1
|
Tatsuta T. [Basic Research on Bullfrog Egg-derived Sialic Acid-binding Lectin for Cancer Treatment]. YAKUGAKU ZASSHI 2022; 142:1045-1053. [PMID: 36184438 DOI: 10.1248/yakushi.22-00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sialic acid-binding lectin from Rana catesbeiana (cSBL) is a multifunctional protein with both lectin and ribonuclease activity and is, therefore, called a leczyme. It exerts cancer cell-selective antitumor effects on a variety of cancer cells in vitro and in vivo under conditions where no undesired side effects are observed. cSBL elicits antitumor effects by degrading cellular RNA and subsequently inducing apoptosis via a pathway mediated by mitochondria and endoplasmic reticulum stress. Further, it exerts synergistic antitumor effects with other molecules such as tumor necrosis factor-related apoptosis-inducing ligand and pemetrexed. Recent studies have revealed that long-term treatment of cancer cells with cSBL causes significant pleiotropic changes in the expression profiles of several genes, including multiple genes involved in metabolic pathways. Furthermore, cSBL reduces the expression of some cancer-related molecules such as human epidermal growth factor receptors, aldo-keto reductase 1B10, and ATP-binding cassette transporter C2. The information described above is expected to lead to useful applications, such as effective regimens comprising cSBL and other drugs. These findings reveal favorable properties of cSBL as an anticancer drug, which may contribute to the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
2
|
Discovery of antitumor effects of leczymes. Glycoconj J 2022; 39:157-165. [DOI: 10.1007/s10719-021-10033-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
|
3
|
Tatsuta T, Nakasato A, Sugawara S, Hosono M. Transcriptomic alterations in malignant pleural mesothelioma cells in response to long‑term treatment with bullfrog sialic acid‑binding lectin. Mol Med Rep 2021; 23:467. [PMID: 33880588 PMCID: PMC8097763 DOI: 10.3892/mmr.2021.12106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a universally lethal type of cancer that is increasing in incidence worldwide; therefore, the development of new drugs for MPM is an urgent task. Bullfrog sialic acid-binding lectin (cSBL) is a multifunctional protein that has carbohydrate-binding and ribonuclease activities. cSBL exerts marked antitumor activity against numerous types of cancer cells, with low toxicity to normal cells. Although in vitro and in vivo studies revealed that cSBL was effective against MPM, the mechanism by which cSBL exerts antitumor effects is not fully understood. To further understand the mechanism of action of cSBL, the present study aimed to identify the key molecules whose expression was affected by cSBL. The present study established cSBL-resistant MPM cells. Microarray analyses revealed that there were significant pleiotropic changes in the expression profiles of several genes, including multiple genes involved in metabolic pathways in cSBL-resistant cells. Furthermore, the expression of some members of the aldo-keto reductase family was revealed to be markedly downregulated in these cells. Among these, it was particularly interesting that cSBL action reduced the level of AKR1B10, which has been reported as a biomarker candidate for MPM prognosis. These findings revealed novel aspects of the effect of cSBL, which may contribute to the development of new therapeutic strategies for MPM.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Arisu Nakasato
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Shigeki Sugawara
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Masahiro Hosono
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| |
Collapse
|
4
|
Ma ZX, Zhang RY, Rui WJ, Wang ZQ, Feng X. Quercetin alleviates chronic unpredictable mild stress-induced depressive-like behaviors by promoting adult hippocampal neurogenesis via FoxG1/CREB/ BDNF signaling pathway. Behav Brain Res 2021; 406:113245. [PMID: 33745981 DOI: 10.1016/j.bbr.2021.113245] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022]
Abstract
Quercetin, a naturally occurring flavonoid, has been reported to exert antidepressant effects, however, the underlying mechanisms are still uncertain. Recent studies have demonstrated that Forkhead box transcription factor G1 (FoxG1) regulates the process of adult hippocampal neurogenesis (AHN) and exerts neuroprotective effects. In this study, we explored whether quercetin plays an anti-depressant role via regulation of FoxG1 signaling in mice and revealed the potential mechanisms. To explore the antidepressant effects of quercetin, mice were subjected to behavioral tests after a chronic unpredictable mild stress (CUMS) exposure. We found that chronic quercetin treatment (15 mg/kg, 30 mg/kg) obviously restored the weight loss of mice caused by CUMS and alleviated CUMS-induced depression-like behaviors, such as increased sucrose consumption, improved locomotor activity and shorten immobility time. In addition, to clarify the relationship between quercetin and AHN, we detected neurogenesis markers in the dentate gyrus (DG) of the hippocampus. Furthermore, FoxG1-siRNA was employed and then stimulated with quercetin to further investigate the mechanism by which FoxG1 participates in the antidepressant effects of quercetin. Our results indicate that chronic quercetin treatment dramatically increased the number of doublecortin (DCX)-positive and BrdU/NeuN-double positive cells. Besides, the expression levels of FoxG1, p-CREB and Brain-derived neurotrophic factor (BDNF) were also enhanced by quercetin in the DG. Strikingly, quercetin failed to reverse the levels of p-CREB and BDNF after FoxG1-siRNA was performed in SH-SY5Y cells and Neural Progenitor Cells (NPCs). Our results thus far suggest that quercetin might exert antidepressant effects via promotion of AHN by FoxG1/CREB/ BDNF signaling pathway.
