-ASCis24. Western blotting and confocal microscopy of MYH9, ACTN4 and ROCK1 coupled with invasion assays provide evidence that elevated levels of MYH9 and ACTN4 and reduced levels of ROCK1 contribute to the increased ROCK1-independent migratory potential of SK-N-ASCis24. Therefore, our results suggest that epithelial-to-mesenchymal transition is a feature during the development of drug resistance in neuroblastoma.
Collapse
Affiliation(s)
- Olga Piskareva
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - Harry Harvey
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - John Nolan
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Ross Conlon
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Leah Alcock
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Patrick Buckley
- Molecular Pathology Laboratory, Beaumont Hospital, Dublin 9, Ireland
| | - Paul Dowling
- Department of Biology, The National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Isabella Bray
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Raymond L Stallings
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| |
Collapse
|
18
|
Gao Y, Li G, Sun L, He Y, Li X, Sun Z, Wang J, Jiang Y, Shi J. ACTN4 and the pathways associated with cell motility and adhesion contribute to the process of lung cancer metastasis to the brain. BMC Cancer 2015; 15:277. [PMID: 25885339 PMCID: PMC4409712 DOI: 10.1186/s12885-015-1295-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/31/2015] [Indexed: 12/05/2022] Open
Abstract
Background The aim of this study was to identify critical gene pathways that are associated with lung cancer metastasis to the brain. Methods The RNA-Seq approach was used to establish the expression profiles of a primary lung cancer, adjacent benign tissue, and metastatic brain tumor from a single patient. The expression profiles of these three types of tissues were compared to define differentially expressed genes, followed by serial-cluster analysis, gene ontology analysis, pathway analysis, and knowledge-driven network analysis. Reverse transcription–polymerase chain reaction (RT-PCR) was used to validate the expression of essential candidate genes in tissues from ten additional patients. Results Differential gene expression among these three types of tissues was classified into multiple clusters according to the patterns of their alterations. Further bioinformatic analysis of these expression profile data showed that the network of the signal transduction pathways related to actin cytoskeleton reorganization, cell migration, and adhesion was associated with lung cancer metastasis to the brain. The expression of ACTN4 (actinin, alpha 4), a cytoskeleton protein gene essential for cytoskeleton organization and cell motility, was significantly elevated in the metastatic brain tumor but not in the primary lung cancer tissue. Conclusions The signaling pathways involved in the regulation of cytoskeleton reorganization, cell motility, and focal adhesion play a role in the process of lung cancer metastasis to the brain. The contribution of ACTN4 to the process of lung cancer metastasis to the brain could be mainly through regulation of actin cytoskeleton reorganization, cell motility, and focal adhesion. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1295-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Guanghu Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130024, China.
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Xiaoyan Li
- School of Stomatology, Jilin University, Changchun, 130021, China.
| | - Zhi Sun
- Department of Laboratory Medicine Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Jihan Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130024, China.
| | - Yang Jiang
- Department of Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Jingwei Shi
- Department of Laboratory Medicine Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
19
|
α-Actinin-4 enhances colorectal cancer cell invasion by suppressing focal adhesion maturation. PLoS One 2015; 10:e0120616. [PMID: 25860875 PMCID: PMC4393021 DOI: 10.1371/journal.pone.0120616] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/24/2015] [Indexed: 01/09/2023] Open
Abstract
α-Actinins (ACTNs) are known to crosslink actin filaments at focal adhesions in migrating cells. Among the four isoforms of mammalian ACTNs, ACTN1 and ACTN4 are ubiquitously expressed. Recently, ACTN4 was reported to enhance cancer cell motility, invasion, and metastasis. However, the mechanism by which ACTN4 drives these malignant phenotypes remains unclear. Here, we show that ACTN4, but not ACTN1, induces the formation of immature focal adhesions in DLD-1 cells, leading to the rapid turnover of focal adhesions. Interestingly, zyxin (ZYX) assembly to focal adhesions was markedly decreased in ACTN4-expressing DLD-1 cells, while the recruitment of paxillin (PAX) occurred normally. On the other hand, in ACTN1-expressing DLD-1 cells, PAX and ZYX were normally recruited to focal adhesions, suggesting that ACTN4 specifically impairs focal adhesion maturation by inhibiting the recruitment of ZYX to focal complexes. Using purified recombinant proteins, we found that ZYX binding to ACTN4 was defective under conditions where ZYX binding to ACTN1 was observed. Furthermore, Matrigel invasion of SW480 cells that express high endogenous levels of ACTN4 protein was inhibited by ectopic expression of ACTN1. Altogether, our results suggest that ZYX defective binding to ACTN4, which occupies focal adhesions instead of ACTN1, induces the formation of immature focal adhesions, resulting in the enhancement of cell motility and invasion.
Collapse
|
20
|
Identification and characterization of novel NuMA isoforms. Biochem Biophys Res Commun 2014; 454:387-92. [DOI: 10.1016/j.bbrc.2014.10.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 01/22/2023]
|
21
|
Watabe Y, Mori T, Yoshimoto S, Nomura T, Shibahara T, Yamada T, Honda K. Copy number increase of ACTN4 is a prognostic indicator in salivary gland carcinoma. Cancer Med 2014; 3:613-22. [PMID: 24574362 PMCID: PMC4101752 DOI: 10.1002/cam4.214] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 12/23/2022] Open
Abstract
Copy number increase (CNI) of ACTN4 has been associated with poor prognosis and metastatic phenotypes in various human carcinomas. To identify a novel prognostic factor for salivary gland carcinoma, we investigated the copy number of ACTN4. We evaluated DNA copy number of ACTN4 in 58 patients with salivary gland carcinoma by using fluorescent in situ hybridization (FISH). CNI of ACTN4 was recognized in 14 of 58 patients (24.1%) with salivary gland carcinoma. The cases with CNI of ACTN4 were closely associated with histological grade (P = 0.047) and vascular invasion (P = 0.033). The patients with CNI of ACTN4 had a significantly worse prognosis than the patients with normal copy number of ACTN4 (P = 0.0005 log-rank test). Univariate analysis by the Cox proportional hazards model showed that histological grade, vascular invasion, and CNI of ACTN4 were independent risk factors for cancer death. Vascular invasion (hazard ratio [HR]: 7.46; 95% confidence interval [CI]: 1.98–28.06) and CNI of ACTN4 (HR: 3.23; 95% CI: 1.08–9.68) remained as risk factors for cancer death in multivariate analysis. Thus, CNI of ACTN4 is a novel indicator for an unfavorable outcome in patients with salivary gland carcinoma.
Collapse
Affiliation(s)
- Yukio Watabe
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, 261-8502, Japan
| | | | | | | | | | | | | |
Collapse
|