1
|
Li SN, Ran RY, Chen J, Liu MC, Dang YM, Lin H. Angiogenesis in heterotopic ossification: From mechanisms to clinical significance. Life Sci 2024; 351:122779. [PMID: 38851421 DOI: 10.1016/j.lfs.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Heterotopic ossification (HO) refers to the formation of pathologic bone in nonskeletal tissues (including muscles, tendons or other soft tissues). HO typically occurs after a severe injury and can occur in any part of the body. HO lesions are highly vascularized. Angiogenesis, which is the formation of new blood vessels, plays an important role in the pathophysiology of HO. Surgical resection is considered an effective treatment for HO. However, it is difficult to completely remove new vessels, which can lead to the recurrence of HO and is often accompanied by significant problems such as intraoperative hemorrhage, demonstrating the important role of angiogenesis in HO. Here, we broadly summarize the current understanding of how angiogenesis contributes to HO; in particular, we focus on new insights into the cellular and signaling mechanisms underlying HO angiogenesis. We also review the development and current challenges associated with antiangiogenic therapy for HO.
Collapse
Affiliation(s)
- Sai-Nan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ruo-Yue Ran
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meng-Chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yan-Miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Kang QM, Wang J, Chen SM, Song SR, Yu SC. Glioma-associated mesenchymal stem cells. Brain 2024; 147:755-765. [PMID: 37850820 DOI: 10.1093/brain/awad360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Recent studies have revealed that glioma-associated mesenchymal stem cells play instrumental roles in tumorigenesis and tumour progression and cannot be ignored as a cellular component of the glioma microenvironment. Nevertheless, the origin of these cells and their roles are poorly understood. The only relevant studies have shown that glioma-associated mesenchymal stem cells play a large role in promoting tumour proliferation, invasion and angiogenesis. This review provides a comprehensive summary of their discovery and definition, origin, differences from other tissue-derived mesenchymal stem cells, spatial distribution, functions and prognostic and therapeutic opportunities to deepen the understanding of these cells and provide new insight into the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Mei Kang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Man Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Si-Rong Song
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| |
Collapse
|
3
|
Endothelial Cells Promote Migration of Mesenchymal Stem Cells via PDGF-BB/PDGFRβ-Src-Akt in the Context of Inflammatory Microenvironment upon Bone Defect. Stem Cells Int 2022; 2022:2401693. [PMID: 36193255 PMCID: PMC9526552 DOI: 10.1155/2022/2401693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Homing of mesenchymal stem cells (MSCs) to the defect site is indispensable for bone repair. Local endothelial cells (ECs) can recruit MSCs; however, the mechanism remains unclear, especially in the context of the inflammatory microenvironment. This study was aimed to investigate the role of ECs in MSCs migration during the inflammatory phase of bone repair. The inflammatory microenvironment was mimicked in vitro via adding a cytokine set (IL-1β, IL-6, and TNF-α) to the culture medium of ECs. The production of PDGF-BB from ECs was measured by ELISA. Transwell and wound healing assays were employed to assess MSCs migration toward ECs and evaluate the implication of PDGF-BB/PDGFRβ. A series of shRNA and pathway inhibitors were used to screen signal molecules downstream of PDGF-BB/PDGFRβ. Then, mouse models of femoral defects were fabricated and DBM scaffolds were implanted. GFP+ MSCs were injected via tail vein, and the relevance of PDGF-BB/PDGFRβ, as well as screened signal molecules, in cell homing was further verified during the early phase of bone repair. In the mimicked inflammatory microenvironment, MSCs migration toward ECs was significantly promoted, which could be abrogated by pdgfrb knockout in MSCs. Inhibition of Src or Akt led to negative effects analogous to pdgfrb knockout. Blockade of JNK, MEK, and p38 MAPK had no impact. Meanwhile, the secretion of PDGF-BB from ECs was evidently motivated by the inflammatory microenvironment. Adding recombinant PDGF-BB protein to the culture medium of ECs phenocopied the inflammatory microenvironment with regard to attracting MSCs, which was abolished by pdgfb, src, or akt in MSCs. Moreover, pdgfb knockout suppressed the expression and phosphorylation of Src and Akt in migrating MSCs. Src knockout impaired Akt expression but not vice versa. In vivo, reduced infiltration of CD31+ ECs was correlated with diminished PDGF-BB in local defect sites, and silencing pdgfb, src, or akt in MSCs markedly hampered cell homing. Together, these findings suggest that in the inflammatory microenvironment, MSCs migrate toward ECs via PDGF-BB/PDGFRβ and the downstream Src-Akt signal pathway.
