1
|
Wang W, Lokman NA, Noye TM, Macpherson AM, Oehler MK, Ricciardelli C. ABCA1 is associated with the development of acquired chemotherapy resistance and predicts poor ovarian cancer outcome. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:485-502. [PMID: 35582032 PMCID: PMC9019266 DOI: 10.20517/cdr.2020.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Aim: This study investigated the ATP binding cassette (ABC) transporter (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) expression in high grade serous ovarian cancer (HGSOC) tissues, cell lines and primary cells to determine their potential relationship with acquired chemotherapy resistance and patient outcome. Methods: ABC transporter mRNA and protein expression (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) was assessed in publicly available datasets and in a tissue microarray (TMA) cohort of HGSOC at diagnosis, respectively. ABC transporter mRNA expression was also assessed in chemosensitive ovarian cancer cell lines (OVCAR-5 and CaOV3) versus matching cell lines with acquired carboplatin resistance and in primary HGSOC cells from patients with chemosensitive disease at diagnosis (n = 10) as well as patients with acquired chemotherapy resistance at relapse (n = 6). The effects of the ABCA1 inhibitor apabetalone in carboplatin-sensitive and -resistant cell lines were also investigated. Results: High ABCA1 mRNA and protein expression was found to be significantly associated with poor patient outcome. ABCA1 mRNA and protein levels were significantly increased in ovarian cancer cell lines (OVCAR-5 CBPR and CaOV3 CBPR) with acquired carboplatin resistance. ABCA1 mRNA was significantly increased in primary HGSOC cells obtained from patients with acquired chemotherapy resistance. Apabetalone treatment reduced ABCA1 protein expression and increased the sensitivity of both parental and carboplatin-resistant ovarian cancer cells to carboplatin. Conclusion: These results suggest that inhibiting ABCA1 transporter may be useful in overcoming acquired chemotherapy resistance and improving outcome for patients with HGSOC.
Collapse
Affiliation(s)
- Wanqi Wang
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Noor A Lokman
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Tannith M Noye
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Anne M Macpherson
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Martin K Oehler
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
Yasmin A, Regan DP, Schook LB, Gaba RC, Schachtschneider KM. Transcriptional regulation of alcohol induced liver fibrosis in a translational porcine hepatocellular carcinoma model. Biochimie 2021; 182:73-84. [PMID: 33444661 DOI: 10.1016/j.biochi.2020.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the 5th most common and 2nd deadliest cancer worldwide. HCC risk factors include alcohol induced liver cirrhosis, which prompts hepatic inflammation, cell necrosis, and fibrosis deposition. As 25% of HCC cases are associated with alcohol induced liver disease, understanding the effects of the cirrhotic liver microenvironment on HCC tumor biology and therapeutic responses are critical. This study utilized the Oncopig Cancer Model-a transgenic pig model that recapitulates human HCC through induced expression of KRASG12D and TP53R167H driver mutations-to investigate the molecular mechanisms underlying alcohol induced liver disease. Oncopigs (n = 5) underwent fibrosis induction via infusion of ethanol and ethiodized oil (1:3 v/v dosed at 0.75 mL/kg) into the hepatic arterial circulation. Eight-weeks post induction, liver tissue samples from fibrotic and age-matched control (n = 5) Oncopigs were collected for histological evaluation and transcriptional profiling. Increased hepatic inflammation and fibrosis was observed in fibrotic Oncopigs via pathological assessment. Transcriptional profiling (RNA-seq) resulted in the identification of 4387 differentially expressed genes between Oncopig fibrotic and control livers. GO term enrichment analysis identified pathway alterations associated with cirrhosis progression in humans, including cell proliferation, angiogenesis, extracellular matrix deposition, and oxidation-reduction. Key alterations include activation of hepatic stellate cells, increased matrix metalloproteinase production, and altered expression of ABC and SLC transporter genes involved in transport of anticancer drugs.These results demonstrate Oncopig liver fibrosis recapitulates transcriptional hallmarks of human cirrhosis, making the Oncopig an ideal model for studying the effects of the cirrhotic liver microenvironment on HCC tumor biology and therapeutic response.
