1
|
Tang LH, Dai M, Wang DH. ANO6 is a reliable prognostic biomarker and correlates to macrophage polarization in breast cancer. Medicine (Baltimore) 2023; 102:e36049. [PMID: 37960776 PMCID: PMC10637410 DOI: 10.1097/md.0000000000036049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
To investigate the value of Anoctamin 6 (ANO6) in breast cancer (BC) by analyzing its expression, prognostic impact, biological function, and its association with immune characteristics. We initially performed the expression and survival analyses, followed by adopting restricted cubic spline to analyze the nonlinear relationship between ANO6 and overall survival (OS). Stratified and interaction analyses were conducted to further evaluate its prognostic value in BC. Next, we performed enrichment analyses to explore the possible pathways regulated by ANO6. Finally, the correlations between ANO6 and immune characteristics were analyzed to reveal its role in immunotherapy. Lower ANO6 expression was observed in BC than that in the normal breast group, but its overexpression independently predicted poor OS among BC patients (P < .05). Restricted cubic spline analysis revealed a linear relationship between ANO6 and OS (P-Nonlinear > 0.05). Interestingly, menopause status was an interactive factor in the correlation between ANO6 and OS (P for interaction = 0.016). Additionally, ANO6 was involved in stroma-associated pathways, and its elevation was significantly linked to high stroma scores and macrophage polarization (P < .05). Moreover, ANO6 was notably correlated with immune checkpoint expression levels, and scores of tumor mutation burden and microsatellite instability (all P < .05). ANO6 was an independent prognostic factor for BC, and might be a potential target for the BC treatment. Besides, ANO6 might affect BC progression via the regulation of stroma-related pathways and macrophage polarization.
Collapse
Affiliation(s)
- Long-Huan Tang
- General Surgical Department One, FengHua People's Hospital, Ningbo, China
| | - Min Dai
- Department of General Surgery, Hai'an Hospital Affiliated to Nantong University, Hai'an, China
| | - Dong-Hai Wang
- General Surgical Department One, FengHua People's Hospital, Ningbo, China
| |
Collapse
|
2
|
Guo F, Kan K, Rückert F, Rückert W, Li L, Eberhard J, May T, Sticht C, Dirks WG, Reißfelder C, Pallavi P, Keese M. Comparison of Tumour-Specific Phenotypes in Human Primary and Expandable Pancreatic Cancer Cell Lines. Int J Mol Sci 2023; 24:13530. [PMID: 37686338 PMCID: PMC10488093 DOI: 10.3390/ijms241713530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
There is an ongoing need for patient-specific chemotherapy for pancreatic cancer. Tumour cells isolated from human tissues can be used to predict patients' response to chemotherapy. However, the isolation and maintenance of pancreatic cancer cells is challenging because these cells become highly vulnerable after losing the tumour microenvironment. Therefore, we investigated whether the cells retained their original characteristics after lentiviral transfection and expansion. Three human primary pancreatic cancer cell lines were lentivirally transduced to create expandable (Ex) cells which were then compared with primary (Pri) cells. No obvious differences in the morphology or epithelial-mesenchymal transition (EMT) were observed between the primary and expandable cell lines. The two expandable cell lines showed higher proliferation rates in the 2D and 3D models. All three expandable cell lines showed attenuated migratory ability. Differences in gene expression between primary and expandable cell lines were then compared using RNA-Seq data. Potential target drugs were predicted by differentially expressed genes (DEGs), and differentially expressed pathways (DEPs) related to tumour-specific characteristics such as proliferation, migration, EMT, drug resistance, and reactive oxygen species (ROS) were investigated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We found that the two expandable cell lines expressed similar chemosensitivity and redox-regulatory capability to gemcitabine and oxaliplatin in the 2D model as compared to their counterparts. In conclusion, we successfully generated expandable primary pancreatic cancer cell lines using lentiviral transduction. These expandable cells not only retain some tumour-specific biological traits of primary cells but also show an ongoing proliferative capacity, thereby yielding sufficient material for drug response assays, which may provide a patient-specific platform for chemotherapy drug screening.
Collapse
Affiliation(s)
- Feng Guo
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Kejia Kan
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Felix Rückert
- Surgical Department, Diakonissen Krankenhaus Speyer, 67346 Speyer, Germany;
| | - Wolfgang Rückert
- Ingenieurbüro Dr. Ing. Rückert Data Analysis, Kirchweg 4, 57647 Nistertal, Germany;
| | - Lin Li
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Johannes Eberhard
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany;
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Wilhelm G. Dirks
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany;
| | - Christoph Reißfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Prama Pallavi
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Michael Keese
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Vascular Surgery, Theresienkrankenhaus, 68165 Mannheim, Germany
| |
Collapse
|
3
|
Histone Modifications Represent a Key Epigenetic Feature of Epithelial-to-Mesenchyme Transition in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24054820. [PMID: 36902253 PMCID: PMC10003015 DOI: 10.3390/ijms24054820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant diseases due to its high invasiveness, early metastatic properties, rapid disease progression, and typically late diagnosis. Notably, the capacity for pancreatic cancer cells to undergo epithelial-mesenchymal transition (EMT) is key to their tumorigenic and metastatic potential, and is a feature that can explain the therapeutic resistance of such cancers to treatment. Epigenetic modifications are a central molecular feature of EMT, for which histone modifications are most prevalent. The modification of histones is a dynamic process typically carried out by pairs of reverse catalytic enzymes, and the functions of these enzymes are increasingly relevant to our improved understanding of cancer. In this review, we discuss the mechanisms through which histone-modifying enzymes regulate EMT in pancreatic cancer.