Collapse
|
4
|
Growth factors-based beneficial effects of platelet lysate on umbilical cord-derived stem cells and their synergistic use in osteoarthritis treatment. Cell Death Dis 2020; 11:857. [PMID: 33057008 PMCID: PMC7560841 DOI: 10.1038/s41419-020-03045-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Poor viability of mesenchymal stem cells (MSCs) at the transplanted site often hinders the efficacy of MSCs-based therapy. Platelet lysate (PL) contains rich amounts of growth factors, which benefits cell growth. This study aimed to explore how human PL benefits umbilical cord-derived MSCs (huc-MSCs), and whether they have synergistic potential in osteoarthritis (OA) treatment. As quality control, flow cytometry and specific staining were performed to identify huc-MSCs, and ELISA was used to quantify growth factors in PL. CCK-8 and flow cytometry assays were performed to evaluate the effects of PL on the cell viability and cell cycle progression of huc-MSCs. Wound healing and transwell assays were conducted to assess the migration of huc-MSCs. RNA sequencing, real time PCR, and Western blot assays were conducted to explore the growth factors-based mechanism of PL. The in vitro results showed that PL significantly promoted the proliferation, cell cycle, and migration of huc-MSCs by upregulating relevant genes/proteins and activating beclin1-dependent autophagy via the AMPK/mTOR signaling pathway. The main growth factors (PDGF-AA, IGF-1, TGF-β, EGF, and FGF) contributed to the effects of PL in varying degrees. The in vivo data showed that combined PL and huc-MSCs exerted significant synergistic effect against OA. The overall study determined the beneficial effects and mechanism of PL on huc-MSCs and indicated PL as an adjuvant for huc-MSCs in treating OA. This is the first report on the growth factors-based mechanism of PL on huc-MSCs and their synergistic application. It provides novel knowledge of PLʹs roles and offers a promising strategy for stem cell-based OA therapy by combining PL and huc-MSCs.
Collapse
|
5
|
Yu K, Yin Y, Ma D, Lu T, Wei D, Xiong J, Zhou Z, Zhang T, Zhang S, Fang Q, Wang J. Shp2 activation in bone marrow microenvironment mediates the drug resistance of B-cell acute lymphoblastic leukemia through enhancing the role of VCAM-1/VLA-4. Int Immunopharmacol 2020; 80:106008. [PMID: 31978797 DOI: 10.1016/j.intimp.2019.106008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 02/03/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is immune to the chemotherapy-induced apoptosis as a result of the protection of bone marrow mesenchymal stromal cells (BMSCs). However, the precise underlying mechanism of such protection remains unclear so far. In this experiment, protein tyrosine phosphatase 2 (Shp2), which was encoded by the PTPN11 gene, was highly expressed in BMSCs of the newly diagnosed and the recurrent B-ALL patients. The plasmid-induced (including Shp2 E76K) Shp2 activation in BMSCs (Shp2-activated BMSCs) markedly increased the BMSCs-mediated resistance of leukemia cells both in vitro and in vivo. Additionally, studies in vitro suggested that, the expression of vascular cell adhesion molecule 1 (VCAM-1) was markedly up-regulated in Shp2-activated BMSCs, and VCAM-1 expression in BMSCs of B-ALL patients was negatively correlated with Shp2 expression. Down-regulation of VCAM-1 in BMSCs using siRNA reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs. As for the molecular mechanism, the PI3K/AKT pathway mediated the regulation of VCAM-1 by Shp2. Blocking the very late antigen-4 (VLA-4) by antibodies in CCRF-SB cells dramatically reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs, and decreased the adhesion effects of both CCRF-SB cells and BMSCs. In conclusion, Shp2 activation in BMSCs up-regulates VCAM-1 expression through increasing the PI3K/AKT phosphorylation level, and targeting the VCAM-1/VLA-4 signaling may serve as a clinically relevant mechanism to overcome the BMSCs-mediated chemoresistance of B-ALL cells.