Collapse
Affiliation(s)
- Alvi Yasmin
- Department of Radiology, University of Illinois at Chicago, United States
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, United States
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, United States; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, United States
| | - Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, United States
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, United States; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, United States.
| |
Collapse
|
3
|
Gao Y, Dorn P, Liu S, Deng H, Hall SRR, Peng RW, Schmid RA, Marti TM. Cisplatin-resistant A549 non-small cell lung cancer cells can be identified by increased mitochondrial mass and are sensitive to pemetrexed treatment. Cancer Cell Int 2019; 19:317. [PMID: 31798346 PMCID: PMC6883680 DOI: 10.1186/s12935-019-1037-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/15/2019] [Indexed: 01/13/2023] Open
Abstract
Background Cisplatin plus pemetrexed combination therapy is considered the standard treatment for patients with advanced, non-squamous, non-small-cell lung cancer (NSCLC). However, advanced NSCLC has a 5-year survival rate of below 10%, which is mainly due to therapy resistance. We previously showed that the NSCLC cell line A549 harbors different subpopulations including a mesenchymal-like subpopulation characterized by increased chemo- and radiotherapy resistance. Recently, therapy resistance in hematological and solid tumors has been associated with increased mitochondrial activity. Thus, the aim of this study was to investigate the role of the mitochondrial activity in NSCLC chemotherapy resistance. Methods Based on MitoTracker staining, subpopulations characterized by the highest 10% (Mito-High) or lowest 10% (Mito-Low) mitochondrial mass content were sorted by FACS (Fluorescence-Activated Cell Sorting) from paraclonal cultures of the NSCLC A549 cell line . Mitochondrial DNA copy numbers were quantified by real-time PCR whereas basal cellular respiration was measured by high-resolution respirometry. Cisplatin and pemetrexed response were quantified by proliferation and colony formation assay. Results Pemetrexed treatment of parental A549 cells increased mitochondrial mass over time. FACS-sorted paraclonal Mito-High cells featured increased mitochondrial mass and mitochondrial DNA copy number compared to the Mito-Low cells. Paraclonal Mito-High cells featured an increased proliferation rate and were significantly more resistant to cisplatin treatment than Mito-Low cells. Interestingly, cisplatin-resistant, paraclonal Mito-High cells were significantly more sensitive to pemetrexed treatment than Mito-Low cells. We provide a working model explaining the molecular mechanism underlying the increased cisplatin- and decreased pemetrexed resistance of a distinct subpopulation characterized by high mitochondrial mass. Conclusions This study revealed that cisplatin resistant A549 lung cancer cells can be identified by their increased levels of mitochondrial mass. However, Mito-High cells feature an increased sensitivity to pemetrexed treatment. Thus, pemetrexed and cisplatin target reciprocal lung cancer subpopulations, which could explain the increased efficacy of the combination therapy in the clinical setting.
Collapse
Affiliation(s)
- Yanyun Gao
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Shengchen Liu
- 2Department of BioMedical Research, University of Bern, Bern, Switzerland.,3Department of Intensive Care Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Haibin Deng
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Sean R R Hall
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Hamed A, Ismail M, El-Metwally MM, Frese M, Ibrahim TMA, El-Haddad AF, Sewald N, Shaaban M. Diverse polyketides and alkaloids from Penicillium sp. KHMM: structural elucidation, biological and molecular docking studies. ACTA ACUST UNITED AC 2019; 74:131-137. [PMID: 30645191 DOI: 10.1515/znc-2018-0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/15/2018] [Indexed: 11/15/2022]
Abstract
As a continuation of our earlier research concerning the investigation of microbial bioactive secondary metabolites from the terrestrial Penicillium sp.KH Link 1809 isolate KHMM, the fungus was re-cultivated on a large scale to explore its bioactive compounds intensively. Fifteen compounds, including seven alkaloids (1-7), one sesquiterpene (8), an acetylenic system (9), two sterols, and sphengolipid, were identified. Their structures were established on the bases of extensive one- and two-dimensional nuclear magnetic resonance and mass measurements, and by comparison with literature data. The antimicrobial activity of the fungal extract and the corresponding compounds were studied using a panel of pathogenic microorganisms, and their in vitro cytotoxicity against the human cervix carcinoma cell line (KB-3-1) was reported as well. The molecular docking of the isolated compounds showed promising affinities for the alkaloidal compounds 4-6 towards α, β tubulins.