Collapse
Affiliation(s)
- Zhong-Xuan Ma
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ru-Yi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Wen-Juan Rui
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhi-Qing Wang
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Xia Feng
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
5
|
Antitumor Potential of Marine and Freshwater Lectins. Mar Drugs 2019; 18:md18010011. [PMID: 31877692 PMCID: PMC7024344 DOI: 10.3390/md18010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Often, even the most effective antineoplastic drugs currently used in clinic do not efficiently allow complete healing due to the related toxicity. The reason for the toxicity lies in the lack of selectivity for cancer cells of the vast majority of anticancer agents. Thus, the need for new potent anticancer compounds characterized by a better toxicological profile is compelling. Lectins belong to a particular class of non-immunogenic glycoproteins and have the characteristics to selectively bind specific sugar sequences on the surface of cells. This property is exploited to exclusively bind cancer cells and exert antitumor activity through the induction of different forms of regulated cell death and the inhibition of cancer cell proliferation. Thanks to the extraordinary biodiversity, marine environments represent a unique source of active natural compounds with anticancer potential. Several marine and freshwater organisms, ranging from the simplest alga to the most complex vertebrate, are amazingly enriched in these proteins. Remarkably, all studies gathered in this review show the impressive anticancer effect of each studied marine lectin combined with irrelevant toxicity in vitro and in vivo and pave the way to design clinical trials to assess the real antineoplastic potential of these promising proteins. It provides a concise and precise description of the experimental results, their interpretation as well as the experimental conclusions that can be drawn.
Collapse
|
6
|
Bonam SR, Ruff M, Muller S. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells 2019; 8:E849. [PMID: 31394830 PMCID: PMC6721745 DOI: 10.3390/cells8080849] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
HSPA8/HSC70 is a molecular chaperone involved in a wide variety of cellular processes. It plays a crucial role in protein quality control, ensuring the correct folding and re-folding of selected proteins, and controlling the elimination of abnormally-folded conformers and of proteins daily produced in excess in our cells. HSPA8 is a crucial molecular regulator of chaperone-mediated autophagy, as a detector of substrates that will be processed by this specialized autophagy pathway. In this review, we shortly summarize its structure and overall functions, dissect its implication in immune disorders, and list the known pharmacological tools that modulate its functions. We also exemplify the interest of targeting HSPA8 to regulate pathological immune dysfunctions.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France
| | - Marc Ruff
- Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404 Strasbourg, France
| | - Sylviane Muller
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, 67000 Strasbourg, France.
