1
|
Manoharan S, Saha S, Murugesan K, Santhakumar A, Perumal E. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update. Life Sci 2024; 337:122351. [PMID: 38103726 DOI: 10.1016/j.lfs.2023.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a challenging and very fatal liver cancer. The signal transducer and activator of transcription 3 (STAT3) pathway is a crucial regulator of tumor development and are ubiquitously active in HCC. Therefore, targeting STAT3 has emerged as a promising approach for preventing and treating HCC. Various natural bioactive compounds (NBCs) have been proven to target STAT3 and have the potential to prevent and treat HCC as STAT3 inhibitors. Numerous kinds of STAT3 inhibitors have been identified, including small molecule inhibitors, peptide inhibitors, and oligonucleotide inhibitors. Due to the undesirable side effects of the conventional therapeutic drugs against HCC, the focus is shifted to NBCs derived from plants and other natural sources. NBCs can be broadly classified into the categories of terpenes, alkaloids, carotenoids, and phenols. Most of the compounds belong to the family of terpenes, which prevent tumorigenesis by inhibiting STAT3 nuclear translocation. Further, through STAT3 inhibition, terpenes downregulate matrix metalloprotease 2 (MMP2), matrix metalloprotease 9 (MMP9) and vascular endothelial growth factor (VEGF), modulating metastasis. Terpenes also suppress the anti-apoptotic proteins and cell cycle markers. This review provides comprehensive information related to STAT3 abrogation by NBCs in HCC with in vitro and in vivo evidences.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Shreejit Saha
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Krishnasanthiya Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Aksayakeerthana Santhakumar
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
2
|
Peng Y, Wu X, Zhang Y, Yin Y, Chen X, Zheng D, Wang J. An Overview of Traditional Chinese Medicine in the Treatment After Radical Resection of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:2305-2321. [PMID: 38143910 PMCID: PMC10743783 DOI: 10.2147/jhc.s413996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
According to the Barcelona Clinic Liver Cancer (BCLC) system, radical resection of early stage primary hepatocellular carcinoma (HCC) mainly includes liver transplantation, surgical resection, and radiofrequency ablation (RFA), which yield 5-year survival rates of about 70-79%, 41.3-69.5%, and 40-70%, respectively. The tumor-free 5-year rate for HCC patients undergoing radical resection only reach up to 13.7 months, so the prevention of recurrence after radical resection of HCC is very important for the prognosis of patients. The traditional Chinese medicine (TCM) takes the approach of multitarget and overall-regulation to treat tumors, it can also independently present the "component-target-pathway" related to a particular disease, and its systematic and holistic characteristics can provide a personalized therapy based on symptoms of the patient by treating the patient as a whole. TCM as postoperative adjuvant therapy after radical resection of HCC in Barcelona Clinic liver cancer A or B stages, and the numerous clinical trials confirmed that the efficacy of TCM in the field of HCC has a significant effect, not only improving the prognosis and quality of life but also enhancing patient survival rate. However, with the characteristics of multi-target, multi-component, and multi-pathway, the specific mechanism of Chinese medicine in the treatment of diseases is still unclear. Because of the positive pharmacological activities of TCM in combating anti-tumors, the mechanism studies of TCM have demonstrated beneficial effects on the regulation of immune function, chronic inflammation, the proliferation and metastasis of liver cancer cells, autophagy, and cell signaling pathways related to liver cancer. Therefore, this article reviews the mechanism of traditional Chinese medicine in reducing the recurrence rate of HCC after radical resection.
