1
|
Ajayi AF, Hamed MA, Onaolapo MC, Fiyinfoluwa OH, Oyeniran OI, Oluwole DT. Defining the genetic profile of prostate cancer. Urol Oncol 2024:S1078-1439(24)00771-3. [PMID: 39690078 DOI: 10.1016/j.urolonc.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/19/2024]
Abstract
Several studies indicated that prostate cancer has a hereditary component. In particular, a significant risk of prostate cancer has been linked to a tight familial lineage. However, to provide insight into how prostate cancer is inherited, characterising its genetic profile is essential. The current body of research on the analysis of genetic mutations in prostate cancer was reviewed to achieve this. This paper reports on the effects and underlying processes of prostate cancer that have been linked to decreased male fertility. Many research approaches used have resulted in the discovery of unique inheritance patterns and manifest traits, the onset and spread of prostate cancer have also been linked to many genes. Studies have specifically examined Androgen Receptor gene variants about prostate cancer risk and disease progression. Research has shown that genetic and environmental variables are important contributors to prostate cancer, even if the true origins of the disease are not fully recognised or established. Researchers studying the genetics of prostate cancer are using genome-wide association studies more and more because of their outstanding effectiveness in revealing susceptibility loci for prostate cancer. Genome-Wide Association Studies provides a detailed method for identifying the distinct sequence of a gene that is associated with cancer risk. Surgical procedures and radiation treatments are 2 of the treatment options for prostate cancer. Notwithstanding the compelling evidence shown in this work, suggests that more research must be done to detect the gene alterations and the use of genetic variants in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria; The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - Moyinoluwa Comfort Onaolapo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Ogundipe Helen Fiyinfoluwa
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | | | - David Tolulope Oluwole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Department of Physiology, College of Health Sciences, Crescent University, Abeokuta, Ogun State, Nigeria.
| |
Collapse
|
2
|
Ahmed I, Chakraborty R, Faizy AF, Moin S. Exploring the key role of DNA methylation as an epigenetic modulator in oxidative stress related islet cell injury in patients with type 2 diabetes mellitus: a review. J Diabetes Metab Disord 2024; 23:1699-1718. [PMID: 39610516 PMCID: PMC11599646 DOI: 10.1007/s40200-024-01496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterised by impaired insulin secretion and action, often exacerbated by oxidative stress. Recent research has highlighted the intricate involvement of epigenetic mechanisms, particularly DNA methylation, in the pathogenesis of T2DM. This review aims to elucidate the role of DNA methylation as an epigenetic modifier in oxidative stress-mediated beta cell dysfunction, a key component of T2DM pathophysiology. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) production and antioxidant defence mechanisms, is a hallmark feature of T2DM. Beta cells, responsible for insulin secretion, are particularly vulnerable to oxidative damage due to their low antioxidant capacity. Emerging evidence suggests that oxidative stress can induce aberrant DNA methylation patterns in beta cells, leading to altered gene expression profiles associated with insulin secretion and cell survival. Furthermore, studies have identified specific genes involved in beta cell function and survival that undergo DNA methylation changes in response to oxidative stress in T2DM. These epigenetic modifications can perpetuate beta cell dysfunction by dysregulating key pathways essential for insulin secretion, such as the insulin signalling cascade and mitochondrial function. Understanding the interplay between DNA methylation, oxidative stress, and beta cell dysfunction holds promise for developing novel therapeutic strategies for T2DM. Targeting aberrant DNA methylation patterns may offer new avenues for restoring beta cell function and improving glycemic control in patients with T2DM. However, further research is needed to elucidate the complex mechanisms underlying epigenetic regulation in T2DM and to translate these findings into clinical interventions.
Collapse
Affiliation(s)
- Istiaque Ahmed
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Ritoja Chakraborty
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Abul Faiz Faizy
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
3
|
Vaida M, Arumalla KK, Tatikonda PK, Popuri B, Bux RA, Tappia PS, Huang G, Haince JF, Ford WR. Identification of a Novel Biomarker Panel for Breast Cancer Screening. Int J Mol Sci 2024; 25:11835. [PMID: 39519384 PMCID: PMC11546995 DOI: 10.3390/ijms252111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer remains a major public health concern, and early detection is crucial for improving survival rates. Metabolomics offers the potential to develop non-invasive screening and diagnostic tools based on metabolic biomarkers. However, the inherent complexity of metabolomic datasets and the high dimensionality of biomarkers complicates the identification of diagnostically relevant features, with multiple studies demonstrating limited consensus on the specific metabolites involved. Unlike previous studies that rely on singular feature selection techniques such as Partial Least Square (PLS) or LASSO regression, this research combines supervised and unsupervised machine learning methods with random sampling strategies, offering a more robust and interpretable approach to feature selection. This study aimed to identify a parsimonious and robust set of biomarkers for breast cancer diagnosis using metabolomics data. Plasma samples from 185 breast cancer patients and 53 controls (from the Cooperative Human Tissue Network, USA) were analyzed. This study also overcomes the common issue of dataset imbalance by using propensity score matching (PSM), which ensures reliable comparisons between cancer and control groups. We employed Univariate Naïve Bayes, L2-regularized Support Vector Classifier (SVC), Principal Component Analysis (PCA), and feature engineering techniques to refine and select the most informative features. Our best-performing feature set comprised 11 biomarkers, including 9 metabolites (SM(OH) C22:2, SM C18:0, C0, C3OH, C14:2OH, C16:2OH, LysoPC a C18:1, PC aa C36:0 and Asparagine), a metabolite ratio (Kynurenine-to-Tryptophan), and 1 demographic variable (Age), achieving an area under the ROC curve (AUC) of 98%. These results demonstrate the potential for a robust, cost-effective, and non-invasive breast cancer screening and diagnostic tool, offering significant clinical value for early detection and personalized patient management.
Collapse
Affiliation(s)
- Maria Vaida
- Department of Analytics, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA; (M.V.); (K.K.A.); (P.K.T.); (B.P.); (W.R.F.)
| | - Kamala K. Arumalla
- Department of Analytics, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA; (M.V.); (K.K.A.); (P.K.T.); (B.P.); (W.R.F.)
| | - Pavan Kumar Tatikonda
- Department of Analytics, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA; (M.V.); (K.K.A.); (P.K.T.); (B.P.); (W.R.F.)
| | - Bharadwaj Popuri
- Department of Analytics, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA; (M.V.); (K.K.A.); (P.K.T.); (B.P.); (W.R.F.)
| | - Rashid A. Bux
- BioMark Diagnostics Inc., Richmond, BC V6X 2W2, Canada;
| | | | - Guoyu Huang
- BioMark Diagnostic Solutions Inc., Quebec City, QC G1P 4P5, Canada; (G.H.); (J.-F.H.)
| | - Jean-François Haince
- BioMark Diagnostic Solutions Inc., Quebec City, QC G1P 4P5, Canada; (G.H.); (J.-F.H.)
| | - W. Randolph Ford
- Department of Analytics, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA; (M.V.); (K.K.A.); (P.K.T.); (B.P.); (W.R.F.)
| |
Collapse
|
4
|
Banerjee S, Ghosh B, Jha T, Adhikari N. A patent review of histone deacetylase 8 (HDAC8) inhibitors (2013-present). Expert Opin Ther Pat 2024; 34:1019-1045. [PMID: 39121339 DOI: 10.1080/13543776.2024.2391289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 08/08/2024] [Indexed: 08/11/2024]
Abstract
INTRODUCTION The processes and course of several fatal illnesses, such as cancer, inflammatory diseases, and neurological disorders are closely correlated with HDAC8. Therefore, novel HDAC8 inhibitors represent effective therapeutic possibilities that may help treat these conditions. To yet, there are not any such particular HDAC8 inhibitors available for sale. This review was conducted to examine recent HDAC8 inhibitors that have been patented over the last 10 years. AREAS COVERED This review focuses on HDAC8 inhibitor-related patents and their therapeutic applications that have been published within the last 10 years and are accessible through the Patentscope and Google Patents databases. EXPERT OPINION A handful of HDAC8 inhibitor-related patents have been submitted over the previous 10 years, more selective, and specific HDAC8 inhibitors that are intended to treat a variety of medical diseases. This could lead to the development of novel treatment approaches that target HDAC8. Employing theoretical frameworks and experimental procedures can reveal the creation of new HDAC8 inhibitors with enhanced pharmacokinetic characteristics. A thorough understanding of the role that HDAC8 inhibitors play in cancer, including the mechanisms behind HDAC8 in other disorders is necessary.
Collapse
Affiliation(s)
- Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
5
|
Ohlinger J, Vordermark D, Ostheimer C, Bache M, Tzschoppe T, Demircan K, Schomburg L, Medenwald D, Seliger B. Change in the serum selenium level of patients with non-metastatic and metastatic non-small cell lung cancer (NSCLC) during radiotherapy as a predictive factor for survival. Strahlenther Onkol 2024:10.1007/s00066-024-02276-w. [PMID: 39240366 DOI: 10.1007/s00066-024-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/07/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Lung cancer remains a serious medical problem. The trace element selenium seems to be a promising prognostic marker or therapeutic option for cancer patients. METHODS We enrolled 99 patients with histologically confirmed NSCLC undergoing radiotherapy. The serum selenium level of these patients was determined prior to irradiation (t0), after reaching 20 Gy (t1), and at the end of radiotherapy (t2). Selenium concentrations were measured with total-reflection X‑ray fluorescence (TXRF) spectroscopy. We formed three subgroups according to the change in serum selenium levels across timepoints, and Kaplan-Meier analysis was used to estimate overall survival (OS). Further subgroups were patients with/without metastatic disease. We used adjusted Cox regression models. RESULTS The change in selenium concentration was especially significant between t0 and t1 for the whole study group (hazard ratio [HR] = 0.5, p = 0.03) as well as in patients with metastasized NSCLC (HR = 0.3, p = 0.04) after adjustment. The baseline selenium value in patients with non-metastasized NSCLC was associated with overall survival (HR = 0.3, p = 0.04). The change in selenium levels between t0 and t2 was significant in patients with metastatic lung cancer (HR = 0.1, p = 0.03). Patients with increased serum selenium levels during radiotherapy between the start of treatment (t0) and t1 had better OS (HR = 0.46, p = 0.05). CONCLUSION Especially patients with increasing selenium levels during radiotherapy showed an improved overall survival. Thus, serum selenium might be a predictive factor for OS in NSCLC patients. The value of supplementation of the trace element is subject to future research.