Collapse
Affiliation(s)
- Kunlin Yu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Yin
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Danna Wei
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Jie Xiong
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Zheng Zhou
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Siyu Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| |
Collapse
|
6
|
Sun X, Meng L, Qiao W, Yang R, Gao Q, Peng Y, Bian Z. Vascular endothelial growth factor A/Vascular endothelial growth factor receptor 2 axis promotes human dental pulp stem cell migration via the FAK/PI3K/Akt and p38 MAPK signalling pathways. Int Endod J 2019; 52:1691-1703. [PMID: 31267530 DOI: 10.1111/iej.13179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/27/2019] [Indexed: 01/04/2023]
Abstract
AIM To investigate the effects of vascular endothelial growth factor A (VEGFA) and the underlying molecular mechanisms on the migration of human dental pulp stem cells (hDPSCs). METHODOLOGY The expression of VEGFA in inflammatory pulp tissue and lipopolysaccharide (LPS)-stimulated dental pulp cells was examined by immunofluorescence staining and qRT-PCR. The migration of hDPSCs was detected using transwell migration and wound healing assays. The activation of FAK, PI3K, Akt and p38 signalling was evaluated by Western blot analysis. Silence RNA (siRNA) technology was utilized to knockdown the expression of VEGFR1 (Flt-1) and VEGFR2 (Flk-1/KDR). PF573228 (inhibitor of FAK), LY294002 (inhibitor of PI3K), SB203580 (inhibitor of p38) and SU5416 (inhibitor of VEGFR2) were employed to investigate the effect of VEGFA on the migratory mechanism of hDPSCs. Data were analysed statistically using the Student's t-test or one-way ANOVA. RESULTS The expression levels of VEGFA in inflammatory pulp tissue in vivo and LPS-stimulated dental pulp cells in vitro were significantly greater than those in the control groups (P < 0.05). Vascular endothelial growth factor A promoted the migration of hDPSCs in a concentration-dependent manner. Several signalling pathways, including FAK, PI3K, Akt and p38, were activated by VEGFA in a dose- and time-dependent manner in hDPSCs. The VEGFA-induced migration of hDPSCs was significantly inhibited with drug inhibitors such as PF573228, LY294002, SB203580 or SU5416 (P < 0.05). These signalling pathways activated by VEGFA stimulation were significantly suppressed by pre-treatment with inhibitor of VEGFR2 (SU5416) or transfection with siRNA of VRGFR2 (P < 0.05) but not VEGFR1 siRNA. CONCLUSIONS Vascular endothelial growth factor A/VEGFR2 axis promoted the migration of hDPSCs via the FAK/PI3K/Akt and p38 MAPK signalling pathways. These findings reveal a novel molecular mechanism for cell migration of hDPSCs, which may contribute to the remodelling of pulp tissue and dentine.