Collapse
Affiliation(s)
- Yichen Peng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
- Department of Integrated Traditional Chinese & Western Medicine, The Southwest Medical University, Luzhou, People’s Republic of China
| | - Xia Wu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
- Department of Integrated Traditional Chinese & Western Medicine, The Southwest Medical University, Luzhou, People’s Republic of China
| | - Yurong Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| | - Yue Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| | - Xianglin Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Southwest Medical University, Luzhou, People’s Republic of China
| | - Ding Zheng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| | - Jing Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| |
Collapse
|
3
|
Benvitimod inhibits MCM6-meditated proliferation of keratinocytes by regulating the JAK/STAT3 pathway. J Dermatol Sci 2023; 109:71-79. [PMID: 36774328 DOI: 10.1016/j.jdermsci.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Benvitimod (Tapinarof), as a small-molecule topical therapeutical aryl hydrocarbon receptor (AHR)-modulating agent, is in clinical development for treating psoriasis and atopic dermatitis. Benvitimod reduces proinflammatory cytokines in psoriasis by specifically binding and activation of AHR. However, whether benvitimod can inhibit keratinocyte proliferation remains unclear. Minichromosome maintenance protein 6 (MCM6) is a key element of the prereplication complex (pre-RC) assembly which is one of the essential steps in the initiation of DNA replication for cell proliferation. OBJECTIVES This study aimed to determine whether benvitimod could reduce the excessive proliferation of psoriatic keratinocytes by inhibiting MCM6. METHODS We examined the inhibitory effect of benvitimod on MCM6-mediated proliferation of keratinocytes by HaCaT cells in vitro and an IMQ-induced psoriatic model of mice in vivo. RESULTS Epidermal MCM6 expression was enhanced in the skin lesions of psoriatic patients. The experiments further revealed that MCM6 was required for the proliferation of keratinocytes and governed by the IL-22/STAT3 pathway. In addition, the antiproliferation effect of benvitimod is achieved by the inhibition of p-JAK1 and p-JAK2, which further restrained the activation of STAT3 in keratinocytes. Lastly, benvitimod could repressed imiquimod-induced skin lesions and the expression of epidermal MCM6 and p-STAT3 in mice. Moreover, knockdown of AHR in keratinocytes enhanced the activation of JAK1 and JAK2. CONCLUSION The findings reveal that benvitimod could decrease MCM6-mediated proliferation of keratinocytes by affecting the JAK/STAT3 pathway, thereby serving as a new treatment modality for psoriasis.
Collapse
|
4
|
Chen J, Liu J, Wu S, Liu W, Xia Y, Zhao J, Yang Y, Wang Y, Peng Y, Zhao S. Atrazine Promoted Epithelial Ovarian Cancer Cells Proliferation and Metastasis by Inducing Low Dose Reactive Oxygen Species (ROS). IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2623. [PMID: 34435054 PMCID: PMC8358173 DOI: 10.30498/ijb.2021.2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Atrazine (ATZ) is a triazine herbicide that is widely used in agriculture and has been detected in surface and underground water. Recently, laboratory and epidemiological research
have found that the bioaccumulation of ATZ in the environment leads to biotoxicity in the human immune and endocrine systems and results in tumor development. Objective: To investigate the effects of ATZ exposure on epithelial ovarian cancer (EOC) cells and elucidate the potential mechanisms governing these effects. Materials and Methods: The human EOC cell lines Skov3 and A2780 were used in this study to explore the effects and mechanisms of ATZ exposure on EOC. The mouse embryonic osteoblastic
precursor MC3T3-E1 cells served as the control cells to determine the effects of ATZ on cancer cell lines. After exposure to ATZ, the MTT assay, flow cytometry,
the colony formation assay, immunohistochemical staining, the cell scratch assay, and the Transwell assay were used to evaluate the proliferative activity, invasion,
and migration capabilities of EOC cell lines. Moreover, flow cytometry was also applied to detect the level of reactive oxygen species (ROS) in these two EOC cell lines,
as well as the MC3T3-E1 cells. To further illustrate the underlying mechanisms governing the effect of ATZ on EOC, real-time PCR and Western blotting were employed to assess
the transcription and the expression level of Stat3 signaling pathway-related genes in Skov3 and MC3T3-E1 cells. Results: The results showed that following ATZ treatment, the cell proliferation, migration, and invasion potencies of Skov3 and A2780 cells were increased compared to those of the
control group. Meanwhile, the ROS levels of EOC and MC3T3-E1 cells were notably elevated after ATZ treatment. In Skov3 cells, the expression levels of p53 and p21 were downregulated,
while those of Cyclin E, vascular endothelial growth factor (VEGF), matrix metallopeptidase 2 (MMP2), MMP9, signal transducers and activators of transcription 3 (Stat3),
and p-Stat3 were upregulated by ATZ treatment. In MC3T3-E1 cells, however, ATZ treatment did not affect the level of p53/p21 mRNA compared to the control groups.
Moreover, there was no significant change in the expression levels of Stat3 and p-Stat3 in MC3T3-E1 cells exposed to ATZ. This phenomenon was observed while the
proliferation rate was enhanced in MC3T3-E1 cells by ATZ. Conclusions: The results of this study suggest that ATZ effectively promotes the proliferation and metastasis of EOC cells through the Stat3 signaling pathway by inducing low levels of ROS.