Collapse
Affiliation(s)
- Julia Ohlinger
- Medical Faculty, Radiation Therapy Clinic, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Dirk Vordermark
- Medical Faculty, Radiation Therapy Clinic, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Christian Ostheimer
- Medical Faculty, Radiation Therapy Clinic, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Matthias Bache
- Medical Faculty, Radiation Therapy Clinic, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Therese Tzschoppe
- Medical Faculty, Radiation Therapy Clinic, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Kamil Demircan
- Charité-University Medicine Berlin, Institute for Experimental Endocrinology, Berlin, Germany
| | - Lutz Schomburg
- Charité-University Medicine Berlin, Institute for Experimental Endocrinology, Berlin, Germany
| | - Daniel Medenwald
- Medical Faculty, Radiation Therapy Clinic, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.
| | - Barbara Seliger
- Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School "Theodor Fontane", Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
6
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
7
|
Vestuto V, Ciaglia T, Musella S, Di Sarno V, Smaldone G, Di Matteo F, Scala MC, Napolitano V, Miranda MR, Amodio G, Novi S, Pepe G, Basilicata MG, Gazzillo E, Pace S, Gomez-Monterrey IM, Sala M, Bifulco G, Tecce MF, Campiglia P, Ostacolo C, Lauro G, Manfra M, Bertamino A. A Comprehensive In Vitro Characterization of a New Class of Indole-Based Compounds Developed as Selective Haspin Inhibitors. J Med Chem 2024; 67:12711-12734. [PMID: 39038808 PMCID: PMC11320660 DOI: 10.1021/acs.jmedchem.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Haspin is an emerging, but rather unexplored, divergent kinase involved in tumor growth by regulating the mitotic phase. In this paper, the in-silico design, synthesis, and biological characterization of a new series of substituted indoles acting as potent Haspin inhibitors are reported. The synthesized derivatives have been evaluated by FRET analysis, showing very potent Haspin inhibition. Then, a comprehensive in-cell investigation highlighted compounds 47 and 60 as the most promising inhibitors. These compounds were challenged for their synergic activity with paclitaxel in 2D and 3D cellular models, demonstrating a twofold improvement of the paclitaxel antitumor activity. Compound 60 also showed remarkable selectivity when tested in a panel of 70 diverse kinases. Finally, in-silico studies provided new insight about the chemical requirements useful to develop new Haspin inhibitors. Biological results, together with the drug-likeness profile of 47 and 60, make these derivatives deserving further studies.
Collapse
Affiliation(s)
- Vincenzo Vestuto
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Tania Ciaglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Simona Musella
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Veronica Di Sarno
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Gerardina Smaldone
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Francesca Di Matteo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Maria Carmina Scala
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Valeria Napolitano
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Maria Rosaria Miranda
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Giuseppina Amodio
- Department
of Medicine, Surgery and Dentistry “Scuola Medica Salernitana″, University of Salerno, Salerno , Baronissi 84034, Italy
| | - Sara Novi
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Giacomo Pepe
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Manuela Giovanna Basilicata
- Department
of Advanced Medical and Surgical Science, University of Campania “Luigi Vanvitelli”, P.zza L. Miraglia 2, Naples 80138, Italy
| | - Erica Gazzillo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Simona Pace
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | | | - Marina Sala
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Giuseppe Bifulco
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Mario Felice Tecce
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Pietro Campiglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Carmine Ostacolo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Gianluigi Lauro
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| | - Michele Manfra
- Department
of Science, University of Basilicata, Via dell’Ateneo Lucano 10 , Potenza 85100, Italy
| | - Alessia Bertamino
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132 , Salerno , Fisciano 84084, Italy
| |
Collapse
|
8
|
Simões RB, Simões MDELPB, Ioshii SO, Robes RR, Dall'antonia MO, Goehr MP, Neves PJF. Effects of valproic acid on wound healing of the abdominal wall musculoaponeurotic layer: an experimental study in rats. Rev Col Bras Cir 2024; 51:e20243676. [PMID: 38896636 DOI: 10.1590/0100-6991e-20243676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/10/2024] [Indexed: 01/03/2025] Open
Abstract
INTRODUCTION valproic acid (VPA), an epigenetic drug, has potential for the treatment of neoplasms. Its effects on the healing of the peritoneal-musculo-aponeurotic plane (PMA) of the abdominal wall are studied. METHOD sixty Wistar rats were allocated into two groups: experimental (VPA) and control (0.9% sodium chloride), treated daily, starting three days before the intervention and until euthanasia. Under anesthesia, a median laparotomy was performed and repaired with two synthetic layers. Assessments took place 3, 7 and 14 days after surgery. The integrity of the wounds, the quality of the inflammatory reaction, the intensity of the leukocyte infiltrate, collagen synthesis, the intensity of angiogenesis and the presence of myofibroblasts were studied. RESULTS there was dehiscence of the PMA plane in 11 of the 30 animals (p=0.001) in the experimental group. There was no difference in the quality and intensity of the inflammatory reaction. Immunohistochemistry revealed, in the experimental group, less collagen I (p3=0.003, p7=0.013 and p14=0.001) and more collagen III (p3=0.003, p7=0.013 and p14= 0.001). Collagen evaluated by Sirus Supra Red F3BA showed, in the experimental group, less collagen at all three times (p<0.001) with less collagen I and collagen III (p<0.001). A lower number of vessels was found on the 3rd day (p<0.001) and on the 7th day (p=0.001) and did not affect the number of myofibroblasts. CONCLUSION VPA showed dehiscence of the PMA plane, with less deposition of total collagen and collagen I, less angiogenic activity, without interfering with the number of myofibroblasts.
Collapse
Affiliation(s)
- Rachel Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
| | - Maria DE Lourdes Pessole Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Sérgio Ossamu Ioshii
- - Universidade Federal do Paraná, Departamento de Patologia da UFPR - Curitiba - PR - Brasil
| | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | | | - Matheus Prince Goehr
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Pedro Juan Furtado Neves
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| |
Collapse
|
9
|
Simões RB, Simões MDELPB, Ioshii SO, Robes RR, Dall'antonia MO, Goehr MP, Neves PJF. Effects of valproic acid on wound healing of the abdominal wall musculoaponeurotic layer: an experimental study in rats. Rev Col Bras Cir 2024; 51:e20243676. [PMID: 38896636 PMCID: PMC11185066 DOI: 10.1590/0100-6991e-20243676-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/10/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION valproic acid (VPA), an epigenetic drug, has potential for the treatment of neoplasms. Its effects on the healing of the peritoneal-musculo-aponeurotic plane (PMA) of the abdominal wall are studied. METHOD sixty Wistar rats were allocated into two groups: experimental (VPA) and control (0.9% sodium chloride), treated daily, starting three days before the intervention and until euthanasia. Under anesthesia, a median laparotomy was performed and repaired with two synthetic layers. Assessments took place 3, 7 and 14 days after surgery. The integrity of the wounds, the quality of the inflammatory reaction, the intensity of the leukocyte infiltrate, collagen synthesis, the intensity of angiogenesis and the presence of myofibroblasts were studied. RESULTS there was dehiscence of the PMA plane in 11 of the 30 animals (p=0.001) in the experimental group. There was no difference in the quality and intensity of the inflammatory reaction. Immunohistochemistry revealed, in the experimental group, less collagen I (p3=0.003, p7=0.013 and p14=0.001) and more collagen III (p3=0.003, p7=0.013 and p14= 0.001). Collagen evaluated by Sirus Supra Red F3BA showed, in the experimental group, less collagen at all three times (p<0.001) with less collagen I and collagen III (p<0.001). A lower number of vessels was found on the 3rd day (p<0.001) and on the 7th day (p=0.001) and did not affect the number of myofibroblasts. CONCLUSION VPA showed dehiscence of the PMA plane, with less deposition of total collagen and collagen I, less angiogenic activity, without interfering with the number of myofibroblasts.