| |
Collapse
|
7
|
Sialic Acid-Binding Lectin from Bullfrog Eggs Exhibits an Anti-Tumor Effect Against Breast Cancer Cells Including Triple-Negative Phenotype Cells. Molecules 2018; 23:molecules23102714. [PMID: 30347895 PMCID: PMC6222625 DOI: 10.3390/molecules23102714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 01/22/2023] Open
Abstract
Sialic acid-binding lectin from Rana catesbeiana eggs (cSBL) is a multifunctional protein that has lectin and ribonuclease activity. In this study, the anti-tumor activities of cSBL were assessed using a panel of breast cancer cell lines. cSBL suppressed the cell growth of all cancer cell lines tested here at a concentration that is less toxic, or not toxic at all, to normal cells. The growth suppressive effect was attributed to the cancer-selective induction of apoptosis. We assessed the expressions of several key molecules associated with the breast cancer phenotype after cSBL treatment by western blotting. cSBL decreased the expression level of estrogen receptor (ER) α, while it increased the phosphorylation level of p38 mitogen-activated protein kinase (MAPK). cSBL also suppressed the expression of the progesterone receptor (PgR) and human epidermal growth factor receptor type 2 (HER2). Furthermore, it was revealed that cSBL decreases the expression of the epidermal growth factor receptor (EGFR/HER1) in triple-negative breast cancer cells. These results indicate that cSBL induces apoptosis with decreasing ErbB family proteins and may have great potential for breast cancer chemotherapy, particularly in triple-negative phenotype cells.
Collapse
|
8
|
Cultivated and wild Pleurotus ferulae ethanol extracts inhibit hepatocellular carcinoma cell growth via inducing endoplasmic reticulum stress- and mitochondria-dependent apoptosis. Sci Rep 2018; 8:13984. [PMID: 30228276 PMCID: PMC6143524 DOI: 10.1038/s41598-018-32225-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Pleurotus ferulae is a kind of editable mushroom and has various biological functions such as antitumor, antioxidation and immunoregulation. Wild P. ferulae was successfully domesticated but the antitumor function and mechanisms of cultivated and wild P. ferulae need to be compared and explored. Here, we prepared cultivated and wild P. ferulae ethanol extracts (PFEE-C and PFEE-W) and compared their antitumor effect on hepatocellular carcinoma. Our data showed that PFEE-C and PFEE-W significantly inhibited the growth of H22 and HepG2 cells through induction of apoptosis. PFEE-W exhibited higher antitumor activity than PFEE-C. Both PFEE-C and PFEE-W induced endoplasmic reticulum (ER) stress characterized by the up-regulated levels of phosphorylated JNK, cleaved caspase-12 and HSP70, and mitochondrial dysfunction characterized by the reduction of mitochondrial membrane potential and the release of cytochrome c, which promoted the cleavage of caspase-3, -7, -9 and PARP. Moreover, PFEE-C and PFEE-W significantly increased ROS generation in H22 cells and suppressed H22 cell migration through reducing the levels of matrix metalloproteinase -2 and -9. Further, PFEE-C inhibited H22 tumor growth in mouse model and improved the survival of tumor mice. These results indicated that PFEE-C and PFEE-W could inhibit hepatocellular carcinoma cell growth through ER stress- and mitochondria-dependent apoptotic pathways.
Collapse
|
9
|
Heat Shock Proteins in Alzheimer's Disease: Role and Targeting. Int J Mol Sci 2018; 19:ijms19092603. [PMID: 30200516 PMCID: PMC6163571 DOI: 10.3390/ijms19092603] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Among diseases whose cure is still far from being discovered, Alzheimer’s disease (AD) has been recognized as a crucial medical and social problem. A major issue in AD research is represented by the complexity of involved biochemical pathways, including the nature of protein misfolding, which results in the production of toxic species. Considering the involvement of (mis)folding processes in AD aetiology, targeting molecular chaperones represents a promising therapeutic perspective. This review analyses the connection between AD and molecular chaperones, with particular attention toward the most important heat shock proteins (HSPs) as representative components of the human chaperome: Hsp60, Hsp70 and Hsp90. The role of these proteins in AD is highlighted from a biological point of view. Pharmacological targeting of such HSPs with inhibitors or regulators is also discussed.