Collapse
Affiliation(s)
- X Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - L Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - W Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - R Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Q Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Gomes E, Vieira de Castro J, Costa B, Salgado A. The impact of Mesenchymal Stem Cells and their secretome as a treatment for gliomas. Biochimie 2018; 155:59-66. [PMID: 30031037 DOI: 10.1016/j.biochi.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
|
8
|
Xia W, Tian H, Cai X, Kong H, Fu W, Xing W, Wang Y, Zou M, Hu Y, Xu D. Inhibition of SUMO-specific protease 1 induces apoptosis of astroglioma cells by regulating NF-κB/Akt pathways. Gene 2016; 595:175-179. [PMID: 27693211 DOI: 10.1016/j.gene.2016.09.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022]
Abstract
SUMO-specific protease 1 (SENP1) is an important regulation protease in the protein desumoylation, which was shown to have a prooncogenicrole in many types of cancer. However, the mechanism of action for SENP1 in astrocytoma is not yet clear. Astrocytoma is the most frequent one among various neurogliomas, of which a subtype known as glioblastoma multiforme (GBM) is the most malignant brain glioma and seriously influences the life quality of the patients. In this study, the expression of SENP1 was detected in 28 cases of various grades of astrocytoma and 6 cases of normal human tissues. The results showed that the expression of SENP1 was positively correlated with the malignant grades. Besides, the NF-κB and Akt signaling pathways in GBM tissues were activated. Cytological experiments indicated that knock-down of endogenous SENP1 promoted cell apoptosis. Further research confirmed that downexpression of SENP1 could inhibit the phosphorylation of IκBα and Akt, and also the expression of its downstream regulation factors Bcl-xL and cyclinD1. These results delineate a key role for SENP1 in astrocytoma development, suggesting it may be a potential new therapeutic target inastrocytoma.
Collapse
Affiliation(s)
- Wenrong Xia
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hongwei Tian
- Department of Neurosurgery, The 2nd Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Xin Cai
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - HaiBo Kong
- Department of Neurosurgery, The 2nd Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Wenliang Fu
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Weiwei Xing
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuanyuan Wang
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Minji Zou
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuhua Hu
- Department of Neurosurgery, The 2nd Hospital Affiliated to Hebei Medical University, Shijiazhuang, China.
| | - Donggang Xu
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
9
|
Lu ZY, Chen WC, Li YH, Li L, Zhang H, Pang Y, Xiao ZF, Xiao HW, Xiao Y. TNF-α enhances vascular cell adhesion molecule-1 expression in human bone marrow mesenchymal stem cells via the NF-κB, ERK and JNK signaling pathways. Mol Med Rep 2016; 14:643-8. [PMID: 27221006 PMCID: PMC4918617 DOI: 10.3892/mmr.2016.5314] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/04/2016] [Indexed: 01/03/2023] Open
Abstract
The migration of circulating mesenchymal stem cells (MSCs) to injured tissue is an important step in tissue regeneration and requires adhesion to the microvascular endothelium. The current study investigated the underlying mechanism of MSC adhesion to endothelial cells during inflammation. In in vitro MSC culture, tumor necrosis factor-α (TNF-α) increased the level of vascular cell adhesion molecule-1 (VCAM-1) expression in a dose-dependent manner. The nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathway inhibitors, pyrrolidine dithiocarbamate (PDTC), U0126 and SP600125, respectively, suppressed VCAM-1 expression induced by TNF-α at the mRNA and protein levels (P<0.05). TNF-α augmented the activation of NF-κB, ERK and JNK, and promoted MSC adhesion to human umbilical vein endothelial cells; however, the inhibitors of NF-κB, ERK and JNK did not affect this process in these cells. The results of the current study indicate that adhesion of circulating MSCs to the endothelium is regulated by TNF-α-induced VCAM-1 expression, which is potentially mediated by the NF-κB, ERK and JNK signaling pathways.