Collapse
Affiliation(s)
- Rachel Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
| | - Maria DE Lourdes Pessole Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Sérgio Ossamu Ioshii
- - Universidade Federal do Paraná, Departamento de Patologia da UFPR - Curitiba - PR - Brasil
| | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | | | - Matheus Prince Goehr
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Pedro Juan Furtado Neves
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| |
Collapse
|
10
|
Duan C, Yan Z, Wu C, Zhou X, Bao W. DNA methylation characteristics associated with chemotherapy resistance in epithelial ovarian cancer. Heliyon 2024; 10:e27212. [PMID: 38468944 PMCID: PMC10926131 DOI: 10.1016/j.heliyon.2024.e27212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Objective The high mortality rate of epithelial ovarian cancer (EOC) is often attributed to the frequent development of chemoresistance. DNA methylation is a predictive biomarker for chemoresistance. Methods This study utilized DNA methylation profiles and relevant information from GEO and TCGA to identify different methylated CpG sites (DMCs) between chemoresistant and chemosensitive patients. Subsequently, we constructed chemoresistance risk models with DMCs. The genes corresponding to candidate DMCs in chemoresistance risk models were further analyzed to identify different methylated gene symbols (DMGs) associated with chemoresistance. The DMGs that showed a strong correlation with the corresponding DMCs were analyzed through immunohistochemistry. Results Compared to chemosensitive EOC patients, chemoresistant patients showed 423 hypermethylated CpGs and 1445 hypomethylated CpGs. The chemoresistance risk models based on DMCs have shown the improved predictive ability for chemoresistance in EOC (AUC = 65.0-76.2%). The methylations of cg25510164, cg13154880, cg15362155 and cg08665359 were strongly associated with decreased risk of chemoresistance. Conversely, the methylation of cg08872590 and cg14739437 significantly increased the risk. We identified 13 DMGs, from 47 DMCs corresponding genes, between chemosensitive and chemoresistant samples. Among the DMGs, the expression levels of DDR2 and OPCML exhibited strong correlations with the corresponding DMCs. DDR2 and OPCML both showed enhanced expression in chemoresistant ovarian microarray tissue. Conclusions Hypomethylated CpGs may play a significant role in DNA methylation associated with chemoresistance in EOC. The epigenetic modification of DDR2 could have important implications for the development of chemoresistance. Our study provides valuable insights for future research on DNA methylation in the chemoresistance of EOC.
Collapse
Affiliation(s)
| | | | - Cailiang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Xuexin Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| |
Collapse
|
11
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
12
|
Paniri A, Hosseini MM, Amjadi-Moheb F, Tabaripour R, Soleimani E, Langroudi MP, Zafari P, Akhavan-Niaki H. The epigenetics orchestra of Notch signaling: a symphony for cancer therapy. Epigenomics 2023; 15:1337-1358. [PMID: 38112013 DOI: 10.2217/epi-2023-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
The aberrant regulation of the Notch signaling pathway, which is a fundamental developmental pathway, has been implicated in a wide range of human cancers. The Notch pathway can be activated by both canonical and noncanonical Notch ligands, and its role can switch between acting as an oncogene or a tumor suppressor depending on the context. Epigenetic modifications have the potential to modulate Notch and its ligands, thereby influencing Notch signal transduction. Consequently, the utilization of epigenetic regulatory mechanisms may present novel therapeutic opportunities for both single and combined therapeutics targeted at the Notch signaling pathway. This review offers insights into the mechanisms governing the regulation of Notch signaling and explores their therapeutic potential.
Collapse
Affiliation(s)
- Alireza Paniri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
- Zoonoses Research Center, Pasteur Institute of Iran, 4619332976, Amol, Iran
| | | | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
| | - Reza Tabaripour
- Department of Cellular and Molecular Biology, Babol Branch, Islamic Azad University, Babol, 4747137381, Iran
| | - Elnaz Soleimani
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
| | | | - Parisa Zafari
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691786953, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
- Zoonoses Research Center, Pasteur Institute of Iran, 4619332976, Amol, Iran
| |
Collapse
|
13
|
Chen H, Su Y, Yang L, Xi L, Li X, Lan B, Liu M, Xuan C. CBX8 promotes lung adenocarcinoma growth and metastasis through transcriptional repression of CDKN2C and SCEL. J Cell Physiol 2023; 238:2710-2723. [PMID: 37733753 DOI: 10.1002/jcp.31124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Dysregulation of polycomb group (PcG) proteins that mediate epigenetic gene silencing contributes to tumorigenesis. As core components of the polycomb repressive complex 1 (PRC1), chromobox (CBX) proteins recognize H3K27me3 to recruit PRC1 to maintain a repressive transcriptional state. However, the individual biological functions of these CBX proteins in tumorigenesis warrant in-depth investigation. In this study, we analyzed the mRNA expression of CBX family genes across multiple cancers using The Cancer Genome Atlas data and found different expression patterns of the five CBX genes in different types of cancer. This analyses together with the result of immunohistochemistry indicated that CBX8 expression was significantly higher in lung adenocarcinoma (LUAD) tissues compared to adjacent nontumor tissues. Overexpression approaches demonstrated that CBX8 facilitated LUAD cell proliferation and migration in vitro. Consistently, CBX8 knockdown reduced LUAD cell proliferation and migration in both cell culture and mouse models. RNA sequencing combined with real-time RT-PCR assays revealed CDKN2C and SCEL as target genes of CBX8. Furthermore, chromatin immunoprecipitation assays indicated that CBX8 directly bound to the promoters of CDKN2C and SCEL to establish H2AK119ub. CBX8 depletion reduced the enrichment of H2AK119ub on CDKN2C and SCEL promoters. Moreover, depletion of CDKN2C and SCEL restored the repressed growth and invasion ability of LUAD cells caused by CBX8 knockdown. These findings demonstrate that CBX8 promotes LUAD growth and metastasis through the transcriptional repression of CDKN2C and SCEL. Our study uncovers the oncogenic role of CBX8 in LUAD progression and provides a new target for the diagnosis and therapy of LUAD.
Collapse
Affiliation(s)
- Hao Chen
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yijie Su
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lihong Yang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lishan Xi
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuanyuan Li
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Bei Lan
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenghao Xuan
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
15
|
Fu S, Deger T, Boers RG, Boers JB, Doukas M, Gribnau J, Wilting SM, Debes JD, Boonstra A. Hypermethylation of DNA Methylation Markers in Non-Cirrhotic Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4784. [PMID: 37835478 PMCID: PMC10571582 DOI: 10.3390/cancers15194784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Aberrant DNA methylation changes have been reported to be associated with carcinogenesis in cirrhotic HCC, but DNA methylation patterns for these non-cirrhotic HCC cases were not examined. Therefore, we sought to investigate DNA methylation changes on non-cirrhotic HCC using reported promising DNA methylation markers (DMMs), including HOXA1, CLEC11A, AK055957, and TSPYL5, on 146 liver tissues using quantitative methylation-specific PCR and methylated DNA sequencing. We observed a high frequency of aberrant methylation changes in the four DMMs through both techniques in non-cirrhotic HCC compared to cirrhosis, hepatitis, and benign lesions (p < 0.05), suggesting that hypermethylation of these DMMs is specific to non-cirrhotic HCC development. Also, the combination of the four DMMs exhibited 78% sensitivity at 80% specificity with an AUC of 0.85 in discriminating non-cirrhotic HCC from hepatitis and benign lesions. In addition, HOXA1 showed a higher aberrant methylation percentage in non-cirrhotic HCC compared to cirrhotic HCC (43.3% versus 13.3%, p = 0.039), which was confirmed using multivariate linear regression (p < 0.05). In summary, we identified aberrant hypermethylation changes in HOXA1, CLEC11A, AK055957, and TSPYL5 in non-cirrhotic HCC tissues compared to cirrhosis, hepatitis, and benign lesions, providing information that could be used as potentially detectable biomarkers for these unusual HCC cases in clinical practice.
Collapse
Affiliation(s)
- Siyu Fu
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, The Netherlands; (S.F.); (J.D.D.)
| | - Teoman Deger
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands (S.M.W.)
| | - Ruben G. Boers
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (R.G.B.); (J.G.)
| | - Joachim B. Boers
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (R.G.B.); (J.G.)
| | - Michael Doukas
- Department of Pathology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (R.G.B.); (J.G.)
| | - Saskia M. Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands (S.M.W.)
| | - José D. Debes
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, The Netherlands; (S.F.); (J.D.D.)
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, The Netherlands; (S.F.); (J.D.D.)
| |
Collapse
|
16
|
Lao TD, Truong PK, Le TAH. Diagnostic Value of DAPK Methylation for Nasopharyngeal Carcinoma: Meta-Analysis. Diagnostics (Basel) 2023; 13:2926. [PMID: 37761293 PMCID: PMC10529083 DOI: 10.3390/diagnostics13182926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Methylation of DAPK has been reported to play a key role in the initiation and progression of nasopharyngeal cancer. However, there are differences between the studies on it. This meta-analysis was performed to evaluate the diagnostic value of DAPK promoter methylation for NPC. METHOD The study method involves the systematic research of eligible studies based on criteria. The frequency, odds ratios (OR), sensitivity as well as specificity with the corresponding 95% confidence intervals (CIs) were used to assess the effect sizes. RESULTS A total of 13 studies, including 1048 NPC samples and 446 non-cancerous samples, were used for the meta-analysis. The overall frequencies of DAPK methylation were 56.94% and 9.28% in NPC samples and non-cancerous samples, respectively. The association between DAPK methylation and risk of NPC was also confirmed by calculating the OR value which was 13.13 (95%CI = 54.24-40.72) based on a random-effect model (Q = 64.74; p < 0.0001; I2 = 81.47% with 95%CI for I2 = 69.39-88.78). Additionally, the study results suggest that testing for DAPK methylation in tissue samples or brushing may provide a promising method for diagnosing NPC. CONCLUSION This is the first meta-analysis that provided scientific evidence that methylation of the DAPK gene could serve as a potential biomarker for diagnosis, prognosis, and early screening of NPC patients.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Department of Pharmaceutical and Medical Biotechnology, Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam; (P.K.T.); (T.A.H.L.)
| | | | | |
Collapse
|
17
|
Fu S, Debes JD, Boonstra A. DNA methylation markers in the detection of hepatocellular carcinoma. Eur J Cancer 2023; 191:112960. [PMID: 37473464 DOI: 10.1016/j.ejca.2023.112960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and has a poor prognosis. Epigenetic modification has been shown to be deregulated during HCC development by dramatically impacting the differentiation, proliferation, and function of cells. One important epigenetic modification is DNA methylation during which methyl groups are added to cytosines without changing the DNA sequence itself. Studies found that methylated DNA markers can be specific for detection of HCC. On the basis of these findings, the utility of methylated DNA markers as novel biomarkers for early-stage HCC has been measured in blood, and indeed superior sensitivity and specificity have been found in several studies when compared to current surveillance methods. However, a variety of factors currently limit the immediate application of these exciting biomarkers. In this review, we provide a detailed rationalisation of the approach and basis for the use of methylation biomarkers for HCC detection and summarise recent studies on methylated DNA markers in HCC focusing on the importance of the aetiological cause of liver disease in the mechanisms leading to cancer.
