1
|
Jiang C, Xu D, Feng H, Ren Z, Li X, Chen Y, Yu J, Cang S. hnRNPA1 promotes the metastasis and proliferation of gastric cancer cells through WISP2-guided Wnt/β-catenin signaling pathway. Discov Oncol 2024; 15:465. [PMID: 39298013 DOI: 10.1007/s12672-024-01354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024] Open
Abstract
The main cause of gastric cancer (GC)-related death is due to malignant cell unregulated distant metastasis and proliferation. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) has been shown to play an important role in carcinogenesis and the development of metastasis in several tumors. However, its downstream regulatory mechanism in GC is not well defined. Our study aims to investigate the function and regulatory mechanism of hnRNPA1 in GC. We analyzed the differential expression of hnRNPA1 in gastric cancer and paired adjacent normal tissues in the TCGA database. Kaplan-Meier analysis was employed for survival assessment. The expressions of hnRNPA1 in GC cells were measured by qRT-PCR and Western blot. Transwell assay, CCK8 and colony formation assay were used to detect the effect of hnRNPA1 on the metastasis and proliferation ability of GC cells. Additionally, Western blotting was performed to examine the expression of proteins related to the Wnt/β-catenin signaling pathway as well as epithelial-mesenchymal transition (EMT), while further investigations were carried out to explore potential regulatory mechanisms. The results showed that hnRNPA1 was highly expressed differentially in GC over normal gastric tissue. Knocking down hnRNPA1 inhibited the metastasis and proliferation of human gastric cancer cells. Overexpression of hnRNPA1 significantly enhanced the metastatic potential and proliferative capacity of human GC cells. Further mechanism exploration revealed that knocking down hnRNPA1 inhibited the Wnt/β-catenin signaling pathway and WNT1 inducible signaling pathway protein-2 (WISP2), an activator of the Wnt/β-catenin signaling pathway. Whereas overexpression of hnRNPA1 had the opposite effects. Our results demonstrated that hnRNPA1 promoted metastasis and proliferation of GC cells by activating Wnt/β-catenin signaling pathway via WISP2. hnRNPA1 may serve as a potential biomarker and novel therapeutic targets for GC.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Dengfei Xu
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Hao Feng
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Zirui Ren
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Xiang Li
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Yuming Chen
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd, Zhengzhou, 450003, Henan, China.
| | - Shundong Cang
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
2
|
Zeng W, Wang Y, Wang Z, Yu M, Liu K, Zhao C, Pan Y, Ma S. Veillonella parvula promotes the proliferation of lung adenocarcinoma through the nucleotide oligomerization domain 2/cellular communication network factor 4/nuclear factor kappa B pathway. Discov Oncol 2023; 14:129. [PMID: 37452162 PMCID: PMC10349017 DOI: 10.1007/s12672-023-00748-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Enrichment of Veillonella parvula in the lung microbiota is strongly associated with non-small cell lung cancer (NSCLC) and induces the progression of lung adenocarcinoma in vivo, but its actual role and mechanism remain unexplored. This study analyzed the correlation between NSCLC and V. parvula abundance based on 16 s rRNA sequencing results. The effects of V. parvula on the progression of lung adenocarcinoma were observed in vivo and in vitro using a C57 bl/6j mouse tumor-bearing model, a bacterial cell co-culture model, combined with transcriptome sequencing, and a TCGA database to explore and validate the growth promotion of lung adenocarcinoma by V. parvula and its molecular mechanism. 16 s rRNA sequencing revealed that V. parvula was significantly enriched in lung adenocarcinoma. In vivo, V. parvula promoted the growth of lung adenocarcinoma in mice by suppressing the infiltration of tumor-associated T lymphocytes and peripheral T lymphocytes. It showed a higher affinity for lung adenocarcinoma in vitro and promoted lung adenocarcinoma cell proliferation through adhesion or intracellular invasion. Further analysis of differential gene expression and KEGG enrichment by transcriptome sequencing revealed that V. parvula induced CCN4 expression and activated NOD-like receptor and NF-κB signaling pathway in lung adenocarcinoma cells. Further analysis clarified that V. parvula promoted activation of the NF-κB pathway via Nod2/CCN4 signaling, which promoted lung adenocarcinoma cell proliferation. Thus, V. parvula mediates activation of the Nod2/CCN4/NF-κB signaling pathway to promote non-small cell lung adenocarcinoma progression, thereby providing a potential target for diagnosing and treating lung adenocarcinoma.