Collapse
Affiliation(s)
- Abdelaaty Hamed
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany.,Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Mohamed Ismail
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany.,Microbiology Department, Faculty of Science, Helwan University, Helwan-Cairo, Egypt
| | - Mohammad M El-Metwally
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany
| | - Tarek M A Ibrahim
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Atef F El-Haddad
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany
| | - Mohamed Shaaban
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany.,Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El-Behoos St. 33, Dokki-Cairo 12622, Egypt
| |
Collapse
|
5
|
Briz O, Perez-Silva L, Al-Abdulla R, Abete L, Reviejo M, Romero MR, Marin JJG. What "The Cancer Genome Atlas" database tells us about the role of ATP-binding cassette (ABC) proteins in chemoresistance to anticancer drugs. Expert Opin Drug Metab Toxicol 2019; 15:577-593. [PMID: 31185182 DOI: 10.1080/17425255.2019.1631285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Chemotherapy remains the only option for advanced cancer patients when other alternatives are not feasible. Nevertheless, the success rate of this type of therapy is often low due to intrinsic or acquired mechanisms of chemoresistance. Among them, drug extrusion from cancer cells through ATP-binding cassette (ABC) proteins plays an important role. ABC pumps are primary active transporters involved in the barrier and secretory functions of many healthy cells. Areas covered: In this review, we have used The Cancer Genome Atlas (TCGA) database to explore the relationship between the expression of the major ABC proteins involved in cancer chemoresistance in the most common types of cancer, and the drugs used in the treatment of these tumors that are substrates of these pumps. Expert opinion: From unicellular organisms to humans, several ABC proteins play a major role in detoxification processes. Cancer cells exploit this ability to protect themselves from cytostatic drugs. Among the ABC pumps, MDR1, MRPs and BCRP are able to export many antitumor drugs and are expressed in several types of cancer, and further up-regulated during treatment. This event results in the enhanced ability of tumor cells to reduce intracellular drug concentrations and hence the pharmacological effect of chemotherapy.
Collapse
Affiliation(s)
- Oscar Briz
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain.,b Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd) , Carlos III National Institute of Health , Madrid , Spain
| | - Laura Perez-Silva
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain
| | - Ruba Al-Abdulla
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain
| | - Lorena Abete
- c Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Maria Reviejo
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain
| | - Marta R Romero
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain.,b Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd) , Carlos III National Institute of Health , Madrid , Spain
| | - Jose J G Marin
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain.,b Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd) , Carlos III National Institute of Health , Madrid , Spain
| |
Collapse
|
6
|
Ye SF, Yang Y, Wu L, Ma WW, Zeng HH. Ethaselen: a novel organoselenium anticancer agent targeting thioredoxin reductase 1 reverses cisplatin resistance in drug-resistant K562 cells by inducing apoptosis. J Zhejiang Univ Sci B 2018; 18:373-382. [PMID: 28471109 DOI: 10.1631/jzus.b1600073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been reported that Ethaselen shows inhibitory effects on thioredoxin reductase (TrxR) activity and human tumor cell growth. In order to find an efficient way to reverse cisplatin resistance, we investigated the reversal effects of Ethaselen on cisplatin resistance in K562/cisplatin (CDDP) cells that were established by pulse-inducing human erythrocyte leukemic cell line K562, which are fivefold more resistant to cisplatin compared to K562 cells. The morphology and growth showed that the adhesion of K562/CDDP further decreased while the cell volume increased. The proliferation of K562/CDDP is strengthened. The antitumor activities in vitro were assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and combination index (CI), showing the significant synergic effects of cisplatin and Ethaselen. Focusing on apoptosis, a series of comparisons was made between K562 and K562/CDDP. Cisplatin induced higher reactive oxygen species (ROS) generation in K562 and subsequently induced the formation of mitochondrial permeability transition pores (PTPs). In addition, cisplatin increased the ratio of Bax to Bcl-2 in K562, which can influence the mitochondrial membrane permeability. PTP formation and mitochondrial membrane permeabilization eventually resulted in the release of cytochrome c and activation of the Caspase pathway. However, these effects were not clearly seen in K562/CDDP, which may be the reason for the acquired CDDP resistance. However, Ethaselen can induce a high level of ROS in K562/CDDP by TrxR activity inhibition and increased ratio of Bax to Bcl-2 in K562/CDDP by nuclear factor κB (NF-κB) suppression, which subsequently induces the release of cytochrome c in K562/CDDP. This response is partly responsible for the reversal of the cisplatin resistance in K562/CDDP cells.