Collapse
|
4
|
Zhao YX, Yang Z, Ma LB, Wang F, Wang Y, Xiang C. HIF1A overexpression predicts the high lymph node metastasis risk and indicates a poor prognosis in papillary thyroid cancer. Heliyon 2023; 9:e14714. [PMID: 36994412 PMCID: PMC10040699 DOI: 10.1016/j.heliyon.2023.e14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Objective To investigate the value of Hypoxia-inducible factor 1 A (HIF1A) in predicting lymph node metastasis (LNM) stage and clinical outcomes of papillary thyroid cancer (PTC) patients. Materials and methods The HIF1A gene expression analysis in PTC was performed by bioinformatics approaches followed by evaluating its protein level using immunohistochemistry analysis. The role of HIF1A in predicting the LNM stage was evaluated by logistic regression analysis, nomogram construction, and receiver operating characteristic (ROC) analysis. We performed survival analyses to determine its prognostic value. Enrichment analysis was conducted, and immune cell infiltration and stromal content were evaluated to examine the underlying mechanism of HIF1A in PTC. Results HIF1A transcription and protein levels were significantly high in PTC tissue (P < 0.05). Its overexpression predicted high LNM risk and unfavorable prognosis for PTC patients (P < 0.05). Cox regression analysis revealed HIF1A as an independent prognostic biomarker for the disease-free interval (DFI) (P < 0.01). In addition, HIF1A was positively related to tumor-suppressive immunity but was negatively correlated with anti-tumor immunity. HIF1A upregulation was also associated with increased stromal content. Conclusions HIF1A overexpression is an independent predictor for worse DFI in PTC. The HIF1A expression may affect the prognosis of PTC patients through immune- and stroma-related pathways. Our study provides new insight into the role of HIF1A in PTC biology and clinical management.
Collapse
Affiliation(s)
- Yong-xun Zhao
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Corresponding author. The Seventh Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou 730000, Gansu, China.
| | - Ze Yang
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li-bin Ma
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Fang Wang
- The Pathology Department, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yong Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Corresponding author. Department of Thyroid Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
5
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Jin JJ, Zheng T, Xu XX, Zheng L, Li FY, Li XX, Zhou L. Comprehensive analysis of the differential expression and prognostic value of COL1A2 in colon adenocarcinoma. Aging (Albany NY) 2022; 14:7390-7407. [PMID: 36057263 PMCID: PMC9550260 DOI: 10.18632/aging.204261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
Background: Colon adenocarcinoma (COAD) is a highly heterogeneous disease, which is the second most common cancer in females and third in males. Collagen type I alpha 2 (COL1A2) has been documented to be involved in the carcinogenesis of multiple tumors; however, the expression and prognostic significance of COL1A2 and its underlying mechanism in COAD remains unclarified. Materials and Methods: The general profile of COL1A2, its expression pattern, and prognostic value were systematically assessed through various bioinformatics tools. The protein level of COL1A2 was verified in COAD patients using immunohistochemistry analysis. In addition, enrichment analyses were performed to explore the possible regulatory pathways of COL1A2 in COAD. Results: The mRNA and protein levels of COL1A2 were significantly increased in COAD than that in normal tissues (P < 0.05). The COL1A2 expression tended to increase along with cancer stages and nodal metastasis status in COAD, while the promoter methylation levels of COL1A2 might negatively related to its mRNA expression. Survival analysis showed that COL1A2 was a reliable predictor for distinguishing the status of disease-specific survival (DSS), overall survival (OS), and progression-free survival (PFS), and might serve as a robust independent prognostic biomarker for DSS and OS in COAD patients (P < 0.05). The enrichment analysis showed focal adhesion as the most possible regulatory pathway by COL1A2. Conclusion: Collectively, COL1A2 functioned as an independent prognostic biomarker and might be a potential therapeutic target in COAD.