Collapse
Affiliation(s)
- Wen Zeng
- Oncology Research Institute, Ganzhou Cancer Hospital, Gannan Medical University, Huayuan Road No.19, Shuidong Town, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, Guangdong Province, China
| | - Yuhuan Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, Guangdong Province, China
| | - Zhe Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, Guangdong Province, China
| | - Mengge Yu
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, Guangdong Province, China
| | - Kang Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Chengzhu Zhao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, Guangdong Province, China
| | - Yiyun Pan
- Oncology Research Institute, Ganzhou Cancer Hospital, Gannan Medical University, Huayuan Road No.19, Shuidong Town, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China.
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, Guangdong Province, China.
| |
Collapse
|
3
|
Zheng D, Bashir M, Li Z. ERα prevents tumorigenesis of both liver and breast cancer cells through CCN5. Biochem Biophys Res Commun 2023; 672:103-112. [PMID: 37343316 DOI: 10.1016/j.bbrc.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Estrogen receptor alpha (ERα)-mediated estrogen signaling has also shown to prevent hepatic tumorigenesis in mice. Consistent with this, hormone replacement therapy with estrogen supplementation dramatically reduced the risk of hepatocellular carcinoma. Silencing of ERα is also a key event for the transformation of ERα-positive breast cancer cells into malignant triple-negative breast cancer cells. However, the mechanisms underlying ERα-mediated prevention of both hepatic and mammary tumorigenesis in humans are still unclear. Here, we present a functional genomics study of ERα targeting by comparing human liver cancer cells with human breast cancer cells using "loss or gain of function" genetic assays of ERα in vitro and in vivo. We discover that cellular communication network factor 5 (CCN5) is a direct downstream target of ERα; ERα suppresses growth and prevents tumorigenesis and malignant transformation of both liver and breast cancer cells through CCN5 in humans. The ERα-CCN5 regulatory axis functions as suppressors for both hepatic and mammary tumors, which is a common mechanism of preventing tumorigenesis for both liver cancer and breast cancer in humans.
Collapse
Affiliation(s)
- Daoshan Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, Fujian Province, 350112, China
| | - Muniba Bashir
- School of Biomedical Sciences, University of Western Australia, QE II, M Block 225C, Crawley, WA, 6009, Australia
| | - Zhaoyu Li
- School of Biomedical Sciences, University of Western Australia, QE II, M Block 225C, Crawley, WA, 6009, Australia.
| |
Collapse
|
4
|
Zhu J, Dai H, Li X, Guo L, Sun X, Zheng Z, Xu C. LncRNA TRG-AS1 inhibits bone metastasis of breast cancer by the miR-877-5p/WISP2 axis. Pathol Res Pract 2023; 243:154360. [PMID: 36801505 DOI: 10.1016/j.prp.2023.154360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
TRG-AS1 has been proved to inhibit cancer progression, whereas its effect on bone metastases of breast cancer is unknown. In this study, we determined breast cancer patients with disease free survival is longer in breast cancer patients with high TRG-AS1 expression. Moreover, TRG-AS1 was downregulated in breast cancer tissues and even lower in bone metastatic tumor tissues. Compared with parental breast cancer cell MDA-MB-231, TRG-AS1 expression was downregulated in MDA-MB-231-BO cells with strong bone-metastatic characteristics. Next, the binding sites of miR-877-5p on TRG-AS1 and WISP2 mRNA were predicted and result showed that miR-877-5p could bind to 3'UTR of TRG-AS1 and WISP2. Subsequently, BMMs and MC3T3-E1 cells were cultured in the conditioned media of MDA-MB-231 BO cells transfected with TRG-AS1 overexpression vector, shRNA and/or miR-877-5p mimics or inhibitor and/or overexpression vector and small interfering RNA of WISP2. TRG-AS1 silencing or miR-877-5p overexpression promoted MDA-MB-231 BO cell proliferation and invasion. TRG-AS1 overexpressing reduced TRAP positive cells, decreased TRAP, Cathepsin K, c-Fos, NFATc1 and AREG expression in BMMs, and promoted OPG, Runx2 and Bglap2 expression, and decreased RANKL expression in MC3T3-E1 cells. Silencing WISP2 rescued the effect of TRG-AS1 on BMMs and MC3T3-E1 cells. In vivo results showed that tumor volumes significantly decreased in mice injected with LV-TRG-AS1 transfected MDA-MB-231 cells. TRG-AS1 knockdown markedly reduced the number of TRAP+ cells and the percentage of Ki-67+ cells and decreased E-cadherin expression in xenograft tumor mice. In summary, TRG-AS1 acts an endogenous RNA, inhibited breast cancer bone metastasis by competitively binding with miR-877-5p to upregulate WISP2 expression.