Collapse
Affiliation(s)
- Suo-Fu Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Yang
- Keaise Clinical Examination Lab, Wuhan 430000, China
| | - Lin Wu
- Keaise Clinical Examination Lab, Wuhan 430000, China
| | - Wei-Wei Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui-Hui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
7
|
Chen JH, Zheng YL, Xu CQ, Gu LZ, Ding ZL, Qin L, Wang Y, Fu R, Wan YF, Hu CP. Valproic acid (VPA) enhances cisplatin sensitivity of non-small cell lung cancer cells via HDAC2 mediated down regulation of ABCA1. Biol Chem 2017; 398:785-792. [PMID: 28002023 DOI: 10.1515/hsz-2016-0307] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Valproic acid (VPA) has been suggested to be a histone deacetylase inhibitor (HDACI). Our present study revealed that VPA at 1 mm, which had no effect on cell proliferation, can significantly increase the sensitivity of non-small cell lung cancer (NSCLC) cells to cisplatin (DDP). VPA treatment markedly decreased the mRNA and protein levels of ABCA1, while had no significant effect on ABCA3, ABCA7 or ABCB10. Luciferase reporter assays showed that VPA can decrease the ABCA1 promoter activity in both A549 and H358 cells. VPA treatment also decreased the phosphorylation of SP1, which can bind to -100 and -166 bp in the promoter of ABCA1. While the phosphorylation of c-Fos and c-Jun were not changed in VPA treated NSCLC cells. Over expression of HDAC2 attenuated VPA induced down regulation of ABCA1 mRNA expression and promoter activities. Over expression of HDAC2 also attenuated VPA induced DDP sensitivity of NSCLC cells. These data revealed that VPA can increase the DDP sensitivity of NSCLC cells via down regulation of ABCA1 through HDAC2/SP1 signals. It suggested that combination of VPA and anticancer drugs such as DDP might be great helpful for treatment of NSCLC patients.
Collapse
|
8
|
Aberuyi N, Rahgozar S, Khosravi Dehaghi Z, Moafi A, Masotti A, Paolini A. The translational expression of ABCA2 and ABCA3 is a strong prognostic biomarker for multidrug resistance in pediatric acute lymphoblastic leukemia. Onco Targets Ther 2017; 10:3373-3380. [PMID: 28744141 PMCID: PMC5513879 DOI: 10.2147/ott.s140488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose The aim of this work was to study the correlation between the expressions of the ABCA2 and ABCA3 genes at the mRNA and protein levels in children with acute lymphoblastic leukemia (ALL) and the effects of this association on multidrug resistance (MDR). Materials and methods Sixty-nine children with de novo ALL and 25 controls were enrolled in the study. Mononuclear cells were isolated from the bone marrow. The mRNA levels of ABCA2 and ABCA3 were measured by real-time polymerase chain reaction (PCR). Samples with high mRNA levels were assessed for respective protein levels by Western blotting. Following the first year of treatment, persistent monoclonality of T-cell gamma receptors or immunoglobulin H (IgH) gene rearrangement was assessed and considered as the MDR. The tertiary structure of ABCA2 was predicted using Phyre2 and I-TASSER web systems and compared to that of ABCA3, which has been previously reported. Molecular docking was performed using DOCK 6.7. Results Real-time quantitative PCR (qRT-PCR) showed high levels of ABCA2 and ABCA3 mRNAs in 13 and 17 samples, respectively. Among them, five and eight individuals demonstrated high levels of ABCA2 and ABCA3, respectively. Response to chemotherapy was significantly decreased (P=0.001) when the mRNA and protein of both genes were overexpressed compared to individuals with high transcriptional levels of either ABCA2 or ABCA3 alone. Close similarity between ABCA2 and ABCA3 structures was revealed by protein tertiary structure prediction, whereas molecular docking analysis suggested similar binding of chemotherapy drugs and therefore a potentially similar role in determining the MDR. Conclusion Our findings suggested, for the first time, that quantification of the protein level of ABCA2 and ABCA3 transporters had a prognostic impact on pediatric ALL MDR. Furthermore, the tertiary structure of ABCA2 was predicted for the first time, and docking analysis revealed a possible compensatory effect between ABCA2 and ABCA3 transporters, which may contribute to the efflux of cytotoxic drugs and, ultimately, to chemoresistance.
Collapse
Affiliation(s)
- Narges Aberuyi
- Department of Biology, Faculty of Science, University of Isfahan
| | - Soheila Rahgozar
- Department of Biology, Faculty of Science, University of Isfahan
| | | | - Alireza Moafi
- Department of Pediatric-Hematology-Oncology, Sayed-ol-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Andrea Masotti
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Paolini
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
9
|
Cerovska E, Elsnerova K, Vaclavikova R, Soucek P. The role of membrane transporters in ovarian cancer chemoresistance and prognosis. Expert Opin Drug Metab Toxicol 2017; 13:741-753. [PMID: 28511565 DOI: 10.1080/17425255.2017.1332179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ovarian cancer has the highest mortality rate of all cancers in women. There is currently no effective method for early diagnosis, limiting the precision of clinical expectations. Predictions of therapeutic efficacy are currently not available either. Specifically, the development of chemoresistance against conventional chemotherapy poses a fundamental complication. Some membrane transporters have been reported to influence chemoresistance, which is often associated with a poor prognosis. Areas covered: The aim of this article is to review the existing information about membrane transporters and their role in both ovarian cancer chemoresistance and its outcomes. We then highlight limitations of current methodologies and suggest alternatives providing avenues for future research. Expert opinion: Membrane transporters play an important role in development of chemoresistance and affect prognosis of ovarian cancer patients; however, due to variations in methodology and in patient populations, their specific roles have yet to be clarified. For further evaluation of the clinical utility of membrane transporters, it is essential to validate results and improve methods for marker assessment across laboratories. A promising area for future research is to identify the genetic variability in potential markers in peripheral blood. These markers would then stratify patients into defined groups for optimal intervention.