Collapse
|
10
|
Lashmanova E, Zemskaya N, Proshkina E, Kudryavtseva A, Volosnikova M, Marusich E, Leonov S, Zhavoronkov A, Moskalev A. The Evaluation of Geroprotective Effects of Selected Flavonoids in Drosophila melanogaster and Caenorhabditis elegans. Front Pharmacol 2017; 8:884. [PMID: 29375370 PMCID: PMC5770640 DOI: 10.3389/fphar.2017.00884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/16/2017] [Indexed: 01/13/2023] Open
Abstract
Flavonoids is an intensively studied group of natural compounds with antioxidant, antineoplastic, antihyperglycemic, cardioprotective, and neuroprotective properties. The present study intends to investigate the geroprotective action of three selected flavonoids (naringin, luteolin, chrysin) in two model organisms, Caenorhabditis elegans and Drosophila melanogaster. Luteolin and chrysin were shown to improve lifespan parameters when administered to both model organisms. The observed positive effects of these flavonoids in D. melanogaster were limited to females and were not associated with reduced fecundity or locomotor impairment. The life-extending effects of flavonoids were observed in N2 wild-type worms but absent in aak-2(gt33) mutants implying that these effects can be associated with AMP-activated protein kinase activity. Naringin improved lifespan parameters of C. elegans, but had no effect on D. melanogaster females; in some cases, naringin was found to decrease the lifespan of males. Compared to chrysin and luteolin, however, naringin more effectively activates Nrf2 target genes (particularly, GstD1) under oxidative stress. Then we compared molecular mechanisms of studied compounds and a well-known geroprotector rapamycin, using software tool GeroScope. There are no transcriptomic data on luteolin or chrysin provided by LINCS Project database. The bioinformatics comparison of transcriptomics data for A549 and MCF7 human cell lines treated with rapamycin or naringin revealed that these compounds share just a few common signaling pathways and quite distinct in their geroprotective action. Thus, based on C. elegans effects of naringin, luteolin, chrysin on lifespan we have revealed new potential geroprotectors.
Collapse
Affiliation(s)
- Ekaterina Lashmanova
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nadezhda Zemskaya
- Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Ekaterina Proshkina
- Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia.,Department of Ecology, Syktyvkar State University, Syktyvkar, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Volosnikova
- Insilico Medicine, Inc., Johns Hopkins University, Baltimore, MD, United States
| | - Elena Marusich
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Leonov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alex Zhavoronkov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Insilico Medicine, Inc., Johns Hopkins University, Baltimore, MD, United States
| | - Alexey Moskalev
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia.,Department of Ecology, Syktyvkar State University, Syktyvkar, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Mo ZT, Li WN, Zhai YR, Gao SY. The effects of icariin on the expression of HIF-1α, HSP-60 and HSP-70 in PC12 cells suffered from oxygen-glucose deprivation-induced injury. PHARMACEUTICAL BIOLOGY 2017; 55:848-852. [PMID: 28140748 PMCID: PMC6130580 DOI: 10.1080/13880209.2017.1281968] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/22/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT The effects of icariin, a chief constituent of flavonoids from Epimedium brevicornum Maxim (Berberidaceae), on the levels of HIF-1α, HSP-60 and HSP-70 remain unknown. OBJECTIVE To explore the effects of icariin on the levels of HSP-60, HIF-1α and HSP-70 neuron-specific enolase (NSE) and cell viability. MATERIALS AND METHODS PC12 cells were treated with icariin (10-7, 10-6 or 10-5 mol/L) for 3 h (1 h before oxygen-glucose deprivation (OGD) plus 2 h OGD). HSP-60, HIF-1α, HSP-70 and NSE were measured using enzyme-linked immunosorbent assay (ELISA). Cell viability was determined by metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS After 2 h OGD, levels of HIF-1α, HSP-60, HSP-70 and NSE were increased significantly (HIF-1α: 33.3 ± 1.9 ng/L, HSP-60: 199 ± 16 ng/L, HSP-70: 195 ± 17 ng/L, NSE: 1487 ± 125 ng/L), and cell viability was significantly decreased (0.26 ± 0.03), while icariin (10-7, 10-6, or 10-5 mol/L) significantly reduced the contents of HIF-1α, HSP-60, HSP-70 and NSE (HIF-1α: 14.1 ± 1.4, 22.6 ± 1.8, 15.7 ± 2.1, HSP-60: 100 ± 12, 89 ± 6, 113 ± 11, HSP-70: 139 ± 9, 118 ± 7, 95 ± 9 and NSE: 1121 ± 80, 1019 ± 52, 731 ± 88), and improved cell viability (0.36 ± 0.03, 0.38 ± 0.04, 0.37 ± 0.03) in OGD-treated PC12 cells. DISCUSSION AND CONCLUSION These results indicate that the protective mechanisms of icariin against OGD-induced injury may be related to down-regulating the expression of HIF-1α, HSP-60 and HSP-70.