Collapse
Affiliation(s)
- Siyu Fu
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands
| | - José D Debes
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - André Boonstra
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands.
| |
Collapse
|
18
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
19
|
He X, Zhong X, Fang Y, Hu Z, Chen Z, Wang Y, Huang H, Zhao S, Li D, Wei P. AF9 sustains glycolysis in colorectal cancer via H3K9ac-mediated PCK2 and FBP1 transcription. Clin Transl Med 2023; 13:e1352. [PMID: 37565737 PMCID: PMC10413954 DOI: 10.1002/ctm2.1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The tumourigenesis of various cancers is influenced by epigenetic deregulation. Among 591 epigenetic regulator factors (ERFs) examined, AF9 showed significant inhibition of malignancy in colorectal cancer (CRC) based on our wound healing assays. However, the precise role of AF9 in CRC remains to be explored. METHODS To investigate the function of AF9 in CRC, we utilised small interfering RNAs (siRNAs) to knock down the expression of 591 ERFs. Subsequently, we performed wound healing assays to evaluate cell proliferation and migration. In vitro and in vivo assays were conducted to elucidate the potential impact of AF9 in CRC. Clinical samples were analysed to assess the association between AF9 expression and CRC prognosis. Additionally, an Azoxymethane-Dextran Sodium Sulfate (AOM/DSS) induced CRC AF9IEC-/- mouse model was employed to confirm the role of AF9 in CRC. To identify the target gene of AF9, RNA-seq and coimmunoprecipitation analyses were performed. Furthermore, bioinformatics prediction was applied to identify potential miRNAs that target AF9. RESULTS Among the 591 ERFs examined, AF9 exhibited downregulation in CRC and showed a positive correlation with prolonged survival in CRC patients. In vitro and in vivo assays proved that depletion of AF9 could promote cell proliferation, migration as well as glycolysis. Specifically, knockout of MLLT3 (AF9) in intestinal epithelial cells significantly increased tumour formation induced by AOM/DSS. We also identified miR-145 could target 3'untranslated region of AF9 to suppress AF9 expression. Loss of AF9 led to decreased expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose 1,6-bisphosphatase 1 (FBP1), subsequently promoting glucose consumption and tumourigenesis. CONCLUSIONS AF9 is essential for the upregulation of PCK2 and FBP1, and the disruption of the miR-145/AF9 axis may serve as a potential target for the development of CRC therapeutics.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Xinyang Zhong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Yi Fang
- Emergency DepartmentShanghai Tenth People's HospitalShanghaiChina
| | - Zijuan Hu
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Zhiyu Chen
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yaxian Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Huixia Huang
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Ping Wei
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| |
Collapse
|
20
|
Shahin RK, Elkady MA, Abulsoud AI, Abdelmaksoud NM, Abdel Mageed SS, El-Dakroury WA, Zewail MB, Elazazy M, Sobhy MH, Nomier Y, Elazazy O, Elballal MS, Mohammed OA, Midan HM, Elrebehy MA, Ziada BO, Doghish AS. miRNAs orchestration of gallbladder cancer - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154684. [PMID: 37454489 DOI: 10.1016/j.prp.2023.154684] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Gallbladder cancer (GBC) is characterized by a highly invasive nature and a poor prognosis, with adenocarcinoma being the main histological subtype. According to statistical data, patients diagnosed with advanced GBC have a survival rate of less than 5% for 5 years. Despite the novel therapeutic techniques, the unsatisfactory results could be related to the underlying biology of tumor cells and resistance to chemotherapy. Early diagnosis is more important than clinical therapy as it assists in determining the pathological stage of cancer and facilitates the selection of appropriate medication. Hence, it is very important to understand the precise pathogenesis of GBC and to discover potential novel biomarkers for early diagnosis of GBC. Non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have been found to influence the transcriptional regulation of target genes associated with cancer, either directly or indirectly. microRNAs are a group of small, non-coding, single-stranded RNAs that are expressed endogenously. miRNAs play significant roles in various fundamental cellular processes. Therefore, miRNAs have the potential to serve as valuable biomarkers and therapeutic targets for GBC.
Collapse
Affiliation(s)
- Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud Elazazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Sobhy
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Yousra Nomier
- Pharmacology Department, Pharmacy College, Jazan University, Saudi Arabia
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Bassant O Ziada
- Research Department, Utopia Pharmaceuticals, Nasr City, 11765 Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
21
|
Kietzmann T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biol 2023; 63:102753. [PMID: 37263060 PMCID: PMC10245123 DOI: 10.1016/j.redox.2023.102753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Vitamin C is unbeatable - at least when it comes to sales. Of all the vitamin preparations, those containing vitamin C sell best. This is surprising because vitamin C deficiency is extremely rare. Nevertheless, there is still controversy about whether the additional intake of vitamin C supplements is essential for our health. In this context, the possible additional benefit is in most cases merely reduced to the known effect as an antioxidant. However, new findings in recent years on the mechanisms of oxygen-sensing and epigenetic control underpin the multifaceted role of vitamin C in a biological context and have therefore renewed interest in it. In the present article, therefore, known facts are linked to these new key data. In addition, available clinical data on vitamin C use of cancer therapy are summarized.
Collapse
Affiliation(s)
- Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, P.O. Box 3000, 90014, Oulu, Finland.
| |
Collapse
|
22
|
Garg A, Desai D, Bhalla A, Thakur S, Rastogi P, Kaushal N. SelSA-1, a novel HDAC inhibitor demonstrates enhanced chemotherapeutic potential by redox modulation. Sci Rep 2023; 13:9301. [PMID: 37291249 PMCID: PMC10250299 DOI: 10.1038/s41598-023-36555-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023] Open
Abstract
Colorectal cancer (CRC) is a multistep disorder resulting from genetic and epigenetic genome changes. It is the third most common malignancy in developed nations accounting for roughly 600,000 deaths annually. Persistent gut inflammation, as observed in inflammatory bowel disease (IBD), is a key risk factor for CRC development. From an epigenetic viewpoint, the pharmacological inhibition of HDACs using HDAC inhibitors such as SAHA has emerged as a suitable anticancer strategy in the recent past. However, the clinical success of these strategies is limited and has risk factors associated with their uses. Thus, considering the critical involvement of epigenetic regulation of key molecular mechanisms in carcinogenesis as well as HDAC inhibitory and anti-tumorigenic properties of Selenium (Se), we aimed to explore the potentially safer and enhanced chemotherapeutic potential of a Se derivative of SAHA namely SelSA-1, in an experimental model of colitis-associated experimental cancer (CAC) model and mechanism involved therein. The in vitro study indicated improved efficiency, specificity, and better safety margin in terms of lower IC50 value of SelSA-1 than SAHA in both NIH3T3 (9.44 and 10.87 µM) and HCT 115 (5.70 and 7.49 µM) cell lines as well on primary colonocytes (5.61 and 6.30 µM) respectively. In an in vivo experimental model, SelSA-1 efficiently demonstrated amelioration of the multiple plaque lesions (MPLs), tumor burden/incidence, and modulation of various histological and morphological parameters. Further, redox-mediated alterations in apoptotic mediators suggested induction of cancer cell apoptosis by SelSA-1. These findings indicate the enhanced chemotherapeutic and pro-resolution effects of SelSA-1 in part mediated through redox modulation of multiple epigenetic and apoptotic pathways.