Collapse
Affiliation(s)
- Jian-Jiang Jin
- Department of Medical Oncology, The First People's Hospital of Linping, Hangzhou 311103, Zhejiang, China
| | - Ting Zheng
- Department of Medical Oncology, The First People's Hospital of Linping, Hangzhou 311103, Zhejiang, China
| | - Xiao-Xia Xu
- Department of Medical Oncology, The First People's Hospital of Linping, Hangzhou 311103, Zhejiang, China
| | - Lei Zheng
- Department of Medical Oncology, The First People's Hospital of Linping, Hangzhou 311103, Zhejiang, China
| | - Fang-Yuan Li
- Department of Medical Oncology, The First People's Hospital of Linping, Hangzhou 311103, Zhejiang, China
| | - Xing-Xing Li
- Department of Medical Oncology, The First People's Hospital of Linping, Hangzhou 311103, Zhejiang, China
| | - Li Zhou
- Department of Medical Oncology, The First People's Hospital of Linping, Hangzhou 311103, Zhejiang, China
| |
Collapse
|
7
|
Guo J, Zhao J, Fu W, Xu Q, Huang D. Immune Evasion and Drug Resistance Mediated by USP22 in Cancer: Novel Targets and Mechanisms. Front Immunol 2022; 13:918314. [PMID: 35935969 PMCID: PMC9347222 DOI: 10.3389/fimmu.2022.918314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of ubiquitination is involved in various processes in cancer occurrence and development, including cell cycle arrest, cell proliferation, apoptosis, invasion, metastasis, and immunity. Ubiquitination plays an important role not only at the transcriptional and post-translational levels but also at the protein level. When ubiquitination is in a pathological state, abnormally activated biological processes will not only induce cancer progression but also induce immune evasion. The main function of deubiquitinases (DUBs) is to remove ubiquitin chains from substrates, changing the biological activity of the substrates. It has great potential to improve the prognosis of cancer by targeting DUB to regulate proteome. Ubiquitin-specific peptidase 22 (USP22) belongs to the ubiquitin-specific protease (USP) family of DUBs and has been reported to be related to various physiological and pathological processes. USP22 is abnormally expressed in various malignant tumors such as prostate cancer, lung cancer, liver cancer, and colorectal cancer, which suggests that USP22 may play an important role in tumors. USP22 may stabilize programmed death ligand 1 (PD-L1) by deubiquitination while also regulating T-cell infiltration into tumors. Regulatory T cells (Tregs) are a unique class of immunosuppressive CD4+ T cells that primarily suppress the immune system by expressing the master transcription factor forkhead box protein 3 (FOXP3). USP22 was found to be a positive regulator of stable FOXP3 expression. Treg-specific ablation of USP22 leads to reduced tumor volume in multiple cancer models. This suggests that USP22 may regulate tumor resistance to immunotherapy. In this article, we review and summarize the biological functions of USP22 in multiple signal transduction pathways during tumorigenesis, immune evasion, and drug resistance. Furthermore, we propose a new possibility of combining USP22 with chemotherapeutic, targeted, and immunosuppressive drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dongsheng Huang
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
8
|
Yadav P, Subbarayalu P, Medina D, Nirzhor S, Timilsina S, Rajamanickam S, Eedunuri VK, Gupta Y, Zheng S, Abdelfattah N, Huang Y, Vadlamudi R, Hromas R, Meltzer P, Houghton P, Chen Y, Rao MK. M6A RNA Methylation Regulates Histone Ubiquitination to Support Cancer Growth and Progression. Cancer Res 2022; 82:1872-1889. [PMID: 35303054 DOI: 10.1158/0008-5472.can-21-2106] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is the most common malignancy of the bone, yet the survival for osteosarcoma patients is virtually unchanged over the past 30 years. This is principally because development of new therapies is hampered by a lack of recurrent mutations that can be targeted in osteosarcoma. Here, we report that epigenetic changes via mRNA methylation holds great promise to better understand the mechanisms of osteosarcoma growth and to develop targeted therapeutics. In osteosarcoma patients, the RNA demethylase ALKBH5 was amplified and higher expression correlated with copy number changes. ALKBH5 was critical for promoting osteosarcoma growth and metastasis, yet it was dispensable for normal cell survival. Me-RIP-seq analysis and functional studies showed that ALKBH5 mediates its pro-tumorigenic function by regulating m6A levels of histone deubiquitinase USP22 and the ubiquitin ligase RNF40. ALKBH5-mediated m6A deficiency in osteosarcoma led to increased expression of USP22 and RNF40 that resulted in inhibition of histone H2A monoubiquitination and induction of key pro-tumorigenic genes, consequently driving unchecked cell cycle progression, incessant replication and DNA repair. RNF40, which is historically known to ubiquitinate H2B, inhibited H2A ubiquitination in cancer by interacting with and affecting the stability of DDB1-CUL4-based ubiquitin E3 ligase complex. Taken together, this study directly links increased activity of ALKBH5 with dysregulation of USP22/RNF40 and histone ubiquitination in cancers. More broadly, these results suggest that m6A RNA methylation works in concert with other epigenetic mechanisms to control cancer growth.