Collapse
Affiliation(s)
- Zhen-Tao Mo
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Wen-Na Li
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yu-Rong Zhai
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Shu-Ying Gao
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
12
|
Beyond the survival and death of the deltamethrin-threatened pollen beetle Meligethes aeneus: An in-depth proteomic study employing a transcriptome database. J Proteomics 2016; 150:281-289. [PMID: 27705816 DOI: 10.1016/j.jprot.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/10/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Insecticide resistance is an increasingly global problem that hampers pest control. We sought the mechanism responsible for survival following pyrethroid treatment and the factors connected to paralysis/death of the pollen beetle Meligethes aeneus through a proteome-level analysis using nanoLC coupled with Orbitrap Fusion™ Tribrid™ mass spectrometry. A tolerant field population of beetles was treated with deltamethrin, and the ensuing proteome changes were observed in the survivors (resistant), dead (paralyzed) and control-treated beetles. The protein database consisted of the translated transcriptome, and the resulting changes were manually annotated via BLASTP. We identified a number of high-abundance changes in which there were several dominant proteins, e.g., the electron carrier cytochrome b5, ribosomal proteins 60S RPL28, 40S RPS23 and RPS26, eIF4E-transporter, anoxia up-regulated protein, 2 isoforms of vitellogenin and pathogenesis-related protein 5. Deltamethrin detoxification was influenced by different cytochromes P450, which were likely boosted by increased cytochrome b5, but glutathione-S-transferase ε and UDP-glucuronosyltransferases also contributed. Moreover, we observed changes in proteins related to RNA interference, RNA binding and epigenetic modifications. The high changes in ribosomal proteins and associated factors suggest specific control of translation. Overall, we showed modulation of expression processes by epigenetic markers, alternative splicing and translation. Future functional studies will benefit. BIOLOGICAL SIGNIFICANCE Insects develop pesticide resistance, which has become one of the key issues in plant protection. This growing resistance increases the demand for pesticide applications and the development of new substances. Knowledge in the field regarding the resistance mechanism and its responses to pesticide treatment provides us the opportunity to propose a solution for this issue. Although the pollen beetle Meligethes aeneus was effectively controlled with pyrethroids for many years, there have been reports of increasing resistance. We show protein changes including production of isoforms in response to deltamethrin at the protein level. These results illustrate the insect's survival state as a resistant beetle and in its paralyzed state (evaluated as dead) relative to resistant individuals.
Collapse
|
13
|
Matou-Nasri S, Rabhan Z, Al-Baijan H, Al-Eidi H, Yahya WB, Al Abdulrahman A, Almobadel N, Alsubeai M, Al Ghamdi S, Alaskar A, AlBalwi M, Alzahrani M, Alabdulkareem I. CD95-mediated apoptosis in Burkitt's lymphoma B-cells is associated with Pim-1 down-regulation. Biochim Biophys Acta Mol Basis Dis 2016; 1863:239-252. [PMID: 27641442 DOI: 10.1016/j.bbadis.2016.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/17/2023]
Abstract
B-cells of the high-grade non-Hodgkin lymphoma Burkitt's lymphoma (BL) overexpress survival oncoproteins, including the proviral integration site for Moloney murine leukaemia virus kinase (Pim)-1, and become apoptosis resistant. Activated death receptor CD95 after ligation with anti-CD95 monoclonal antibody (mAb) resulted in the regression of BL via induction of apoptosis, suggesting a decrease of survival protein expression. Here, CD95-mediated apoptotic pathways in BL B-cell lines (Raji and Daudi) following treatment with anti-CD95 mAb was investigated with the cause-and-effects on pim-1 gene expression, in comparison with leukemic cell line (K562) used as CD95-negative cells. Immunohistochemical staining for CD95 and Pim-1 was performed, and the effects of anti-CD95 mAb on apoptotic signalling using western blotting, on caspase activity and cell survival of BL B-cell and leukemic cell lines were determined. We showed that Raji cells expressed more CD95 receptors than Daudi cells. Half of each population underwent apoptosis accompanied by decreased cell viability after anti-CD95 mAb treatment. Distinct extrinsic and intrinsic CD95-mediated apoptotic pathways in Raji and Daudi cells were revealed by high caspase activity and mitochondrial outer membrane permeabilization, respectively. We observed decreased Pim-1 transcript and protein expression levels with increased heat-shock protein (Hsp)70 and decreased Hsp90 expression in anti-CD95 mAb-treated cells. Throughout the study, K562 cells did not undergo apoptosis upon anti-CD95 mAb treatment. Pim-1 knockdown following to stable transfection with plasmid vectors induced apoptosis and decreased viability of BL and K562 cells. Therefore, CD95-mediated apoptosis induces Pim-1 down-regulation in BL B-cells, but Pim-1 down-regulation cannot fully eradicate BL and leukaemia.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Zaki Rabhan
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Haya Al-Baijan
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Wesam Bin Yahya
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Abdelkareem Al Abdulrahman
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Nasser Almobadel
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Mona Alsubeai
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Saleh Al Ghamdi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Ahmed Alaskar
- KAIMRC, King Saud bin-Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), MNGHA, Riyadh 11426, Saudi Arabia
| | - Mohammed AlBalwi
- Pathology and Laboratory Medicine, KAMC, MNGHA, Riyadh 11426, Saudi Arabia
| | | | - Ibrahim Alabdulkareem
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard - Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia.