Collapse
Affiliation(s)
- Ayushi Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Dhimant Desai
- Departments of Pharmacology, Pennsylvania State University College of Medicine, Hershey, USA
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Shalu Thakur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Pulkit Rastogi
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
23
|
Srivastava R, Singh R, Jauhari S, Lodhi N, Srivastava R. Histone Demethylase Modulation: Epigenetic Strategy to Combat Cancer Progression. EPIGENOMES 2023; 7:epigenomes7020010. [PMID: 37218871 DOI: 10.3390/epigenomes7020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Epigenetic modifications are heritable, reversible changes in histones or the DNA that control gene functions, being exogenous to the genomic sequence itself. Human diseases, particularly cancer, are frequently connected to epigenetic dysregulations. One of them is histone methylation, which is a dynamically reversible and synchronously regulated process that orchestrates the three-dimensional epigenome, nuclear processes of transcription, DNA repair, cell cycle, and epigenetic functions, by adding or removing methylation groups to histones. Over the past few years, reversible histone methylation has become recognized as a crucial regulatory mechanism for the epigenome. With the development of numerous medications that target epigenetic regulators, epigenome-targeted therapy has been used in the treatment of malignancies and has shown meaningful therapeutic potential in preclinical and clinical trials. The present review focuses on the recent advances in our knowledge on the role of histone demethylases in tumor development and modulation, in emphasizing molecular mechanisms that control cancer cell progression. Finally, we emphasize current developments in the advent of new molecular inhibitors that target histone demethylases to regulate cancer progression.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Rubi Singh
- Department of Hematology, Bioreference Laboratories, Elmwood Park, NJ 07407, USA
| | - Shaurya Jauhari
- Division of Education, Training, and Assessment, Global Education Center, Infosys Limited, Mysuru 570027, Karnataka, India
| | - Niraj Lodhi
- Clinical Research (Research and Development Division) Mirna Analytics LLC, Harlem Bio-Space, New York, NY 10027, USA
| | - Rakesh Srivastava
- Molecular Biology and Microbiology, GenTox Research and Development, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
24
|
Cai C, Zhu Y, Mu J, Liu S, Yang Z, Wu Z, Zhao C, Song X, Ye Y, Gu J, Sang Y, Wu X, Gong W. DNA methylation of RUNX3 promotes the progression of gallbladder cancer through repressing SLC7A11-mediated ferroptosis. Cell Signal 2023; 108:110710. [PMID: 37156453 DOI: 10.1016/j.cellsig.2023.110710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Gallbladder cancer (GBC) is a type of rare but highly aggressive cancer with a dismal prognosis. Runt-related transcription factor 3 (RUNX3), a member of the runt-domain family, and its promoter methylation have been widely observed in a variety of human malignancies. However, the biological function and underlying mechanism of RUNX3 in GBC remain elusive. In this study, bisulfate sequencing PCR (BSP), Western blot, and qPCR were applied to identify the expression level and DNA methylation level of RUNX3 in GBC tissues and cells. The transcriptional relationship between RUNX3 and Inhibitor of growth 1 (ING1) was validated by dual-luciferase reporter assay and ChIP assay. A series of gain-of-function and loss-of-function assays were performed to detect the function and the regulatory relationship of RUNX3 in vitro and in vivo. RUNX3 was aberrantly downregulated in GBC cells and tissues caused by DNA Methyltransferase 1 (DNMT1)-mediated methylation, and downregulation of RUNX3 is associated with poor prognosis of GBC patients. Functional experiments reveal that RUNX3 can induce ferroptosis of GBC cells in vitro and in vivo. Mechanistically, RUNX3 induces ferroptosis by activating ING1 transcription, thereby repressing SLC7A11 in a p53-dependent manner. In conclusion, the downregulation of RUNX3 is mediated by DNA methylation, which promotes the pathogenesis of gallbladder cancer through attenuating SLC7A11-mediated ferroptosis. This study gives novel insights into the role of RUNX3 in the ferroptosis of GBC cells, which may contribute to developing potential treatment targets for GBC.
Collapse
Affiliation(s)
- Chen Cai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Yidi Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Shilei Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyou Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Cheng Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jun Gu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch. No. 25 Nanmen Road, Shanghai 202150, China
| | - Yuer Sang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
25
|
Idriss S, Hallal M, El-Kurdi A, Zalzali H, El-Rassi I, Ehli EA, Davis CM, Chung PED, Gendoo DMA, Zacksenhaus E, Saab R, Khoueiry P. A temporal in vivo catalog of chromatin accessibility and expression profiles in pineoblastoma reveals a prevalent role for repressor elements. Genome Res 2023; 33:269-282. [PMID: 36650051 PMCID: PMC10069464 DOI: 10.1101/gr.277037.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Pediatric pineoblastomas (PBs) are rare and aggressive tumors of grade IV histology. Although some oncogenic drivers are characterized, including germline mutations in RB1 and DICER1, the role of epigenetic deregulation and cis-regulatory regions in PB pathogenesis and progression is largely unknown. Here, we generated genome-wide gene expression, chromatin accessibility, and H3K27ac profiles covering key time points of PB initiation and progression from pineal tissues of a mouse model of CCND1-driven PB. We identified PB-specific enhancers and super-enhancers, and found that in some cases, the accessible genome dynamics precede transcriptomic changes, a characteristic that is underexplored in tumor progression. During progression of PB, newly acquired open chromatin regions lacking H3K27ac signal become enriched for repressive state elements and harbor motifs of repressor transcription factors like HINFP, GLI2, and YY1. Copy number variant analysis identified deletion events specific to the tumorigenic stage, affecting, among others, the histone gene cluster and Gas1, the growth arrest specific gene. Gene set enrichment analysis and gene expression signatures positioned the model used here close to human PB samples, showing the potential of our findings for exploring new avenues in PB management and therapy. Overall, this study reports the first temporal and in vivo cis-regulatory, expression, and accessibility maps in PB.
Collapse
Affiliation(s)
- Salam Idriss
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohammad Hallal
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Abdullah El-Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hasan Zalzali
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Inaam El-Rassi
- Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Philip E D Chung
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deena M A Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, United Kingdom
| | - Eldad Zacksenhaus
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; .,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
26
|
Al Roomy M, Chehadeh W, Al Awadhi R. Prediction of cervical cancer precursor lesions by quantitative methylation specific PCR: A retrospective study. Cytopathology 2023; 34:204-210. [PMID: 36715362 DOI: 10.1111/cyt.13213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/15/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVE This study was undertaken to evaluate the performance of FAM19A4 and hsa-mir-124-2 hypermethylation as a triage tool for women who are at risk of developing cervical cancer or high-grade cervical cancer precursor lesions by taking into consideration the cytology report, histology diagnosis, and human papillomavirus (HPV) status. METHODS A total of 330 cervical ThinPrep samples were retrospectively collected and used for DNA isolation. HPV DNA was detected by real-time polymerase chain reaction (PCR), and HPV genotypes were identified by Sanger-based sequencing. DNA extracts were bisulphite-treated, and hypermethylation of FAM19A4 and hsa-mir-124-2 genes was detected by a quantitative methylation-specific PCR (qMSP) test using the QIAsure Methylation assay. RESULTS Hypermethylated genes were detected in 27 (9.6%) cervical samples, mostly found in women diagnosed with high-grade squamous intraepithelial legions (77.8%) or cervical intraepithelial neoplasia grade 3 (CIN3) (72.7%). The sensitivity and the specificity of the qMSP test for predicting CIN3 lesions among women with high-risk HPV was 75% and 91%, respectively. DISCUSSION/CONCLUSION There was a significant correlation between high-grade cervical cancer precursor lesions and detection of hypermethylated genes in samples positive for high-risk HPV. Our results suggest that the QIAsure Methylation test can be used as a triage tool to identify women at risk for cervical cancer progression.
Collapse
Affiliation(s)
- Moody Al Roomy
- College of Graduate Studies, Kuwait University, Khaldiya, Kuwait
| | - Wassim Chehadeh
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Rana Al Awadhi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
27
|
Alabed SJ, Zihlif M, Taha M. Discovery of new potent lysine specific histone demythelase-1 inhibitors (LSD-1) using structure based and ligand based molecular modelling and machine learning. RSC Adv 2022; 12:35873-35895. [PMID: 36545090 PMCID: PMC9751883 DOI: 10.1039/d2ra05102h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Lysine-specific histone demethylase 1 (LSD-1) is an epigenetic enzyme that oxidatively cleaves methyl groups from monomethyl and dimethyl Lys4 of histone H3 and is highly overexpressed in different types of cancer. Therefore, it has been widely recognized as a promising therapeutic target for cancer therapy. Towards this end, we employed various Computer Aided Drug Design (CADD) approaches including pharmacophore modelling and machine learning. Pharmacophores generated by structure-based (SB) (either crystallographic-based or docking-based) and ligand-based (LB) (either supervised or unsupervised) modelling methods were allowed to compete within the context of genetic algorithm/machine learning and were assessed by Shapley additive explanation values (SHAP) to end up with three successful pharmacophores that were used to screen the National Cancer Institute (NCI) database. Seventy-five NCI hits were tested for their LSD-1 inhibitory properties against neuroblastoma SH-SY5Y cells, pancreatic carcinoma Panc-1 cells, glioblastoma U-87 MG cells and in vitro enzymatic assay, culminating in 3 nanomolar LSD-1 inhibitors of novel chemotypes.
Collapse
Affiliation(s)
- Shada J Alabed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, University of Jordan Amman Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman Jordan
| |
Collapse
|
28
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|
29
|
Gupta R, Jit BP, Kumar S, Mittan S, Tanwer P, Ray MD, Mathur S, Perumal V, Kumar L, Rath GK, Sharma A. Leveraging epigenetics to enhance the efficacy of cancer-testis antigen: a potential candidate for immunotherapy. Epigenomics 2022; 14:865-886. [DOI: 10.2217/epi-2021-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in women. The phenotype is characterized by delayed diagnosis, recurrence and drug resistance. Inherent immunogenicity potential, oncogenic function and expression of cancer-testis/germline antigen (CTA) in ovarian cancer render them a potential candidate for immunotherapy. Revolutionary clinical findings indicate that tumor antigen-mediated T-cell and dendritic cell-based immunotherapeutic approaches provide an excellent strategy for targeting tumors. Currently, dendritic cell vaccination for the treatment of B-cell lymphoma and CTA-based T-cell receptor transduced T-cell therapy involving MAGE-A4 and NY-ESO-1 are well documented and shown to be effective. This review highlighted the mechanical aspects of epigenetic drugs that can elicit a CTA-based humoral and cellular immune response and implicate T-cell and dendritic cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Rashmi Gupta
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Bimal Prasad Jit
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Santosh Kumar
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep Mittan
- Montefiore Medical Center, Albert Einstein College of Medicine, NY 10467, USA
| | - Pranay Tanwer
- Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - M D Ray
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vanamail Perumal
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - G K Rath
- Department of Radiotherapy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ashok Sharma
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
30
|
Biondo-Simões R, Biondo-Simões MDLP, Ioshii SO, Robes RR, Dall'Antonia MDO. The effects of valproic acid on skin healing: experimental study in rats. Acta Cir Bras 2022; 37:e370403. [PMID: 35857935 PMCID: PMC9290763 DOI: 10.1590/acb370403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: To recognize the effects of valproic acid (VPA), an epigenetic drug, on the skin healing process. Methods: Sixty male Wistar rats were divided into two groups: the experiment treated with VPA (100 mg/kg/day); and the control, with 0.9% sodium chloride by gavage. Skin healing was studied in three moments (the third, the seventh, and the 14th day), evaluating the parameters: inflammatory reaction and its intensity (anti-LCA), angiogenesis (anti-CD34), collagen I and III (anti-collagen I, anti-collagen III and Picrosirius-red F3BA) and myofibroblasts (anti-alpha-AMS). Results: The inflammatory reaction was acute or sub-acute in both groups on the third day. On the seventh and the 14th day, chronic predominated in the control (p=0.006), and sub-acute in the experiment (p=0.020). There was a greater number of leukocytes in the group treated only on the third day (p=0.036). The number of vessels was lower in the treated group at the three times (p3=0.002, p7<0.001, and p14=0.027). Myofibroblasts were rare in the third day and moderate quantity in the remaining periods. Collagen I density was higher in the control at the three times (p<0.001) and collagen III in the treated group (p<0.001). Conclusions: VPA led to a more intense inflammatory reaction, decreased angiogenesis and collagen deposition, especially type I collagen.