Collapse
Affiliation(s)
- Pooja Yadav
- Greehey Children's Cancer Research Institute, United States
| | | | - Daisy Medina
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Saif Nirzhor
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Santosh Timilsina
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Subapriya Rajamanickam
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | | | - Yogesh Gupta
- UT Health Science Center at San Antonio, San Antonio, TX, United States
| | - Siyuan Zheng
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | | | - Yufei Huang
- The University of Texas at San Antonio, San Antonio, Texas, United States
| | - Ratna Vadlamudi
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Robert Hromas
- The University of Texas Health Science Center at San Antonio, United States
| | - Paul Meltzer
- National Cancer Institute, Bethesda, MD, United States
| | - Peter Houghton
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yidong Chen
- The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Manjeet K Rao
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
9
|
Liu D, Liu S, Fang Y, Liu L, Hu K. Comprehensive Analysis of the Expression and Prognosis for ITGBs: Identification of ITGB5 as a Biomarker of Poor Prognosis and Correlated with Immune Infiltrates in Gastric Cancer. Front Cell Dev Biol 2022; 9:816230. [PMID: 35223869 PMCID: PMC8863963 DOI: 10.3389/fcell.2021.816230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Integrin β superfamily members (ITGBs) are documented to play important roles in various biological processes, and accumulating evidence suggests that ITGBs are associated with carcinogenic effects in several malignancies. Gastric cancer (GC) is a complicated and highly heterogeneous disease; however, the expression and prognostic values of eight ITGBs and potential mechanism in GC remain largely unclear. Methods: The expression and prognostic significance of ITGBs in GC were systematically analyzed through Gene Expression Profiling Interactive Analysis, Human Protein Atlas, Kaplan–Meier Plotter, and cBioPortal databases. Then, the mRNA transcription data and corresponding clinical data of GC were downloaded from the Gene Expression Omnibus database as a testing cohort, and differentially expressed and prognostic genes were identified. The correlation between ITGB5 expression and overall survival and various clinical parameters were found by using univariate/multivariable Cox regression and Kaplan–Meier survival analysis. Additionally, differential analysis of gene expression profiles in low- and high-ITGB5 expression groups and pathway enrichment analysis was performed. Finally, the correlation of ITGB5 expression with immune infiltrates in GC was clarified. Results: Compared with adjacent normal tissue, the results reveal that the mRNA levels of ITGB1-2 and ITGB4-8 are significantly higher in GC, and immunohistochemistry results show the consistency between RNA and protein expression levels. Cox regression and Kaplan–Meier survival analysis indicate that high ITGB5 expression contributes to a poor prognosis and could be an independent prognostic factor in GC patients. Besides this, gene functional enrichment analysis indicates that ITGB5 expression is significantly associated with extracellular matrix organization, cell-substrate adhesion, and ossification. The KEGG pathway analysis of ITGB5 shows a close association between ITGB5 and focal adhesion, ECM-receptor interaction, phagosome, and PI3K-Akt signaling pathway. Last, the infiltrating level of CD4+ T cells, macrophages, and dendritic cells are positively related to the expression of ITGB5, especially macrophages, and lower levels of macrophages predict a better prognosis in GC in our study. Conclusion: Our findings investigate that ITGB5 may function as a valid biomarker of prognosis, and high expression of ITGB5 predicts poor prognosis for patients with GC. Besides this, it might be a potential target of precision therapy against GC.
Collapse
Affiliation(s)
- Dongliang Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shaojun Liu
- Department of General Surgery, The First Hospital Affiliated to the University of Science and Technology of China, Hefei, China
| | - Yu Fang
- Department of General Surgery, The First Hospital Affiliated to the University of Science and Technology of China, Hefei, China
| | - Liu Liu
- Department of General Surgery, The First Hospital Affiliated to the University of Science and Technology of China, Hefei, China
- *Correspondence: Liu Liu, ; Kongwang Hu,
| | - Kongwang Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Liu Liu, ; Kongwang Hu,
| |
Collapse
|
10
|
Zhang M, Ma S, Li X, Yu H, Tan Y, He J, Wei X, Ma J. Long non‑coding RNA CTBP1‑AS2 upregulates USP22 to promote pancreatic carcinoma progression by sponging miR‑141‑3p. Mol Med Rep 2022; 25:86. [PMID: 35039872 PMCID: PMC8809116 DOI: 10.3892/mmr.2022.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) feature prominently in pancreatic carcinoma progression. The present study aimed to clarify the biological functions, clinical significance and underlying mechanism of lncRNA CTBP1 antisense RNA 2 (CTBP1-AS2) in pancreatic carcinoma. Reverse transcription-quantitative PCR was performed to assess the expression levels of CTBP1-AS2, microRNA (miR)-141-3p and ubiquitin-specific protease 22 (USP22) mRNA in pancreatic carcinoma tissues and cell lines. Western blotting was used to examine USP22 protein expression in pancreatic carcinoma cell lines. Loss-of-function experiments were used to analyze the regulatory effects of CTBP1-AS2 on proliferation, apoptosis, migration and invasion of pancreatic carcinoma cells. Dual-luciferase reporter assay was used to examine the binding relationship between CTBP1-AS2 and miR-141-3p, as well as between miR-141-3p and USP22. It was demonstrated that CTBP1-AS2 expression was markedly increased in pancreatic carcinoma tissues and cell lines. High CTBP1-AS2 expression was associated with advanced clinical stage and lymph node metastasis of patients. Functional experiments confirmed that knocking down CTBP1-AS2 significantly inhibited pancreatic carcinoma cell proliferation, migration and invasion, and promoted cell apoptosis. In terms of mechanism, it was found that CTBP1-AS2 adsorbed miR-141-3p as a molecular sponge to upregulate the expression level of USP22. In conclusion, lncRNA CTBP1-AS2 may be involved in pancreatic carcinoma progression by regulating miR-141-3p and USP22 expressions; in addition, CTBP1-AS2 may be a diagnostic biomarker and treatment target for pancreatic carcinoma.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Songbo Ma
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Xuzhao Li
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Henghai Yu
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Yizheng Tan
- Department of Hepatopancreatobiliary Surgery, The 2nd Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jun He
- Department of Hepatopancreatobiliary Surgery, The 2nd Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xiaoping Wei
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Junming Ma
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| |
Collapse
|
11
|
Tian Y, Tang B, Wang C, Wang Y, Mao J, Yao Y, Gao Z, Liang R, Ye M, Cai S, Wang L. Operative ubiquitin-specific protease 22 deubiquitination confers a more invasive phenotype to cholangiocarcinoma. Cell Death Dis 2021; 12:678. [PMID: 34226501 PMCID: PMC8257691 DOI: 10.1038/s41419-021-03940-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Oncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.