Collapse
Affiliation(s)
- Jinxiang Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Department of General Surgery, Shaanxi Provincial Cancer Hospital, Xi'an 710000, Shaanxi Province, China
| | - Hao Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xiang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Longwei Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xin Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zhiwei Zheng
- The Third Ward of General Surgery Department, Rizhao People's Hospital, Rizhao 276800, Shandong Province, China.
| | - Chongwen Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
5
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
6
|
Braun S, Zaucke F, Brenneis M, Rapp AE, Pollinger P, Sohn R, Jenei-Lanzl Z, Meurer A. The Corpus Adiposum Infrapatellare (Hoffa's Fat Pad)-The Role of the Infrapatellar Fat Pad in Osteoarthritis Pathogenesis. Biomedicines 2022; 10:1071. [PMID: 35625808 PMCID: PMC9138316 DOI: 10.3390/biomedicines10051071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, the infrapatellar fat pad (IFP) has gained increasing research interest. The contribution of the IFP to the development and progression of knee osteoarthritis (OA) through extensive interactions with the synovium, articular cartilage, and subchondral bone is being considered. As part of the initiation process of OA, IFP secretes abundant pro-inflammatory mediators among many other factors. Today, the IFP is (partially) resected in most total knee arthroplasties (TKA) allowing better visualization during surgical procedures. Currently, there is no clear guideline providing evidence in favor of or against IFP resection. With increasing numbers of TKAs, there is a focus on preventing adverse postoperative outcomes. Therefore, anatomic features, role in the development of knee OA, and consequences of resecting versus preserving the IFP during TKA are reviewed in the following article.
Collapse
Affiliation(s)
- Sebastian Braun
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Marco Brenneis
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Anna E. Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Patrizia Pollinger
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| |
Collapse
|
7
|
WISP2/CCN5 Suppresses Vasculogenic Mimicry through Inhibition of YAP/TAZ Signaling in Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14061487. [PMID: 35326638 PMCID: PMC8945957 DOI: 10.3390/cancers14061487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer is the most frequent malignancy in women worldwide. Advanced breast cancer with distant organ metastases is considered incurable with currently available therapies. The vasculogenic mimicry (VM) process is associated with an invasive and metastatic cancer phenotype and a poor prognosis for human breast cancer patients. Our aim was to study the effect of WISP2, a matricellular protein, on VM. We found that WISP2 inhibits VM through inhibition of CYR61 protein expression and YAP-TAZ signaling. Our finding may open promising candidates for blocking VM in breast cancer. Abstract Vasculogenic mimicry (VM) formed by aggressive tumor cells to create vascular networks connected with the endothelial cells, plays an important role in breast cancer progression. WISP2 has been considered as a tumor suppressor protein; however, the relationship between WISP2 and VM formation remains unclear. We used the in vitro tube formation assay and in vivo immunohistochemical analysis in a mouse model, and human breast tumors were used to evaluate the effect of WISP2 on VM formation. Here we report that WISP2 acts as a potent inhibitor of VM formation in breast cancer. Enforced expression of WISP2 decreased network formation while knockdown of WISP2 increased VM. Mechanistically, WISP2 increased retention of oncogenic activators YAP/TAZ in cytoplasm, leading to decreased expression of the angiogenic factor CYR61. Studies using an in vivo mouse model and human breast tumors confirmed the in vitro cell lines data. In conclusion, our results indicate that WISP2 may play a critical role in VM and highlight the critical role of WISP2 as a tumor suppressor.