Collapse
Affiliation(s)
- Rachel Biondo-Simões
- Fellow Master degree. Universidade Federal do Paraná - Postgraduate Program in Surgery Clinical - Curitiba (PR), Brazil
| | | | - Sérgio Ossamu Ioshii
- Full Professor. Universidade Federal do Paraná - Department of Pathology - Curitiba (PR), Brazil
| | | | | |
Collapse
|
31
|
Liu J, Chen ZZ, Patel J, Asnani A. Understanding Myocardial Metabolism in the Context of Cardio-Oncology. Heart Fail Clin 2022; 18:415-424. [PMID: 35718416 DOI: 10.1016/j.hfc.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiovascular events, ranging from arrhythmias to decompensated heart failure, are common during and after cancer therapy. Cardiovascular complications can be life-threatening, and from the oncologist's perspective, could limit the use of first-line cancer therapeutics. Moreover, an aging population increases the risk for comorbidities and medical complexity among patients who undergo cancer therapy. Many have established cardiovascular diagnoses or risk factors before starting these therapies. Therefore, it is essential to understand the molecular mechanisms that drive cardiovascular events in patients with cancer and to identify new therapeutic targets that may prevent and treat these 2 diseases. This review will discuss the metabolic interaction between cancer and the heart and will highlight current strategies of targeting metabolic pathways for cancer treatment. Finally, this review highlights opportunities and challenges in advancing our understanding of myocardial metabolism in the context of cancer and cancer treatment.
Collapse
Affiliation(s)
- Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Zsu-Zsu Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Jagvi Patel
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| |
Collapse
|
32
|
Yu S, Guo L, Yan B, Yuan Q, Shan L, Zhou L, Efferth T. Tanshinol suppresses osteosarcoma by specifically inducing apoptosis of U2-OS cells through p53-mediated mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115214. [PMID: 35331874 DOI: 10.1016/j.jep.2022.115214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Salviae miltiorrhizae (also called Danshen in traditional Chinese medicine) is a famous herbal medicine, which has been frequently used to treat blood stasis syndrome including osteosarcoma (OS) in traditional Chinese medicine. Main components of Danshen have been assumed to exhibit anti-OS capacity. Nevertheless, tanshinol (TS, main component of Danshen)'s efficacy and mechanism in OS hasn't been clearly described ever since. This drew our attention, since OS is the most frequent primary bone carcinomas in children and adolescents, with a high incidence and fatality rate. Unfortunately, chemotherapy for OS has faced many clinical challenges due to the increasing chemoresistance and recurrence. This study was then designed to deeply explore TS's role in OS therapy. AIM OF THE STUDY To explore the anti-OS efficacy and mechanism of TS, we conducted in vivo and in vitro experiments by using a zebrafish xenograft model and U2-OS cells. MATERIALS AND METHODS CCK-8 assay, DAPI and γ-H2A.X immunofluorescence staining, and flow cytometry (apoptosis verification) were employed to determine the anti-proliferative and pro-apoptotic effects of TS. qPCR and Western blot were used to examine TS's molecular actions and mechanism on apoptosis of U2-OS cells. RESULTS The in vivo data showed that TS significantly inhibited U2-OS tumor growth in larval zebrafish from 2 to 20 ng/mL. In vitro data indicated that TS exerted significant anti-proliferative and pro-apoptotic effects on U2-OS cells in a dose-dependent manner. Moreover, TS has no inhibitory effect on bMSCs, suggesting its safety on normal bone-forming cells. Molecular data illustrated that TS obviously activated the p53 signaling-related proteins (p-p53, Bax, CASP3, CASP9) and its upstream JNK (p-JNK, p-c-JUN) and ATM (p-ATM) signaling molecules through phosphorylation and cleavage, followed by up-regulation of the pro-apoptotic genes, NOXA, PUMA, TP53, BAX, and BIM, and down-regulation of Bcl-2 protein. CONCLUSION In sum, TS specifically induced apoptosis of U2-OS cells by activating p53 signaling pathways, indicating TS as a promising candidate for OS treatment.
Collapse
Affiliation(s)
- Shihui Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Le Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Bo Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
33
|
Liang Y, Zhang B, Xue Z, Ye X, Liang B. Magnetic Immunosensor Coupled to Enzymatic Signal for Determination of Genomic DNA Methylation. BIOSENSORS 2022; 12:bios12030162. [PMID: 35323432 PMCID: PMC8946087 DOI: 10.3390/bios12030162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
Aberrations of genomic DNA methylation have been confirmed to be involved in the evolution of human cancer and have thus gained the potential to be depicted as biomarkers for cancer diagnostics and prognostic predictions, which implicates an urgent need for detection of total genomic DNA methylation. In this work, we suggested an assay for the quantification of global DNA methylation, utilizing methylation specific antibody (5mC) modified magnetic beads (MBs) for immunorecognition and affinity enrichment. Subsequently, the captured DNA on the surface of MBs interacted with the glucose oxidase-conjugated DNA antibody whose catalytic reaction product was engaged in electrochemical detection of the overall level of DNA methylation on a PB-doped screen-printed electrode. With 15 pg of input DNA, which, to our best knowledge, is the lowest required amount of DNA without sodium bisulfite treatment or amplification, this test strategy was able to perceive as low as 5% methylation level within 70 min including the preparation of anti-5mC-MBs. We believe this detection technique offers a promising option to detect global DNA methylation in both academic and clinical scenarios.
Collapse
Affiliation(s)
- Yitao Liang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; (Y.L.); (Z.X.); (X.Y.)
| | - Bin Zhang
- Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China;
| | - Zexin Xue
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; (Y.L.); (Z.X.); (X.Y.)
| | - Xuesong Ye
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; (Y.L.); (Z.X.); (X.Y.)
| | - Bo Liang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; (Y.L.); (Z.X.); (X.Y.)
- Correspondence:
| |
Collapse
|
34
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|
35
|
García-Padilla C, Dueñas Á, García-López V, Aránega A, Franco D, Garcia-Martínez V, López-Sánchez C. Molecular Mechanisms of lncRNAs in the Dependent Regulation of Cancer and Their Potential Therapeutic Use. Int J Mol Sci 2022; 23:764. [PMID: 35054945 PMCID: PMC8776057 DOI: 10.3390/ijms23020764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Ángel Dueñas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
36
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
37
|
Tobeiha M, Rajabi A, Raisi A, Mohajeri M, Yazdi SM, Davoodvandi A, Aslanbeigi F, Vaziri M, Hamblin MR, Mirzaei H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed Pharmacother 2021; 144:112257. [PMID: 34688081 DOI: 10.1016/j.biopha.2021.112257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most frequent type of bone cancer found in children and adolescents, and commonly arises in the metaphyseal region of tubular long bones. Standard therapeutic approaches, such as surgery, chemotherapy, and radiation therapy, are used in the management of osteosarcoma. In recent years, the mortality rate of osteosarcoma has decreased due to advances in treatment methods. Today, the scientific community is investigating the use of different naturally derived active principles against various types of cancer. Natural bioactive compounds can function against cancer cells in two ways. Firstly they can act as classical cytotoxic compounds by non-specifically affecting macromolecules, such as DNA, enzymes, and microtubules, which are also expressed in normal proliferating cells, but to a greater extent by cancer cells. Secondly, they can act against oncogenic signal transduction pathways, many of which are activated in cancer cells. Some bioactive plant-derived agents are gaining increasing attention because of their anti-cancer properties. Moreover, some naturally-derived compounds can significantly promote the effectiveness of standard chemotherapy drugs, and in certain cases are able to ameliorate drug-induced adverse effects caused by chemotherapy. In the present review we summarize the effects of various naturally-occurring bioactive compounds against osteosarcoma.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahshad Mohajeri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - MohamadSadegh Vaziri
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates. Nutrients 2021; 13:nu13113714. [PMID: 34835969 PMCID: PMC8621755 DOI: 10.3390/nu13113714] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most complex and systemic diseases affecting the health of mankind, causing major deaths with a significant increase. This pathology is caused by several risk factors, of which genetic disturbances constitute the major elements, which not only initiate tumor transformation but also epigenetic disturbances which are linked to it and which can induce transcriptional instability. Indeed, the involvement of epigenetic disturbances in cancer has been the subject of correlations today, in addition to the use of drugs that operate specifically on different epigenetic pathways. Natural molecules, especially those isolated from medicinal plants, have shown anticancer effects linked to mechanisms of action. The objective of this review is to explore the anticancer effects of alkaloids, terpenoids, quinones, and isothiocyanates.