Collapse
Affiliation(s)
- Yu Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
- Division of Vascular Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
- National Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Bo Tang
- Department of Health Sciences, Hiroshima Shudo University, Hiroshima, Japan.
| | - Chengye Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
- National Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Yan Wang
- National Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Jiakai Mao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Yifan Yao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Zhenming Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Rui Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Mingliang Ye
- National Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Shijie Cai
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China.
| |
Collapse
|
12
|
Feng T, Ling S, Xu C, Ying L, Su D, Xu X. Ubiquitin-specific peptidase 22 in cancer. Cancer Lett 2021; 514:30-37. [PMID: 33989708 DOI: 10.1016/j.canlet.2021.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Recently, many studies have shown that deubiquitination modification of proteins is of great significance in major physiological processes such as cell proliferation, apoptosis, and differentiation. The ubiquitin-specific peptidase (USP) family is one of the most numerous and structurally diverse of the deubiquitinates known to date. USP22, an important member of the USP family, has been found to be closely associated with tumor cell cycle regulation, stemness maintenance, invasion and metastasis, chemoresistance, and immune regulation. We focus on recent advances regarding USP22's function in cancer and discuss the prospect of USP22 in this review.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Colorectal Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chenyang Xu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lisha Ying
- Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Dan Su
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
13
|
Noncoding RNAs Associated with Therapeutic Resistance in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9030263. [PMID: 33799952 PMCID: PMC7998345 DOI: 10.3390/biomedicines9030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Therapeutic resistance is an inevitable impediment towards effective cancer therapies. Evidence accumulated has shown that the signaling pathways and related factors are fundamentally responsible for therapeutic resistance via regulating diverse cellular events, such as epithelial-to-mesenchymal transition (EMT), stemness, cell survival/apoptosis, autophagy, etcetera. Noncoding RNAs (ncRNAs) have been identified as essential cellular components in gene regulation. The expression of ncRNAs is altered in cancer, and dysregulated ncRNAs participate in gene regulatory networks in pathological contexts. An in-depth understanding of molecular mechanisms underlying the modulation of therapeutic resistance is required to refine therapeutic benefits. This review presents an overview of the recent evidence concerning the role of human ncRNAs in therapeutic resistance, together with the feasibility of ncRNAs as therapeutic targets in pancreatic cancer.
Collapse
|
14
|
Jeusset LM, Guppy BJ, Lichtensztejn Z, McDonald D, McManus KJ. Reduced USP22 Expression Impairs Mitotic Removal of H2B Monoubiquitination, Alters Chromatin Compaction and Induces Chromosome Instability That May Promote Oncogenesis. Cancers (Basel) 2021; 13:cancers13051043. [PMID: 33801331 PMCID: PMC7958346 DOI: 10.3390/cancers13051043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Chromosome instability (CIN) is an enabling feature of oncogenesis associated with poor patient outcomes, whose genetic determinants remain largely unknown. As mitotic chromatin compaction defects can compromise the accuracy of chromosome segregation into daughter cells and drive CIN, characterizing the molecular mechanisms ensuring accurate chromatin compaction may identify novel CIN genes. In vitro, histone H2B monoubiquitination at lysine 120 (H2Bub1) impairs chromatin compaction, while in vivo H2Bub1 is rapidly depleted from chromatin upon entry into mitosis, suggesting that H2Bub1 removal may be a pre-requisite for mitotic fidelity. The deubiquitinating enzyme USP22 catalyzes H2Bub1 removal in interphase and may also be required for H2Bub1 removal in early mitosis to maintain chromosome stability. In this study, we demonstrate that siRNA-mediated USP22 depletion increases H2Bub1 levels in early mitosis and induces CIN phenotypes associated with mitotic chromatin compaction defects revealed by super-resolution microscopy. Moreover, USP22-knockout models exhibit continuously changing chromosome complements over time. These data identify mitotic removal of H2Bub1 as a critical determinant of chromatin compaction and faithful chromosome segregation. We further demonstrate that USP22 is a CIN gene, indicating that USP22 deletions, which are frequent in many tumor types, may drive genetic heterogeneity and contribute to cancer pathogenesis.