Collapse
|
8
|
Rebolledo DL, Acuña MJ, Brandan E. Role of Matricellular CCN Proteins in Skeletal Muscle: Focus on CCN2/CTGF and Its Regulation by Vasoactive Peptides. Int J Mol Sci 2021; 22:5234. [PMID: 34063397 PMCID: PMC8156781 DOI: 10.3390/ijms22105234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
The Cellular Communication Network (CCN) family of matricellular proteins comprises six proteins that share conserved structural features and play numerous biological roles. These proteins can interact with several receptors or soluble proteins, regulating cell signaling pathways in various tissues under physiological and pathological conditions. In the skeletal muscle of mammals, most of the six CCN family members are expressed during embryonic development or in adulthood. Their roles during the adult stage are related to the regulation of muscle mass and regeneration, maintaining vascularization, and the modulation of skeletal muscle fibrosis. This work reviews the CCNs proteins' role in skeletal muscle physiology and disease, focusing on skeletal muscle fibrosis and its regulation by Connective Tissue Growth factor (CCN2/CTGF). Furthermore, we review evidence on the modulation of fibrosis and CCN2/CTGF by the renin-angiotensin system and the kallikrein-kinin system of vasoactive peptides.
Collapse
Affiliation(s)
- Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago 8370854, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Fundación Ciencia & Vida, Santiago 7810000, Chile
| |
Collapse
|
9
|
Ji X, Liu T, Zhao S, Li J, Li L, Wang E. WISP-2, an upregulated gene in hip cartilage from the DDH model rats, induces chondrocyte apoptosis through PPARγ in vitro. FASEB J 2020; 34:4904-4917. [PMID: 32058630 DOI: 10.1096/fj.201901915r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/29/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
Chondrocyte apoptosis plays an important role in the developmental dysplasia of the hip (DDH) development. It has been found that WNT1 inducible signaling pathway protein 2 (WISP-2) and peroxisome proliferator-activated receptor γ (PPARγ) are involved in cell apoptosis. In this study, we performed the straight-leg swaddling DDH rat model and we found that cartilage degradation and chondrocyte apoptosis were remarkably increased in DDH rats in vivo. Moreover, we found that WISP-2 was upregulated in hip acetabular cartilage of DDH rats compared to control rats. Next, the effects of WISP-2 on chondrocyte apoptosis and its possible underlying mechanism were examined in vitro. The lentivirus-mediated gain- and loss-of-function experiments of WISP-2 and peroxisome proliferator-activated receptor γ (PPARγ) for cell viability and apoptosis were performed in primary rat chondrocytes. The results showed that the overexpression of WISP-2 induced chondrocyte apoptosis, and knockdown of WISP-2 could suppress the chondrocyte apoptosis induced by advanced glycation end products (AGE). Additionally, WISP-2 could negatively regulate the expression of PPARγ in chondrocytes. Moreover, the knockdown of PPARγ promoted chondrocyte apoptosis and overexpression of PPARγ abated the increased apoptosis and decreased cell viability of chondrocytes induced by WISP-2. This study demonstrated that WISP-2 might contribute to chondrocyte apoptosis of hip acetabular cartilage through regulating PPARγ expression and activation, which may play an important role in the development of DDH.
Collapse
Affiliation(s)
- Xianglu Ji
- Department of Hand and Foot Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tianjing Liu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shuyi Zhao
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jianjun Li
- Department of Traumatic Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Enbo Wang
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
10
|
Liu C, Ji L, Song X. Long non coding RNA UCA1 contributes to the autophagy and survival of colorectal cancer cells via sponging miR-185-5p to up-regulate the WISP2/β-catenin pathway. RSC Adv 2019; 9:14160-14166. [PMID: 35519332 PMCID: PMC9064001 DOI: 10.1039/c8ra10468a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/22/2019] [Indexed: 11/21/2022] Open
Abstract
The estimated number of new cases of colorectal cancer (CRC) will increase to 140 250 in 2018 worldwide. The long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has recently been shown to be dysregulated in CRC, which plays an important role in the progression of CRC. However, the biological role and the underling mechanism of UCA1 in the carcinogenesis of CRC remain unclear. Herein, we found that UCA1 was aberrantly upregulated in two CRC cell lines (SW620 and HT29) compared to colorectal cell CCD-18Co. UCA1 knockdown inhibited the apoptosis, growth and autophagy of CRC cell lines in vitro. Furthermore, UCA1 could act as an endogenous sponge by directly interacting with miR-185-5p and downregulation miR-185-5p expression. In addition, UCA1 could reverse the inhibitory effect of miR-185-5p on the growth and autophagy of CRC cells, which might be involved in the derepression of member 1 (WNT1)-inducible signaling pathway protein 2 (WISP2, a target gene of miR-185-5p) expression and the activation of the WISP2/β-catenin signaling pathway. In vivo, the present study elucidates a novel UCA1-miR-185-5p-WISP2-Wnt/β-catenin axis in CRC, which may help us to understand the pathogenesis and the feasibility of lncRNA-directed diagnosis and therapy of CRC. The estimated number of new cases of colorectal cancer (CRC) will increase to 140 250 in 2018 worldwide.![]()