| |
Collapse
|
14
|
Bakar E, Ulucam E, Cerkezkayabekir A. Protective effects of proanthocyanidin and vitamin E against toxic effects of formaldehyde in kidney tissue. Biotech Histochem 2014; 90:69-78. [DOI: 10.3109/10520295.2014.954620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
15
|
Tatsuta T, Sugawara S, Takahashi K, Ogawa Y, Hosono M, Nitta K. Cancer-selective induction of apoptosis by leczyme. Front Oncol 2014; 4:139. [PMID: 24926439 PMCID: PMC4044787 DOI: 10.3389/fonc.2014.00139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022] Open
Abstract
Sialic acid-binding lectin (SBL) is a multi-functional protein that is isolated from oocytes of Rana catesbeiana. It has both lectin and ribonuclease (enzyme) properties, and therefore is called leczyme. We examined the anti-tumor effects of SBL and discovered that SBL has potential as a new type of anti-cancer drug. SBL causes a cancer-selective induction of apoptosis by multiple signaling pathways whereby RNA is its target. It is suggested that the mitochondrial pathway and endoplasmic reticulum stress-mediated pathway participate in SBL-induced signaling. The synergistic anti-tumor effects with other molecules, such as tumor necrosis factor-related apoptosis ligand and interferon γ, have been reported. In this study, we summarize the effects of SBL and focus on its cancer-selective apoptotic properties. In addition, we present a possible explanation for its cancer specificity.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| | - Shigeki Sugawara
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| | - Kohta Takahashi
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| | - Yukiko Ogawa
- Divisions of Functional Morphology and Microbiology, Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University , Sasebo , Japan
| | - Masahiro Hosono
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| | - Kazuo Nitta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| |
Collapse
|
16
|
Leczyme: a new candidate drug for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:421415. [PMID: 24864241 PMCID: PMC4017849 DOI: 10.1155/2014/421415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022]
Abstract
Sialic acid-binding lectin (SBL), isolated from oocytes of Rana catesbeiana, is leczyme and has both lectin and ribonuclease (RNase) activities. A remarkable antitumor effect of SBL has also been reported. SBL agglutinates various kinds of tumor cells but not normal cells. SBL agglutination activity is not affected by mono- or oligosaccharides. However, SBL-induced agglutination and antitumor effects are inhibited by sialomucin but not asialomucin. In addition, SBL has very little effect on sialidase-treated cells. SBL causes cancer-selective induction of apoptosis by multiple signaling pathways, which target RNA. Synergistic antitumor effects with other molecules, such as tumor necrosis factor-related apoptosis ligand (TRAIL) and interferon-γ (IFN-γ), have been reported. Thus, SBL may be a novel candidate molecule for anticancer drug development. Sialoglycoconjugates on the tumor cell surface may be associated with lectin activity and antitumor effects of SBL. We review the properties of SBL, particularly its lectin, RNase, and antitumor activities, and comprehensively examine the potential application of SBL for clinical purposes.
Collapse
|