Additionally, although ATZ might also induce proliferative potential in normal cells, the mechanisms governing its effects in these cells might be different from those in EOC cells.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shan Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei Liu
- Research Center of Circular Economy and Pollution Prevention and Control, Jilin Academy of Environmental Sciences, Changchun 130021, China
| | - Yang Xia
- Department of Pathology, The Second Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yanrong Yang
- Tongji University, School of Medicine, Shanghai 200092, China
| | - Yuan Wang
- School of nursing, Jilin University, Changchun 130021, China
| | - Yuanqing Peng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
5
|
Luo Z, Cao P. Long noncoding RNA PVT1 promotes hepatoblastoma cell proliferation through activating STAT3. Cancer Manag Res 2019; 11:8517-8527. [PMID: 31572006 PMCID: PMC6759231 DOI: 10.2147/cmar.s213707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Background Hepatoblastoma is the most common liver malignancy in children. The long noncoding RNA (IncRNA) PVT1 plays oncogenic roles in human cancers; however, its regulation and function in hepatoblastoma remain poorly understood. Purpose This study was designed to investigate the regulation and function of PVT1 in hepatoblastoma. Methods PVT1 expression was compared between human hepatoblastoma tissues and adjacent non-tumor tissues, and then analyzed using Kaplan-Meier method. The proliferation of hepatoblastoma cells was determined by BrdU incorporation assay. The tumor xenograft model was used to assess tumor proliferation in vivo. The gene expression level was measured by qRT-pCR, Western blot and immunohistochemistry analyses. Results Compared with normal counterparts, PVT1 is upregulated in human hepatoblastoma tissues as well as in hepatoblastoma cell lines. Additionally, PVT1 promotes the proliferation of hepatoblastoma cells in vitro and accelerates tumor growth in xenograft model in vivo. Mechanistically, PVT1 promotes the activation of the signal transducer and activator of transcription 3 (STAT3), which leads to the transcriptional activation of downstream targets involved in cell cycle progression, and moreover,STAT3 inhibition with the selective inhibitor stattic abolishes PVT1 pro-proliferative role in hepatoblastoma cells. Conclusion PVT1 promotes hepatoblastoma cell proliferation through activating STAT3-induced cell cycle progression, which may implicate PVT1 as a potential therapeutic target for hepatoblastoma treatment.
Collapse
Affiliation(s)
- Zhenqin Luo
- Oncology Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Peiguo Cao
- Oncology Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
6
|
Battino M, Forbes-Hernández TY, Gasparrini M, Afrin S, Cianciosi D, Zhang J, Manna PP, Reboredo-Rodríguez P, Varela Lopez A, Quiles JL, Mezzetti B, Bompadre S, Xiao J, Giampieri F. Relevance of functional foods in the Mediterranean diet: the role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Crit Rev Food Sci Nutr 2018; 59:893-920. [PMID: 30421983 DOI: 10.1080/10408398.2018.1526165] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The traditional Mediterranean diet (MedDiet) is a well-known dietary pattern associated with longevity and improvement of life quality as it reduces the risk of the most common chronic pathologies, such as cancer and cardiovascular diseases (CVDs), that represent the principal cause of death worldwide. One of the most characteristic foods of MedDiet is olive oil, a very complex matrix, which constitutes the main source of fats and is used in the preparation of foods, both raw as an ingredient in recipes, and in cooking. Similarly, strawberries and raspberries are tasty and powerful foods which are commonly consumed in the Mediterranean area in fresh and processed forms and have attracted the scientific and consumer attention worldwide for their beneficial properties for human health. Besides olive oil and berries, honey has lately been introduced in the MedDiet thanks to its relevant nutritional, phytochemical and antioxidant profile. It is a sweet substance that has recently been classified as a functional food. The aim of this review is to present and discuss the recent evidence, obtained from in vitro, in vivo and epidemiological studies, on the potential roles exerted by these foods in the prevention and progression of different types of cancer and CVDs.