Collapse
Affiliation(s)
- Chao Liu
- Department of Gastroenterology, Affiliated Hospital of Yan'an University No. 43 North Street Yan'an 716000 Shaanxi China +86 09112881486
| | - Le Ji
- Department of Gastroenterology, Affiliated Hospital of Yan'an University No. 43 North Street Yan'an 716000 Shaanxi China +86 09112881486
| | - Xue Song
- Department of Gastroenterology, Affiliated Hospital of Yan'an University No. 43 North Street Yan'an 716000 Shaanxi China +86 09112881486
| |
Collapse
|
11
|
Wang GN, Zhong M, Chen Y, Ji J, Gao XQ, Wang TF. Expression of WNT1 in ameloblastoma and its significance. Oncol Lett 2018; 16:1507-1512. [PMID: 30008830 PMCID: PMC6036424 DOI: 10.3892/ol.2018.8820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/16/2018] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to measure the expression of WNT1 in ameloblastoma (AB). Immunohistochemistry was used to observe changes in WNT1 expression in 80 AB samples, 10 keratocystic odontogenic tumor (KCOT) samples and 10 normal oral mucosa (NOM) samples. Western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to measure WNT1 protein and mRNA expression, respectively, in 30 AB samples, 5 KCOT samples, 5 NOM samples and 3 tooth germ samples. Ectopic cytoplasmic expression of WNT1 was detected in AB; 88.8% (71/80) of the samples were WNT1-positive. The western blotting results demonstrated that compared with NOM (0.57±0.05), WNT1 expression was significantly higher in AB tissue (1.74±0.36, P<0.05), whereas it was not significantly different between AB and KCOT samples (0.80±0.06, P>0.05). RT-qPCR revealed that the level of WNT1 gene expression in AB was increased 2.43-fold compared with normal mucosa, and 1.77-fold compared with tooth germ tissue. In conclusion, WNT1 protein and mRNA expression were increased in AB, and there was ectopic cytoplasmic expression. This indicates that WNT1 may serve an important role in AB occurrence and development.
Collapse
Affiliation(s)
- Guan-Nan Wang
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China.,Basic Medicine College, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ming Zhong
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Yv Chen
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Jia Ji
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xiu-Qiu Gao
- Department of Oral Medicine, Second Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Tian-Fu Wang
- Liaoning Railway Vocational and Technical College, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
12
|
Vidmar J, Chingwaru C, Chingwaru W. Mammalian cell models to advance our understanding of wound healing: a review. J Surg Res 2017; 210:269-280. [DOI: 10.1016/j.jss.2016.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 07/12/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022]
|
13
|
Guan Q, Wang X, Jiang Y, Zhao L, Nie Z, Jin L. RNA-Seq Expression Analysis of Enteric Neuron Cells with Rotenone Treatment and Prediction of Regulated Pathways. Neurochem Res 2016; 42:572-582. [PMID: 27900601 DOI: 10.1007/s11064-016-2112-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022]
Abstract
The enteric nervous system (ENS) is involved in the initiation and development of the pathological process of Parkinson's disease (PD). The effect of rotenone on the ENS may trigger the progression of PD through the central nervous system (CNS). In this study, we used RNA-sequencing (RNA-seq) analysis to examine differential expression genes (DEGs) and pathways induced by in vitro treatment of rotenone in the enteric nervous cells isolated from rats. We identified 45 up-regulated and 30 down-regulated genes. The functional categorization revealed that the DEGs were involved in the regulation of cell differentiation and development, response to various stimuli, and regulation of neurogenesis. In addition, the pathway and network analysis showed that the Mitogen Activated Protein Kinase (MAPK), Toll-like receptor, Wnt, and Ras signaling pathways were intensively involved in the effect of rotenone on the ENS. Additionally, the quantitative real-time polymerase chain reaction result for the selected seven DEGs matched those of the RNA-seq analysis. Our results present a significant step in the identification of DEGs and provide new insight into the progression of PD in the rotenone-induced model.