Collapse
Affiliation(s)
- Lucile M. Jeusset
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
| | - Brent J. Guppy
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
| | - Zelda Lichtensztejn
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
| | - Darin McDonald
- Department of Oncology, University of Alberta, Edmonton, AB T6G2H7, Canada;
| | - Kirk J. McManus
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
- Correspondence: ; Tel.: +1-(204)-787-2833
| |
Collapse
|
15
|
Zhuang H, Chen X, Dong F, Zhang Z, Zhou Z, Ma Z, Huang S, Chen B, Zhang C, Hou B. Prognostic values and immune suppression of the S100A family in pancreatic cancer. J Cell Mol Med 2021; 25:3006-3018. [PMID: 33580614 PMCID: PMC7957204 DOI: 10.1111/jcmm.16343] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
S100 calcium‐binding protein A (S100A) family members regulate multiple biological functions related to pancreatic cancer (PC) progression and metastasis. However, the prognostic and oncologic values of S100A family have not been systematically investigated in PC. In the present study, the mRNA expression and potential functions of S100A family were investigated by bioinformatic analysis. Our results demonstrated that overexpression of S100A2, S100A6, S100A10, S100A11, S100A14 and S100A16 was significantly associated with higher T stage, advanced histologic grade and worse prognosis in PC. Besides, one CpG of S100A2, three CpG of S100A6, four CpG of S100A10, four CpG of S100A11, two CpG of S100A14 and five CpG of S100A16 were negatively associated with corresponding S100A family members expression and positively associated with overall survival (OS). The signature based on four CpGs showed good prediction ability of OS. Besides, S100A2 overexpression took part in the regulation of mitotic cell cycle, ECM‐receptor interaction and HIF‐1α transcription factor network. Overexpression of S100A6, S100A10, S100A11, S100A14 and S100A16 may impair the infiltration and cytolytic activity of CD8+ T cells through focal adhesion‐Ras‐stimulating signalling pathway in PC. Overall, this study explores the multiple prognostic values and oncologic functions of the S100A family in PC.
Collapse
Affiliation(s)
- Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Xinming Chen
- Department of Hepatobiliary Surgery, Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Fengying Dong
- Forth Department of Geriatrics, General Hospital of Southern Theater Command, Pla, Guangzhou, China
| | - Zedan Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
16
|
Zhuang H, Zhou Z, Ma Z, Li Z, Liu C, Huang S, Zhang C, Hou B. Characterization of the prognostic and oncologic values of ITGB superfamily members in pancreatic cancer. J Cell Mol Med 2020; 24:13481-13493. [PMID: 33073486 PMCID: PMC7701563 DOI: 10.1111/jcmm.15990] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Integrin β (ITGB) superfamily members have been reported to play important roles in multiple biological functions in various cancers. However, the prognostic and oncologic values of ITGB superfamily members have not been systematically investigated in pancreatic cancer (PC). In this study, the mRNA expression and biological functions of ITGB superfamily members in PC were evaluated by bioinformatic analysis. Our results demonstrated that ITGB1, ITGB4, ITGB5 and ITGB6 overexpressions were significantly associated with advanced AJCC stage and histologic grade, and worse prognosis in PC. A prognostic signature based on ITGB1, ITGB4, ITGB5 and ITGB6 showed a reliable predictive performance. Furthermore, one CpGs (cg20545410) in promoter region of ITGB1, four (cg18709893, cg15700850, cg20667796 and cg18326022) of ITGB4, two (cg10977398 and cg03518058) of ITGB5 and one (cg23008083) of ITGB6 were negatively associated with their corresponding mRNA expression, and positively associated with prognosis in PC. We also identified TFAP2A as the potential transcription factor for ITGB4, SP1 for ITGB1 and ITGB6, and FHL2 for ITGB5 and ITGB6. ITGB1, ITGB4, ITGB5 and ITGB6 overexpressions were all significantly involved in focal adhesion signalling pathway. ITGB1 and ITGB5 overexpressions also associated with up-regulation of TGF-β and WNT signalling pathway, whereas ITGB4 and ITGB6 overexpressions associated with up-regulation of Notch signalling pathway. Besides, ITGB1, ITGB5 and ITGB6 overexpressions significantly correlated with immunosuppression in PC. In summary, our study investigated the multilevel prognostic and biological values of ITGB superfamily members in PC.