Collapse
Affiliation(s)
- Ela Cerovska
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic
| | - Katerina Elsnerova
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,b 3rd Faculty of Medicine , Charles University , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| | - Radka Vaclavikova
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| | - Pavel Soucek
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| |
Collapse
|
10
|
Salim H, Zong D, Hååg P, Novak M, Mörk B, Lewensohn R, Lundholm L, Viktorsson K. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer 2015; 15:628. [PMID: 26353782 PMCID: PMC4565013 DOI: 10.1186/s12885-015-1635-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/01/2015] [Indexed: 12/30/2022] Open
Abstract
Background Platinum compounds are the mainstay of chemotherapy for lung cancer. Unfortunately treatment failure remains a critical issue since about 60 % of all non-small cell lung cancer (NSCLC) patients display intrinsic platinum resistance. Methods We analyzed global gene expression profiles of NSCLC clones surviving a pulse treatment with cisplatin and mapped deregulated signaling networks in silico by Ingenuity Pathway Analysis (IPA). Further validation was done using siRNA. Results The pooled cisplatin-surviving NSCLC clones from each of the biological replicates demonstrated heterogeneous gene expression patterns both in terms of the number and the identity of the altered genes. Genes involved in Wnt signaling pathway (Dickkopf-1, DKK1), DNA repair machinery (XRCC2) and cell-cell/cell-matrix interaction (FMN1, LGALS9) were among the top deregulated genes by microarray in these replicates and were validated by q-RT-PCR. We focused on DKK1 which previously was reported to be overexpressed in NSCLC patients. IPA network analysis revealed coordinate up-regulation of several DKK1 transcriptional regulators (TCF4, EZH2, DNAJB6 and HDAC2) in cisplatin-surviving clones from that biological replicate. Knockdown of DKK1 by siRNA sensitized for cisplatin in two different NSCLC cell lines and in ovarian A2780 cells, but not in the A2780 cis subline made resistant to cisplatin by chronic exposure, suggesting a role of DKK1 in intrinsic but not acquired platinum refractoriness. Conclusions We identified DKK1 as a possible marker of a cisplatin-refractory phenotype and as a potential novel therapeutic target to improve platinum response of NSCLC cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1635-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hogir Salim
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Dali Zong
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Petra Hååg
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Metka Novak
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Birgitta Mörk
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Rolf Lewensohn
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Lovisa Lundholm
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Kristina Viktorsson
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
11
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
12
|
Yu DMT, Huynh T, Truong AM, Haber M, Norris MD. ABC transporters and neuroblastoma. Adv Cancer Res 2015; 125:139-70. [PMID: 25640269 DOI: 10.1016/bs.acr.2014.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuroblastoma is the most common cancer of infancy and accounts for 15% of all pediatric oncology deaths. Survival rates of high-risk neuroblastoma remain less than 50%, with amplification of the MYCN oncogene the most important aberration associated with poor outcome. Direct transcriptional targets of MYCN include a number of ATP-binding cassette (ABC) transporters, of which ABCC1 (MRP1), ABCC3 (MRP3), and ABCC4 (MRP4) are the best characterized. These three transporter genes have been shown to be strongly prognostic of neuroblastoma outcome in primary untreated neuroblastoma. In addition to their ability to efflux a number of chemotherapeutic drugs, evidence suggests that these transporters also contribute to neuroblastoma outcome independent of any role in cytotoxic drug efflux. Endogenous substrates of ABCC1 and ABCC4 that may be potential candidates affecting neuroblastoma biology include molecules such as prostaglandins and leukotrienes. These bioactive lipid mediators have the ability to influence biological processes contributing to cancer initiation and progression, such as angiogenesis, cell signaling, inflammation, proliferation, and migration and invasion. ABCC1 and ABCC4 are thus potential targets for therapeutic suppression in high-risk neuroblastoma, and recently developed small-molecule inhibitors may be an effective strategy in treating aggressive forms of this cancer, as well as other cancers that express high levels of these transporters.
Collapse
Affiliation(s)
- Denise M T Yu
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Tony Huynh
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Alan M Truong
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Michelle Haber
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray D Norris
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|