Collapse
Affiliation(s)
- Maurizio Battino
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Tamara Y Forbes-Hernández
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Massimiliano Gasparrini
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Sadia Afrin
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Danila Cianciosi
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Jiaojiao Zhang
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Piera P Manna
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Patricia Reboredo-Rodríguez
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy.,b Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science , University of Vigo, Ourense Campus , Ourense , Spain
| | - Alfonso Varela Lopez
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy.,c Department of Physiology , Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , Granada , Spain
| | - Josè L Quiles
- c Department of Physiology , Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , Granada , Spain
| | - Bruno Mezzetti
- d Dipartimento di Scienze Agrarie, Alimentari e Ambientali , Università Politecnica delle Marche , Ancona , Italy
| | - Stefano Bompadre
- e Dipartimento di Scienze Biomediche e Sanità Pubblica , Università Politecnica delle Marche , Ancona , Italy
| | - Jianbo Xiao
- f Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau , China
| | - Francesca Giampieri
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| |
Collapse
|
7
|
Hu L, Zhang X, Wang J, Wang S, Amin HM, Shi P. Involvement of oncogenic tyrosine kinase NPM-ALK in trifluoperazine-induced cell cycle arrest and apoptosis in ALK+ anaplastic large cell lymphoma. Hematology 2017; 23:284-290. [DOI: 10.1080/10245332.2017.1396045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Linlin Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory of Organofluorine Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Shanghai, People’s Republic of China
| | - Xiaonan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Song Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Hesham M. Amin
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory of Organofluorine Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Zhu G, Shi W, Fan H, Zhang X, Xu J, Chen Y, Xu Z, Tao T, Cheng C. HES5 promotes cell proliferation and invasion through activation of STAT3 and predicts poor survival in hepatocellular carcinoma. Exp Mol Pathol 2015; 99:474-84. [PMID: 26342546 DOI: 10.1016/j.yexmp.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/30/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES HES5 is a member of the basic helix-loop-helix (bHLH) family of transcription factors, and involved in cell differentiation and proliferation in a variety of tissues other than HCC. Therefore, we have characterized HES5 and investigated its role during hepatocarcinogenesis. METHODS We first examined the expression of HES5 in eight paired frozen HCC and adjacent noncancerous liver tissues by Western blot. Immunohistochemistry was performed to confirm our results in 58 HCC samples and evaluated the relativity between the expression of HES5 and clinicopathological variables and estimated the prognostic significance. Moreover, Western blot examined the expression of downstream proteins by siRNA HES5. Flow cytometer assay was performed to investigate the role of HES5 in the process of HCC. RESULTS We found that HES5 was upregulated in HCC specimens. The data showed that high expression of HES5 was tightly associated with histological grade (P<0.01) and metastasis (P<0.01), and positively correlated with proliferation marker Ki-67 (P<0.01). Moreover, the results show that abnormal expression of HES5 influences cell growth and cell cycle of HCC cell lines. Furthermore, HES5 knockdown resulted in the reduction of p-STAT3. CONCLUSION These results suggested that suppression of the HES5 leading to inhibition of proliferation may be one of the mechanisms against HCC.
Collapse
Affiliation(s)
- Guizhou Zhu
- Department of Medical College, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Weidong Shi
- Department of Medical Oncology, Nantong Second Peoples Affiliated Hospital of Nantong University, 43 Xinglong Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Hui Fan
- Department of Medical Oncology, Nantong Second Peoples Affiliated Hospital of Nantong University, 43 Xinglong Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Xiubing Zhang
- Department of Medical Oncology, Nantong Second Peoples Affiliated Hospital of Nantong University, 43 Xinglong Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Jian Xu
- Department of Medical Oncology, Nantong Second Peoples Affiliated Hospital of Nantong University, 43 Xinglong Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yongmei Chen
- Department of Medical Oncology, Nantong Second Peoples Affiliated Hospital of Nantong University, 43 Xinglong Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Zhiwei Xu
- Department of Medical College, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Tao Tao
- Department of Medical College, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China.
| | - Chun Cheng
- Department of Medical College, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
9
|
Ma JW, Zhang Y, Li R, Ye JC, Li HY, Zhang YK, Ma ZL, Li JY, Zhong XY, Yang X. Tetrandrine suppresses human glioma growth by inhibiting cell survival, proliferation and tumour angiogenesis through attenuating STAT3 phosphorylation. Eur J Pharmacol 2015; 764:228-239. [PMID: 26086859 DOI: 10.1016/j.ejphar.2015.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/18/2023]
Abstract
Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to possess anti-tumour activity. However, its effects on human glioma remain unknown. In this study, we demonstrated that Tet inhibited human glioma cell growth in vitro and in vivo. It has been hypothesised that Tet inhibits glioma growth by affecting glioma cell survival, proliferation and vasculature in and around the xenograft tumour in the chick CAM model and signal transducer and activator of transcription 3 (STAT3) mediated these activities. Therefore, we conducted a detailed analysis of the inhibitory effects of Tet on cell survival using a TUNEL assay and flow cytometric analysis; on cell proliferation based on the expression of proliferating cell nuclear antigen; and on angiogenesis using a CAM anti-angiogenesis assay. We used western blotting to investigate the role of STAT3 on the anti-glioma activities of Tet. The results revealed that Tet inhibited survival and proliferation in human glioma cells, impaired tumour angiogenesis and decreased the expression of phosphorylated STAT3 and its downstream proteins. In sum, our data indicate that STAT3 is involved in Tet-induced the regression of glioma growth by activating tumour cell apoptosis, inhibiting glioma cell proliferation and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Ji-Wei Ma
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Yong Zhang
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Ru Li
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Jie-Cheng Ye
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China; Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Hai-Ying Li
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Yi-Kai Zhang
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Zheng-Lai Ma
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Jin-Ying Li
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Xue-Yun Zhong
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China.