Collapse
Affiliation(s)
- Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Zhenchong Li
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunsheng Liu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Xu J, Liao K, Fu Z, Xiong Z. Screening differentially expressed genes of pancreatic cancer between Mongolian and Han people using bioinformatics technology. BMC Cancer 2020; 20:298. [PMID: 32272917 PMCID: PMC7147062 DOI: 10.1186/s12885-020-06722-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 03/06/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND To screen and analyze differentially expressed genes in pancreatic carcinoma tissues taken from Mongolian and Han patients by Affymetrix Genechip. METHODS Pancreatic ductal cell carcinoma tissues were collected from the Mongolian and Han patients undergoing resection in the Second Affiliated Hospital of Nanchang University from March 2015 to May 2018 and the total RNA was extracted. Differentially expressed genes were selected from the total RNA qualified by Nanodrop 2000 and Agilent 2100 using Affymetrix and a cartogram was drawn; The gene ontology (GO) analysis and Pathway analysis were used for the collection and analysis of biological information of these differentially expressed genes. Finally, some differentially expressed genes were verified by real-time PCR. RESULTS Through the microarray analysis of gene expression, 970 differentially expressed genes were detected by comparing pancreatic cancer tissue samples between Mongolian and Han patients. A total of 257 genes were significantly up-regulated in pancreatic cancer tissue samples in Mongolian patients; while a total of 713 genes were down-regulated. In the Gene Ontology database, 815 differentially expressed genes were identified with clear GO classification, and CPB1 gene showed the highest increase in expression level (multiple difference: 31.76). The pathway analysis detected 28 signaling pathways that included these differentially expressed genes, involving a total of 178 genes. Among these pathways, the enrichment of differentially expressed genes in the FAK signaling pathway was the strongest and COL11A1 gene showed the highest multiple difference (multiple difference: 5.02). The expression of differentially expressed genes CPB1, COL11A1、ITGA4、BIRC3、PAK4、CPA1、CLPS、PIK3CG and HLA-DPA1 determined by real-time PCR were consistent with the results of gene microarray analysis. CONCLUSIONS The results of microarray analysis of gene expression profiles showed that there are a large number of differentially expressed genes in pancreatic cancer tissue samples comparing Mongolian and Han population. These genes are closely related to the cell proliferation, differentiation, invasion, metastasis and multi-drug resistance in pancreatic cancer. They are also involved in the regulation of multiple important signaling pathways in organisms.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Pathology, the First Affiliated Hospital of Nanchang University, No.17 YONGWAIZHENG Street, Nanchang, 330006, Jiangxi, China
| | - Kaili Liao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Zhonghua Fu
- Department of Burns, the First Affiliated Hospital of Nanchang University, No.17 YONGWAIZHENG Street, Nanchang, 330006, Jiangxi, China.
| | - Zhenfang Xiong
- Department of Pathology, the First Affiliated Hospital of Nanchang University, No.17 YONGWAIZHENG Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
18
|
Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019; 11:E1745. [PMID: 31703358 PMCID: PMC6896204 DOI: 10.3390/cancers11111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive disease that causes significant mortality worldwide. The direct correlation between PDAC incidence, disease progression, and mortality highlights the critical need to understand the mechanisms by which PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities. One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in PDAC, further promotes cellular transformation by inducing inflammatory interactions with the stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify the molecular regulators and effectors of this EMP program. While inhibition of individual targets may provide therapeutic insights, a single 'master-key' remains elusive, making their collective interactions of greater importance in controlling the behaviours' of heterogeneous tumour cell populations. Much work has been undertaken to understand key transcriptional programs that drive EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent programs governing EMP regulation is needed in order to design therapeutic strategies to curb PDAC mortality.
Collapse
Affiliation(s)
- James H. Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
19
|
The role of DUBs in the post-translational control of cell migration. Essays Biochem 2019; 63:579-594. [DOI: 10.1042/ebc20190022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
AbstractCell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.
Collapse
|
20
|
Zhao G, Wang Q, Wu Z, Tian X, Yan H, Wang B, Dong P, Watari H, Pfeffer LM, Guo Y, Li W, Yue J. Ovarian Primary and Metastatic Tumors Suppressed by Survivin Knockout or a Novel Survivin Inhibitor. Mol Cancer Ther 2019; 18:2233-2245. [PMID: 31515295 DOI: 10.1158/1535-7163.mct-19-0118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/10/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Survivin, a member of the inhibitor of apoptosis family, is upregulated in multiple cancers including ovarian cancer, but is rarely detectable in normal tissues. We previously reported that survivin promoted epithelial-to-mesenchymal transition (EMT) in ovarian cancer cells, suggesting that survivin may contribute to ovarian tumor metastasis and chemoresistance. In this study, we tested whether knockout or pharmacologic inhibition of survivin overcomes chemoresistance and suppresses tumor metastasis. The genetic loss of survivin suppressed tumor metastasis in an orthotopic ovarian cancer mouse model. To pharmacologically test the role of survivin on ovarian tumor metastasis, we treated chemo-resistant ovarian cancer cells with a selective survivin inhibitor, MX106, and found that MX106 effectively overcame chemoresistance in vitro MX106 inhibited cell migration and invasion by attenuating the TGFβ pathway and inhibiting EMT in ovarian cancer cells. To evaluate the efficacy of MX106 in inhibiting ovarian tumor metastasis, we treated an orthotopic ovarian cancer mouse model with MX106, and found that MX106 efficiently inhibited primary tumor growth in ovaries and metastasis in multiple peritoneal organs as compared with vehicle-treated control mice. Our data demonstrate that inhibition of survivin using either genetic knockout or a novel inhibitor MX106 suppresses primary ovarian tumor growth and metastasis, supporting that targeting survivin could be an effective therapeutic approach in ovarian cancer.