Collapse
|
39
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
40
|
Pickering OJ, Breininger SP, Underwood TJ, Walters ZS. Histone Modifying Enzymes as Targets for Therapeutic Intervention in Oesophageal Adenocarcinoma. Cancers (Basel) 2021; 13:4084. [PMID: 34439236 PMCID: PMC8392153 DOI: 10.3390/cancers13164084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Oesophageal adenocarcinoma (OAC) has a dismal prognosis, where curable disease occurs in less than 40% of patients, and many of those with incurable disease survive for less than a year from diagnosis. Despite the widespread use of systematic chemotherapy in OAC treatment, many patients receive no benefit. New treatments are urgently needed for OAC patients. There is an emerging interest in epigenetic regulators in cancer pathogenesis, which are now translating into novel cancer therapeutic strategies. Histone-modifying enzymes (HMEs) are key epigenetic regulators responsible for dynamic covalent histone modifications that play roles in both normal and dysregulated cellular processes including tumorigenesis. Several HME inhibitors are in clinical use for haematological malignancies and sarcomas, with numerous on-going clinical trials for their use in solid tumours. This review discusses the current literature surrounding HMEs in OAC pathogenesis and their potential use in targeted therapies for this disease.
Collapse
Affiliation(s)
| | | | | | - Zoë S. Walters
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (O.J.P.); (S.P.B.); (T.J.U.)
| |
Collapse
|
41
|
Chan DW, Lam WY, Chen F, Yung MMH, Chan YS, Chan WS, He F, Liu SS, Chan KKL, Li B, Ngan HYS. Genome-wide DNA methylome analysis identifies methylation signatures associated with survival and drug resistance of ovarian cancers. Clin Epigenetics 2021; 13:142. [PMID: 34294135 PMCID: PMC8296615 DOI: 10.1186/s13148-021-01130-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In contrast to stable genetic events, epigenetic changes are highly plastic and play crucial roles in tumor evolution and development. Epithelial ovarian cancer (EOC) is a highly heterogeneous disease that is generally associated with poor prognosis and treatment failure. Profiling epigenome-wide DNA methylation status is therefore essential to better characterize the impact of epigenetic alterations on the heterogeneity of EOC. METHODS An epigenome-wide association study was conducted to evaluate global DNA methylation in a retrospective cohort of 80 mixed subtypes of primary ovarian cancers and 30 patients with high-grade serous ovarian carcinoma (HGSOC). Three demethylating agents, azacytidine, decitabine, and thioguanine, were tested their anti-cancer and anti-chemoresistant effects on HGSOC cells. RESULTS Global DNA hypermethylation was significantly associated with high-grade tumors, platinum resistance, and poor prognosis. We determined that 9313 differentially methylated probes (DMPs) were enriched in their relative gene regions of 4938 genes involved in small GTPases and were significantly correlated with the PI3K-AKT, MAPK, RAS, and WNT oncogenic pathways. On the other hand, global DNA hypermethylation was preferentially associated with recurrent HGSOC. A total of 2969 DMPs corresponding to 1471 genes were involved in olfactory transduction, and calcium and cAMP signaling. Co-treatment with demethylating agents showed significant growth retardation in ovarian cancer cells through differential inductions, such as cell apoptosis by azacytidine or G2/M cell cycle arrest by decitabine and thioguanine. Notably, azacytidine and decitabine, though not thioguanine, synergistically enhanced cisplatin-mediated cytotoxicity in HGSOC cells. CONCLUSIONS This study demonstrates the significant association of global hypermethylation with poor prognosis and drug resistance in high-grade EOC and highlights the potential of demethylating agents in cancer treatment.
Collapse
Affiliation(s)
- David W Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China.
| | - Wai-Yip Lam
- Lee's Pharmaceutical (HK) Ltd, 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Fushun Chen
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Mingo M H Yung
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Yau-Sang Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Wai-Sun Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Fangfang He
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Stephanie S Liu
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Karen K L Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Benjamin Li
- Lee's Pharmaceutical (HK) Ltd, 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China. .,Department of Obstetrics and Gynaecology, 6/F Professorial Block, Queen Mary Hospital, Pokfulam, Hong Kong, People's Republic of China.
| |
Collapse
|
42
|
Diposarosa R, Bustam N, Sahiratmadja E, Susanto P, Sribudiani Y. Literature review: enteric nervous system development, genetic and epigenetic regulation in the etiology of Hirschsprung's disease. Heliyon 2021; 7:e07308. [PMID: 34195419 PMCID: PMC8237298 DOI: 10.1016/j.heliyon.2021.e07308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system (ENS) derived from neural crest cells (NCCs), which affects their migration, proliferation, differentiation, or preservation in the digestive tract, resulting in aganglionosis in the distal intestine. The regulation of both NCCs and the surrounding environment involves various genes, signaling pathways, transcription factors, and morphogens. Therefore, changes in gene expression during the development of the ENS may contribute to the pathogenesis of HSCR. This review discusses several mechanisms involved in the development of ENS, confirming that deviant genetic and epigenetic patterns, such as DNA methylation, histone modification, and microRNA (miRNA) regulation, can contribute to the development of neurocristopathy. Specifically, the epigenetic regulation of miRNA expression and its relationship to cellular interactions and gene activation through various major pathways in Hirschsprung's disease will be discussed.
Collapse
Affiliation(s)
- R. Diposarosa
- Department of Surgery, Division of Pediatric Surgery, Dr. Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - N.A. Bustam
- Department of Surgery, Division of Pediatric Surgery, Dr. Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Edhyana Sahiratmadja
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P.S. Susanto
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Y. Sribudiani
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
43
|
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 2021; 84:110028. [PMID: 33940163 DOI: 10.1016/j.cellsig.2021.110028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The secreted extracellular protein, transforming growth factor beta induced (TGFBI or βIGH3), has roles in regulating numerous biological functions, including cell adhesion and bone formation, both during embryonic development and during the pathogenesis of human disease. TGFBI has been most studied in the context of hereditary corneal dystrophies, where mutations in TGFBI result in accumulation of TGFBI in the cornea. In cancer, early studies focused on TGFBI as a tumor suppressor, in part by promoting chemotherapy sensitivity. However, in established tumors, TGFBI largely has a role in promoting tumor progression, with elevated levels correlating to poorer clinical outcomes. As an important regulator of cancer progression, TGFBI expression and function is tightly regulated by numerous mechanisms including epigenetic silencing through promoter methylation and microRNAs. Mechanisms to target TGFBI have potential clinical utility in treating advanced cancers, while assessing TGFBI levels could be a biomarker for chemotherapy resistance and tumor progression.
Collapse
Affiliation(s)
- Armando Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA; Department of Medicine, Duke University Medical Center, USA.
| |
Collapse
|
44
|
Ivan J, Patricia G, Agustriawan D. In silico study of cancer stage-specific DNA methylation pattern in White breast cancer patients based on TCGA dataset. Comput Biol Chem 2021; 92:107498. [PMID: 33933781 DOI: 10.1016/j.compbiolchem.2021.107498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Breast cancer is one of the most common types of cancer among women. As current breast cancer treatments are still ineffective, we assess the methylation pattern of White breast cancer patients across cancer stage based on The Cancer Genome Atlas (TCGA) dataset. Significant hypermethylation and hypomethylation can regulate the gene expression, thus becoming potential biomarkers in breast cancer tumorigenesis. METHODS DNA methylation data was downloaded using TCGA Assembler 2 based on race-specific metadata of TCGA - Breast Invasive Carcinoma (TCGA-BRCA) project from Genomic Data Commons (GDC) Data Portal. After the data was divided into each cancer stage, duplicated data of each patient was removed using OMICSBind, while differentially-expressed probes were identified using edgeR. The resulting probes were validated based on correlation and regression analysis with the gene expression, ANOVA between cancer stages, ROC curve per stage, as well as databases. RESULTS Based on the White dataset, we found 66 significant hypermethylated genes with logFC > 1.8 between Stage I-III. From this number, three epigenetic-regulated, stage-specific genes are proposed to be the detection biomarkers of breast cancer due to significant aberrant gene expression and/or low mutation ratio among breast cancer patients: ABCC9 (Stage III), SHISA3 (Stage II), and POU4F1 (Stage I-II). CONCLUSIONS Our study shows that ABCC9, SHISA3, and POU4F1 are potential stage-specific detection biomarkers of breast cancer for White individuals, whereas their roles in other races need to be studied further.
Collapse
Affiliation(s)
- Jeremias Ivan
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Street Kav 88, East Jakarta, 13210, Indonesia
| | - Gabriella Patricia
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Street Kav 88, East Jakarta, 13210, Indonesia
| | - David Agustriawan
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Street Kav 88, East Jakarta, 13210, Indonesia.
| |
Collapse
|
45
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
46
|
Ramarao-Milne P, Kondrashova O, Barry S, Hooper JD, Lee JS, Waddell N. Histone Modifying Enzymes in Gynaecological Cancers. Cancers (Basel) 2021; 13:cancers13040816. [PMID: 33669182 PMCID: PMC7919659 DOI: 10.3390/cancers13040816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Epigenetics is a process that allows genetic control, without the involvement of sequence changes to DNA or genes. In cancer, epigenetics is a key event in tumour development that can alter the expression of cancer driver genes and result in genomic instability. Due to the critical role of epigenetics in malignant transformation, therapies that target these processes have been developed to treat cancer. Here, we provide a summary of the epigenetic changes that have been described in a variety of gynaecological cancers. We then highlight how these changes are being targeted in preclinical models and clinical trials for gynaecological cancers. Abstract Genetic and epigenetic factors contribute to the development of cancer. Epigenetic dysregulation is common in gynaecological cancers and includes altered methylation at CpG islands in gene promoter regions, global demethylation that leads to genome instability and histone modifications. Histones are a major determinant of chromosomal conformation and stability, and unlike DNA methylation, which is generally associated with gene silencing, are amenable to post-translational modifications that induce facultative chromatin regions, or condensed transcriptionally silent regions that decondense resulting in global alteration of gene expression. In comparison, other components, crucial to the manipulation of chromatin dynamics, such as histone modifying enzymes, are not as well-studied. Inhibitors targeting DNA modifying enzymes, particularly histone modifying enzymes represent a potential cancer treatment. Due to the ability of epigenetic therapies to target multiple pathways simultaneously, tumours with complex mutational landscapes affected by multiple driver mutations may be most amenable to this type of inhibitor. Interrogation of the actionable landscape of different gynaecological cancer types has revealed that some patients have biomarkers which indicate potential sensitivity to epigenetic inhibitors. In this review we describe the role of epigenetics in gynaecological cancers and highlight how it may exploited for treatment.