Collapse
Affiliation(s)
- Zi-Yuan Lu
- First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wan-Cheng Chen
- First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong-Hua Li
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Li Li
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Hang Zhang
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Yan Pang
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Zhi-Fang Xiao
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Hao-Wen Xiao
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Yang Xiao
- First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
10
|
Zhang FY, Hu Y, Que ZY, Wang P, Liu YH, Wang ZH, Xue YX. Shikonin Inhibits the Migration and Invasion of Human Glioblastoma Cells by Targeting Phosphorylated β-Catenin and Phosphorylated PI3K/Akt: A Potential Mechanism for the Anti-Glioma Efficacy of a Traditional Chinese Herbal Medicine. Int J Mol Sci 2015; 16:23823-48. [PMID: 26473829 PMCID: PMC4632727 DOI: 10.3390/ijms161023823] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/26/2022] Open
Abstract
Shikonin is an anthraquinone derivative extracted from the root of lithospermum. Shikonin is traditionally used in the treatment of inflammatory and infectious diseases such as hepatitis. Shikonin also inhibits proliferation and induces apoptosis in various tumors. However, the effect of shikonin on gliomas has not been fully elucidated. In the present study, we aimed to investigate the effects of shikonin on the migration and invasion of human glioblastoma cells as well as the underlying mechanisms. U87 and U251 human glioblastoma cells were treated with shikonin at 2.5, 5, and 7.5 μmol/L and cell viability, migration and invasiveness were assessed with CCK8, scratch wound healing, in vitro Transwell migration, and invasion assays. The expression and activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and the expression of phosphorylated β-catenin (p-β-catenin) and phosphorylated PI3K/Akt were also checked. Results showed that shikonin significantly inhibited the cell proliferation, migration, invasion, and expression of MMP-2 and MMP-9 in U87 and U251 cells. The expression of p-β-catenin showed contrary trends in two cell lines. It was significantly inhibited in U87 cells and promoted in U251 cells. Results in this work indicated that shikonin displayed an inhibitory effect on the migration and invasion of glioma cells by inhibiting the expression and activity of MMP-2 and -9. In addition, shikonin also inhibited the expression of p-PI3K and p-Akt to attenuate cell migration and invasion and MMP-2 and MMP-9 expression in both cell lines, which could be reversed by the PI3K/Akt pathway agonist, insulin-like growth factor-1 (IGF-1).
Collapse
Affiliation(s)
- Feng-Ying Zhang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China.
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, China.
| | - Yi Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Zhong-You Que
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China.
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, China.
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Zhen-Hua Wang
- Department of Physiology, College of Basic Medicine, China Medical University, Shenyang 110122, China.
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China.
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, China.
| |
Collapse
|
11
|
MA JIANGCHUN, CHENG PENG, HU YI, XUE YIXUE, LIU YUNHUI. Integrin α4 is involved in the regulation of glioma-induced motility of bone marrow mesenchymal stem cells. Oncol Rep 2015; 34:779-86. [DOI: 10.3892/or.2015.4012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/08/2015] [Indexed: 01/14/2023] Open
|
12
|
Hu Y, Lin X, Wang P, Xue YX, Li Z, Liu LB, Yu B, Feng TD, Liu YH. CRM197 in Combination With shRNA Interference of VCAM-1 Displays Enhanced Inhibitory Effects on Human Glioblastoma Cells. J Cell Physiol 2015; 230:1713-28. [PMID: 25201410 DOI: 10.1002/jcp.24798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/02/2014] [Indexed: 01/01/2023]
Abstract
CRM197 is a naturally nontoxic diphtheria toxin mutant that binds and inhibits heparin-binding epidermal growth factor-like growth factor. CRM197 serves as carrier protein for vaccine and other therapeutic agents. CRM197 also inhibits the growth, migration, invasion, and induces apoptosis in various tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we aimed to investigate the role and mechanism of CRM197 combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion, and apoptosis of glioblastoma cells. U87 and U251 human glioblastoma cells were treated with CRM197 (10 µg/ml) and shRNA interfering technology was employed to silence VCAM-1 expression. Cell viability, migration, invasiveness, and apoptosis were assessed with CCK8, Transwell and Annexin V-PE/7-AAD staining. Activation of cleaved caspase-3, 8, and 9, activity of matrix metalloproteinase-2/9 (MMP-2/9), and expression of phosphorylated Akt (p-Akt) were also checked. Results showed that CRM197 and shRNA-VCAM-1 not only significantly inhibited the cell proliferation, migration, invasion, but also promoted the apoptosis of U87 and U251 cells. Combined treatment of both displayed enhanced inhibitory effects on the malignant biological behavior of glioma cells. The activation of cleaved caspase-3, 8, 9 was promoted, activity of MMP-2 and MMP-9 and expression of p-Akt were inhibited significantly by the treatment of CRM197 and shRNA-VCAM-1 alone or in combination, indicating that the combination of CRM197 with shRNA-VCAM-1 additively inhibited the malignant behavior of human glioblastoma cells via activating caspase-3, 8, 9 as well as inhibiting MMP-2, MMP-9, and Akt pathway.