Collapse
Affiliation(s)
- Qiang Guan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanyan Jiang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Lijuan Zhao
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Zhiyu Nie
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Lingjing Jin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
14
|
Human pancreatic cancer progression: an anarchy among CCN-siblings. J Cell Commun Signal 2016; 10:207-216. [PMID: 27541366 DOI: 10.1007/s12079-016-0343-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or cure this fatal disease. Regrettably, the studies found that majority of the molecular events that dictate carcinogenic growth in the pancreas are non-actionable (potential non-responder groups of targeted therapy). In this review we discuss exciting discoveries on CCN-siblings that reveal how CCN-family members contribute to the different aspects of the development of pancreatic cancer with special emphasis on therapy.
Collapse
|
15
|
CCN family of proteins: critical modulators of the tumor cell microenvironment. J Cell Commun Signal 2016; 10:229-240. [PMID: 27517291 DOI: 10.1007/s12079-016-0346-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The CCN family of proteins consisting of CCN1 (Cyr61), CCN2 (CTGF), CCN3 (NOV), CCN4 (WISP-1), CCN5 (WISP-2) and CCN6 (WISP-3) are considered matricellular proteins operating essentially in the extracellular microenvironment between cells. Evidence has also been gradually building since their first discovery of additional intracellular roles although the major activity is triggered at the cell membrane. The proteins consist of 4 motifs, a signal peptide (for secretion} followed consecutively by the IGFBP, VWC, TSP1 and CT (C-terminal cysteine knot domain) motifs, which signify their potential binding partners and functional connections to a variety of key regulators of physiological processes. With respect to cancer it is now clear that, whereas certain members can facilitate tumor behavior and progression, others can competitively counter the process. It is therefore clear that the net outcome of biological interactions in the matrix and what gets signaled or inhibited can be a function of the interplay of these CCN 1-6 proteins. Because the CCN proteins further interact with other key proteins, like growth factors in the matrix, the balance is not only important but can vary dynamically with the physiological states of tumor cells and the surrounding normal cells. The tumor niche with its many cell players has surfaced as a critical determinant of tumor behavior, invasiveness, and metastasis. It is in this context that CCN proteins should be investigated with the potential of being recognized and validated for future therapeutic approaches.
Collapse
|
16
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|
17
|
Abstract
Wnt-1 inducible signaling pathway-1 (WISP-1), also known as CCN-4, belongs to the connective tissue growth factor (CTGF) family. WISP-1 is primarily expressed in embryonic stem cells and is involved in adult organ development. WISP-1 participates in many cellular processes, including proliferation, differentiation, apoptosis and adhesion. In addition, WISP-1 plays an important role in diverse pathophysiological processes, such as embryonic development, inflammation, injury repairs and cancers. Recent studies showed that WISP-1 was highly correlated with tumor progression and malignant transformation, whereas it played an oncogenic role in colorectal cancer, cholangiocarcinoma, hepatocellular carcinoma and breast cancer. However, interestingly, WISP-1 exerts a tumor-suppressing role in lung and prostate cancers. WISP-1 promotes cell proliferation, adhesion, motility, invasion, metastasis and epithelial-to-mesenchymal transition via particular signaling pathways. In this review, we discussed the structure, expression profile, functions, clinical significance and potential mechanisms of WISP-1 in cancer and non-neoplastic diseases.
Collapse
Affiliation(s)
- Mengmeng Feng
- Laboratory of Surgery, the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Shuqin Jia
- Laboratory of Surgery, the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Molecular Oncology Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Molecular Diagnosis, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
18
|
Li J, Ye L, Owen S, Weeks HP, Zhang Z, Jiang WG. Emerging role of CCN family proteins in tumorigenesis and cancer metastasis (Review). Int J Mol Med 2015; 36:1451-63. [PMID: 26498181 PMCID: PMC4678164 DOI: 10.3892/ijmm.2015.2390] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
The CCN family of proteins comprises the members CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. They share four evolutionarily conserved functional domains, and usually interact with various cytokines to elicit different biological functions including cell proliferation, adhesion, invasion, migration, embryonic development, angiogenesis, wound healing, fibrosis and inflammation through a variety of signalling pathways. In the past two decades, emerging functions for the CCN proteins (CCNs) have been identified in various types of cancer. Perturbed expression of CCNs has been observed in a variety of malignancies. The aberrant expression of certain CCNs is associated with disease progression and poor prognosis. Insight into the detailed mechanisms involved in CCN-mediated regulation may be useful in understanding their roles and functions in tumorigenesis and cancer metastasis. In this review, we briefly introduced the functions of CCNs, especially in cancer.