Collapse
Affiliation(s)
- Priya Ramarao-Milne
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.R.-M.); (O.K.); (N.W.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Olga Kondrashova
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.R.-M.); (O.K.); (N.W.)
| | - Sinead Barry
- Department of Gynaecological Oncology, Mater Hospital Brisbane, Brisbane, QLD 4101, Australia;
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia;
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia;
| | - Jason S. Lee
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Epigenetics and Disease Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-38453951
| | - Nicola Waddell
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.R.-M.); (O.K.); (N.W.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
47
|
Aberrant Splicing Events and Epigenetics in Viral Oncogenomics: Current Therapeutic Strategies. Cells 2021; 10:cells10020239. [PMID: 33530521 PMCID: PMC7910916 DOI: 10.3390/cells10020239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Global cancer incidence and mortality are on the rise. Although cancer is fundamentally a non-communicable disease, a large number of cancers are known to have a viral aetiology. A high burden of infectious agents (Human immunodeficiency virus (HIV), human papillomavirus (HPV), hepatitis B virus (HBV)) in certain Sub-Saharan African countries drives the rates of certain cancers. About one-third of all cancers in Africa are attributed to infection. Seven viruses have been identified with carcinogenic characteristics, namely the HPV, HBV, Hepatitis C virus (HCV), Epstein–Barr virus (EBV), Human T cell leukaemia virus 1 (HTLV-1), Kaposi’s Sarcoma Herpesvirus (KSHV), and HIV-1. The cellular splicing machinery is compromised upon infection, and the virus generates splicing variants that promote cell proliferation, suppress signalling pathways, inhibition of tumour suppressors, alter gene expression through epigenetic modification, and mechanisms to evade an immune response, promoting carcinogenesis. A number of these splice variants are specific to virally-induced cancers. Elucidating mechanisms underlying how the virus utilises these splice variants to maintain its latent and lytic phase will provide insights into novel targets for drug discovery. This review will focus on the splicing genomics, epigenetic modifications induced by and current therapeutic strategies against HPV, HBV, HCV, EBV, HTLV-1, KSHV and HIV-1.
Collapse
|
48
|
Zeng X, Wang HY, Bai SY, Pu K, Wang YP, Zhou YN. The Roles of microRNAs in Multidrug-Resistance Mechanisms in Gastric Cancer. Curr Mol Med 2021; 20:667-674. [PMID: 32209033 DOI: 10.2174/1566524020666200226124336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Multidrug resistance (MDR) is one of the most significant reasons for the
chemotherapeutics failure in gastric cancer. Although accumulating investigations and
researches have been made to elucidate the mechanisms of multidrug resistance, the
detail is far from completely understood. The importance of microRNAs in cancer
chemotherapeutic resistance has been demonstrated recently, which provides a new
strategy to overcome multidrug resistance. The different mechanisms are related to the
phenomena of MDR itself and the roles of miRNAs in these multi-mechanisms by which
MDR is acquired. In turn, the aim of this review was to summarize recent publications of
microRNAs in regulating MDR in gastric cancer, thereby potentially developing as
targeted therapies. Further unraveling the roles of microRNAs in MDR mechanisms
including the ATP-binding cassette (ABC) transporter family, autophagy induction,
cancer stem cell regulation, hypoxia induction, DNA damage and repair, epigenetic
regulation, and exosomes in gastric cancer will be helpful for us to win the battle against
it.
Collapse
Affiliation(s)
- Xi Zeng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hao-Ying Wang
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| | - Su-Yang Bai
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| | - Yu-Ping Wang
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Ning Zhou
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Zhang XB, Chen XY, Sun P, Su XM, Zeng HQ, Zeng YM, Wang M, Luo X. Sodium Tanshinone IIA Sulfonate Attenuates Tumor Oxidative Stress and Promotes Apoptosis in an Intermittent Hypoxia Mouse Model. Technol Cancer Res Treat 2021; 19:1533033820928073. [PMID: 32431212 PMCID: PMC7249596 DOI: 10.1177/1533033820928073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Intermittent hypoxia, a significant feature of obstructive sleep apnea, has pro-tumorigenic effects. Here, we investigated the effect of sodium tanshinone IIA sulfonate on oxidative stress and apoptosis in a mouse model of Lewis lung carcinoma with intermittent hypoxia. Methods: Mice were randomly assigned to normoxia (control), normoxia plus sodium tanshinone IIA sulfonate (control + sodium tanshinone IIA sulfonate), intermittent hypoxia, and intermittent hypoxia + sodium tanshinone IIA sulfonate groups. Intermittent hypoxia administration lasted 5 weeks in the intermittent hypoxia groups. Lewis lung carcinoma cells were injected into the right flank of each mouse after 1 week of intermittent hypoxia exposure. Sodium tanshinone IIA sulfonate was injected intraperitoneally in the control + sodium tanshinone IIA sulfonate and intermittent hypoxia + sodium tanshinone IIA sulfonate groups. Tumor oxidative stress was evaluated by detection of malondialdehyde and superoxide dismutase. The apoptosis of tumor cells was evaluated by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay as well as by Western blot analysis of B-cell lymphoma 2-associated X protein and cleaved caspase-3 expression. Additionally, the expression of hypoxia-induced factor-1α, nuclear factor erythroid 2-related factor 2, and nuclear factor kappa B was also evaluated by Western blot. Results: Compared with the control group, the intermittent hypoxia treatment significantly increased Lewis lung carcinoma tumor growth and oxidative stress (serum malondialdehyde) but decreased serum levels of SOD and pro-apoptotic markers (terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, B-cell lymphoma 2-associated X protein, and cleaved caspase-3). These changes were significantly attenuated by intraperitoneal injection of sodium tanshinone IIA sulfonate. Lower nuclear factor erythroid 2-related factor 2 and higher nuclear factor kappa B levels in the intermittent hypoxia group were clearly reversed by sodium tanshinone IIA sulfonate treatment. In addition, sodium tanshinone IIA sulfonate administration decreased the high expression of hypoxia-induced factor-1α induced by intermittent hypoxia. Conclusion: Intermittent hypoxia treatment resulted in high oxidative stress and low apoptosis in Lewis lung carcinoma–implanted mice, which could be attenuated by sodium tanshinone IIA sulfonate administration possibly through a mechanism mediated by the nuclear factor erythroid 2-related factor 2/nuclear factor kappa B signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Xiao-Yang Chen
- Department of Pulmonary and Critical Care Medicine, Second Clinical Medical College of Fujian Medical University, the Second Affiliated Hospital of Fujian Medical University, Center of Respiratory Medicine of Fujian Province, People's Republic of China
| | - Peng Sun
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Xiao-Man Su
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Hui-Qing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Yi-Ming Zeng
- Department of Pulmonary and Critical Care Medicine, Second Clinical Medical College of Fujian Medical University, the Second Affiliated Hospital of Fujian Medical University, Center of Respiratory Medicine of Fujian Province, People's Republic of China
| | - Miao Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Xiongbiao Luo
- Department of Computer Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
50
|
Muhammad JS, Guimei M, Jayakumar MN, Shafarin J, Janeeh AS, AbuJabal R, Eladl MA, Ranade AV, Ali A, Hamad M. Estrogen-induced hypomethylation and overexpression of YAP1 facilitate breast cancer cell growth and survival. Neoplasia 2021; 23:68-79. [PMID: 33242831 PMCID: PMC7695929 DOI: 10.1016/j.neo.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Increased expression of Yes-associated protein-1 (YAP1) was shown to correlate with reduced survival in breast cancer (BC) patients. However, the exact mechanism of YAP1 regulation in BC cells remains ambiguous. Genomic sequence search showed that the promoter region of the YAP1 gene contains CpG Islands, hence the likelihood of epigenetic regulation by DNA methylation. To address this possibility, the effect of estrogen (17β estradiol; E2) on YAP1 gene expression and YAP1 promoter methylation status was evaluated in BC cells. The functional consequences of E2 treatment in control and YAP1-silenced BC cells were also investigated. Our data showed that E2 modulates YAP1 expression by hypomethylation of its promoter region via downregulation of DNA methyltransferase 3B (DNMT3B); an effect that seems to facilitate tumor progression in BC cells. Although the effect of E2 on YAP1 expression was estrogen receptor (ER) dependent, E2 treatment also upregulated YAP1 expression in MDA-MB231 and SKBR3 cells, which are known ER-negative BC cell lines but expresses ERα. Functionally, E2 treatment resulted in increased cell proliferation, decreased apoptosis, cell cycle arrest, and autophagic flux in MCF7 cells. The knockdown of the YAP1 gene reversed these carcinogenic effects of E2 and inhibited E2-induced autophagy. Lastly, we showed that YAP1 is highly expressed and hypomethylated in human BC tissues and that increased YAP1 expression correlates negatively with DNMT3B expression but strongly associated with ER expression. Our data provide the basis for considering screening of YAP1 expression and its promoter methylation status in the diagnosis and prognosis of BC.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Maha Guimei
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt; Department of Pathology, Armed Forces College of Medicine, Cairo, Egypt
| | | | - Jasmin Shafarin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Aisha Saleh Janeeh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Rola AbuJabal
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Anu Vinod Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Amjad Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|