Collapse
Affiliation(s)
- Yi Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xu X, Xie G, Hu Y, Li X, Huang P, Zhang H. Neural differentiation of mesenchymal stem cells influences their chemotactic responses to stromal cell-derived factor-1α. Cell Mol Neurobiol 2014; 34:1047-58. [PMID: 25038638 DOI: 10.1007/s10571-014-0082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/01/2014] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are proposed as a promising source for cell-based therapies in neural disease. Although increasing numbers of studies have been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic response and the differentiation status of these cells is still unclear. In the present study, we demonstrated that MSCs in varying neural differentiation states display various chemotactic responses to stromal cell-derived factor-1α (SDF-1α). The chemotactic responses of MSCs under different differentiation stages in response to SDF-1α were analyzed by Boyden chamber, and the results showed that cells of undifferentiation, 24-h preinduction, 5-h induction, and 18-h maintenance states displayed a stronger chemotactic response to SDF-1α, while 48-h maintenance did not. Further, we found that the phosphorylation levels of PI3K/Akt, ERK1/2, SAPK/JNK, and p38MAPK are closely related to the differentiation states of MSCs subjected to SDF-1α, and finally, inhibition of SAPK/JNK signaling significantly attenuates SDF-1α-stimulated transfilter migration of MSCs of undifferentiation, 24-h preinduction, 18-h maintenance, and 48-h maintenance, but not MSCs of 5-h induction. Meanwhile, interference with PI3K/Akt, p38MAPK, or ERK1/2 signaling prevents only cells at certain differentiation state from migrating in response to SDF-1α. Collectively, these results demonstrate that MSCs in varying neural differentiation states have different migratory capacities, thereby illuminating optimization of the therapeutic potential of MSCs to be used for neural regeneration after injury.
Collapse
Affiliation(s)
- Xiaojing Xu
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123, China
| | | | | | | | | | | |
Collapse
|
14
|
Chen Z, Cai Y, Zhang W, Liu X, Liu S. Astragaloside IV inhibits platelet-derived growth factor-BB-stimulated proliferation and migration of vascular smooth muscle cells via the inhibition of p38 MAPK signaling. Exp Ther Med 2014; 8:1253-1258. [PMID: 25187834 PMCID: PMC4151649 DOI: 10.3892/etm.2014.1905] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022] Open
Abstract
Astragaloside IV (AS-IV), the major active component extracted from Astragalus membranaceus, has been demonstrated to exhibit protective effects on the cardiovascular, immune, digestive and nervous systems; thus, has been widely used in traditional Chinese medicine. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is closely associated with the initiation and progression of cardiovascular diseases, including atherosclerosis and restenosis. However, the effects of AS-IV on VSMCs remain unknown. For the first time, the present study demonstrated that AS-IV markedly suppressed platelet-derived growth factor (PDGF)-BB-stimulated cellular proliferation and migration of HDMEC-a human dermal VSMCs (HDVSMCs). Further investigation into the underlying molecular mechanisms demonstrated that the administration of AS-IV attenuated the PDGF-BB-stimulated switch of HDVSMCs into a proliferative phenotype. Furthermore, AS-IV inhibited the PDGF-BB-induced expression of cell cycle-associated proteins, as well as the upregulation of matrix metalloproteinase (MMP)2, but not MMP9. In addition, AS-IV was shown to downregulate the activation of p38 mitogen-activated protein kinase (MAPK) signaling induced by PDGF-BB in HDVSMCs. Therefore, the observations of the present study indicate that AS-IV inhibits PDGF-BB-stimulated VSMC proliferation and migration, possibly by inhibiting the activation of the p38 MAPK signaling pathway. Thus, AS-IV may be useful for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Zhuo Chen
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Cai
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenliang Zhang
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinzhou Liu
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Suixin Liu
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|