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Zhao J, Liu L, Wan Y, Zhang Y, Zhuang Q, Zhong X, Hong Z, Peng J. Inhibition of Hepatocellular Carcinoma by Total Alkaloids of Rubus alceifolius Poir Involves Suppression of Hedgehog Signaling. Integr Cancer Ther 2015; 14:394-401. [PMID: 25917815 DOI: 10.1177/1534735415583553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE We evaluated the effects of total alkaloids of Rubus alceifolius Poir (TARAP) on the migration and invasion of hepatocellular carcinoma (HCC) and furthermore investigated the possible molecular mechanisms mediating its anticancer activity. METHODS We implanted nude mice with human HCC HepG2 cells and fed them with vehicle (physiological saline) or 3 g/kg/day dose of TARAP 5 days per week for 21 days. We determined the in vitro effect of TARAP on the migration and invasion of HepG2 cells by transwell assay. We evaluated SHH signaling components' (SHH, PTCH, SMO, and Gli1) expression levels by reverse transcriptase-polymerase chain reaction and immunohistochemistry. Activity of the matrix metalloproteinases (MMPs) in supernatants was analyzed by zymography. The expression of the MMPs and their specific tissue inhibitor (tissue inhibitor of matrix metalloproteinases, TIMP-1, 2) in HCC tissues was detected by immunohistochemistry. RESULTS We discovered that TARAP inhibited hepatocellular migration and invasion in a dose-dependent manner in vitro. In addition, TARAP decreased the expression of SHH, PTCH, SMO, and Gli1 in HCC mouse tumors at both transcriptional and translational levels. Moreover, TARAP inhibited the activity of MMP2 and MMP9. We found that TARAP reduced the expression of MMP2 and MMP9, as well as the tissue inhibitor of MMPs. CONCLUSION Our study showed that TARAP inhibits HCC migration and invasion likely through suppression of the hedgehog pathway. This may, in part, explain its anticancer properties. These results suggest that total alkaloids in Rubus alceifolius may have potential as a novel antimetastasis drug in the treatment of HCC.
Collapse
Affiliation(s)
- Jinyan Zhao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Liya Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Yun Wan
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Yuchen Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Qunchuan Zhuang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xiaoyong Zhong
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Zhenfeng Hong
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jun Peng
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
11
|
Activated STAT3 correlates with prognosis of non-small cell lung cancer and indicates new anticancer strategies. Cancer Chemother Pharmacol 2015; 75:917-22. [PMID: 25735252 DOI: 10.1007/s00280-015-2710-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/16/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE Aberrant activation of the signal transducer and activator of transcription 3 (STAT3) occurs in many human tumors. Many studies have provided compelling evidence for the critical role of aberrant STAT3 activity in malignant transformation and tumor progression. But few of them provided data on whether activated STAT3 overexpression correlated with patients' prognosis. Here, we define the relationship between phosphorylated STAT3 (pSTAT3) function and prognosis of non-small cell lung cancer (NSCLC). METHODS Immunohistochemical analyses were carried out on 82 surgically resected NSCLC tissues to evaluate the expression level of pSTAT3. The Kaplan-Meier method was used to calculate the survival rate, and the log-rank test was performed to compare the survival difference. Cox regression analysis was performed to identify prognostic risk factors. All statistic analyses were performed with SPSS11.5 statistical software. Differences were considered significant when the P value was <0.05. RESULTS In this study, we identified nuclear pSTAT3 expression in 59.76 % of tumors. pSTAT3 expression was correlated with differentiation degree of tumors (P < 0.05), lymph node metastasis status (P < 0.01), clinical stage of tumors (P < 0.01) and the prognosis of NSCLC patients after surgical resection (P < 0.05). CONCLUSIONS pSTAT3 overexpression is an important factor related to prognosis of NSCLC patients and indicates new anticancer strategies.
Collapse
|