Collapse
Affiliation(s)
- Jun Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Hoi Ping Weeks
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
19
|
Komatsu M, Nakamura Y, Maruyama M, Abe K, Watanapokasin R, Kato H. Expression profiles of human CCN genes in patients with osteoarthritis or rheumatoid arthritis. J Orthop Sci 2015; 20:708-16. [PMID: 25986313 DOI: 10.1007/s00776-015-0727-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/09/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) and rheumatoid arthritis (RA) are widespread disabling joint disorders that are considered to be polygenic in nature. This study investigated the spatial expression patterns of all six known human CCN genes using end-stage OA and RA joint samples. DESIGN We performed in situ hybridization and histological analysis to investigate the spatial expression patterns of human CCN genes using joint tissues obtained during total knee and hip joint replacement procedures on patients with advanced OA or RA. Normal joint tissues taken while performing bipolar hip replacement surgeries were used as controls. RESULTS All CCN genes were expressed at higher levels in OA and RA synovial samples as compared with normal controls. Whereas CCN3 and CCN6 were undetectable in control, OA, and RA cartilage, CCN1, CCN2, CCN4, and CCN5 were expressed to a greater extent in OA and RA knee cartilage. CONCLUSIONS Our results indicate an involvement of several CCN genes in the pathophysiology of OA and RA.
Collapse
Affiliation(s)
- Masatoshi Komatsu
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Zhang YW, Zheng Y, Wang JZ, LU XX, Wang Z, Chen LB, Guan XX, Tong JD. Integrated analysis of DNA methylation and mRNA expression profiling reveals candidate genes associated with cisplatin resistance in non-small cell lung cancer. Epigenetics 2014; 9:896-909. [PMID: 24699858 PMCID: PMC4065187 DOI: 10.4161/epi.28601] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/15/2014] [Accepted: 03/19/2014] [Indexed: 01/07/2023] Open
Abstract
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2'-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.
Collapse
Affiliation(s)
- You-Wei Zhang
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
- Department of Oncology; Affiliated Xuzhou Central Hospital; Xuzhou Medical College; Xuzhou, PR China
| | - Yun Zheng
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Jing-Zi Wang
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Xiao-Xia LU
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
| | - Zhu Wang
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
| | - Long-Bang Chen
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Xiao-Xiang Guan
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Jian-Dong Tong
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
| |
Collapse
|
21
|
Oliveras-Ferraros C, Vazquez-Martin A, Cuyàs E, Corominas-Faja B, Rodríguez-Gallego E, Fernández-Arroyo S, Martin-Castillo B, Joven J, Menendez JA. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile. Cell Cycle 2014; 13:1132-44. [PMID: 24553122 DOI: 10.4161/cc.27982] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA, AURKB, BUB1, CENP-A, CENP-M) and pro-autophagic features (i.e., TRAIL upregulation and BCL-2 downregulation), it appears that the unique mechanism of acquired resistance to metformin has opposing roles in growth and metastatic dissemination. While refractoriness to metformin limits breast cancer cell growth, likely due to aberrant mitotic/cytokinetic machinery and accelerated autophagy, it notably increases the potential of metastatic dissemination by amplifying the number of pro-migratory and stemness inputs via the activation of a significant number of proteases and EMT regulators. Future studies should elucidate whether our findings using supra-physiological concentrations of metformin mechanistically mimic the ultimate processes that could paradoxically occur in a polyploid, senescent-autophagic scenario triggered by the chronic metabolic stresses that occur during cancer development and after treatment with cancer drugs.
Collapse
Affiliation(s)
- Cristina Oliveras-Ferraros
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Alejandro Vazquez-Martin
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Bruna Corominas-Faja
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain; Unit of Clinical Research; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Javier A Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| |
Collapse
|