Collapse
Affiliation(s)
- Guannan Zhao
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Xinchun Tian
- Iowa State University of Science and Technology, Iowa
| | - Huan Yan
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Baojin Wang
- The Third Affiliated Hospital, Zhengzhou University, China
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yuqi Guo
- People's Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee. .,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
21
|
Harb OA, Kaf RM, Taha HF, Balata SA, Hemeda R, Yehia AM, Gertallah LM, Embaby A. Clinical, pathological and prognostic implications of USP22, SIRT1 and E-cadherin expression in papillary thyroid cancer (PTC) and adjacent non-neoplastic tissue. SURGICAL AND EXPERIMENTAL PATHOLOGY 2019. [DOI: 10.1186/s42047-019-0048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Ubiquitin-specific peptidase 22 (USP22) is described as a stem cell (CSC) marker which is involved in many biological processes, including cancer development, cellular growth and differentiation. Sirtuin 1 (SIRT1) controls a set of biologic processes that range from metabolic homeostasis to cancer. E-cadherin is a calcium-dependent intercellular adhesion molecule. Clinically, USP22, SIRT1 and E-cadherin have been studied to predict prognosis of a variety of cancers but the detailed roles of their expression in papillary thyroid cancer (PTC) and their relation to cancer invasion, metastases and recurrence are still not fully explained.
Aim of the study
To evaluate the expression of USP22, SIRT1 & E-cadherin in PTC tissues and adjacent non-neoplastic thyroid tissue and to correlate their expression with histopathology, clinical, pathological and prognostic parameters of PTC patients.
Methods
We have assessed USP22, SIRT1 & E-cadherin expression using immunohistochemistry in 40 cases with PTC in both malignant tissue and adjacent non-neoplastic tissue, analyzed the relationships between their levels of expression, clinic-pathological parameters, prognosis and survival of patients.
Results
High protein expression levels of both USP22, SIRT1 in addition to low E-cadherin expression in PTC were associated with larger tumors, extra-thyroidal extension, vascular invasion, lymphatic spread (p < 0.001), existence of distant metastases (p = 0.005 & 0.012 respectively), higher stage of the disease (p = 0.012 & 0.042 respectively) and worse five-years overall survival rates (p < 0.001).
Conclusion
Patients having advanced PTC with unfavorable prognosis had high levels of both USP22, SIRT1 in addition to low E-cadherin expression.
Collapse
|
22
|
Liao Y, Liang X, Liang W, Li Z, Wang Y, Wang L, Zhen S, Tang B, Wang Z. High expression of ubiquitin carboxyl-terminal hydrolase 22 is associated with poor prognosis in hepatitis B virus-associated liver cancer. Oncol Lett 2019; 17:5159-5168. [PMID: 31186731 DOI: 10.3892/ol.2019.10154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
Deubiquitinating enzymes regulate protein activity and cell homeostasis by removing ubiquitin moieties from various substrates. Ubiquitin carboxyl-terminal hydrolase 22 (USP22) is a member of the deubiquitinating protease family and is associated with the development of several tumor types. A previous study demonstrated that USP22 is highly expressed in liver cancer, and its high expression is associated with resistance to chemotherapy. However, the role of USP22 in hepatitis B virus (HBV)-associated liver cancer has not yet been elucidated. The current study demonstrated that USP22 was highly expressed in the tissues of patients with HBV-associated liver cancer, and its high expression was associated with clinicopathological characteristics, including tumor size, clinical stage and prognosis. Further results indicated that USP22 may regulate the proliferative and apoptotic abilities of HepG2.2.15 cells. Additionally, investigation into the underlying mechanism, using small interfering RNA, revealed that the downregulation of USP22 inhibited proliferation and promoted apoptosis though the phosphoinositide 3-kinase/protein kinase B signaling pathway. Therefore, USP22 has the potential to be used as an independent predictor of patient prognosis, as well as a therapeutic target for the treatment of HBV-associated liver cancer.
Collapse
Affiliation(s)
- Yong Liao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Xingsi Liang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Wenjin Liang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Zeming Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Yan Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Siqi Zhen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Zhenran Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| |
Collapse
|
23
|
Lambies G, Miceli M, Martínez-Guillamon C, Olivera-Salguero R, Peña R, Frías CP, Calderón I, Atanassov BS, Dent SYR, Arribas J, García de Herreros A, Díaz VM. TGFβ-Activated USP27X Deubiquitinase Regulates Cell Migration and Chemoresistance via Stabilization of Snail1. Cancer Res 2018; 79:33-46. [PMID: 30341066 DOI: 10.1158/0008-5472.can-18-0753] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/14/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022]
Abstract
In cancer cells, epithelial-to-mesenchymal transition (EMT) is controlled by Snail1, a transcriptional factor also required for the activation of cancer-associated fibroblasts (CAF). Snail1 is short-lived in normal epithelial cells as a consequence of its coordinated and continuous ubiquitination by several F-box-specific E3 ligases, but its degradation is prevented in cancer cells and in activated fibroblasts. Here, we performed an siRNA screen and identified USP27X as a deubiquitinase that increases Snail1 stability. Expression of USP27X in breast and pancreatic cancer cell lines and tumors positively correlated with Snail1 expression levels. Accordingly, downregulation of USP27X decreased Snail1 protein in several tumor cell lines. USP27X depletion impaired Snail1-dependent cell migration and invasion and metastasis formation and increased cellular sensitivity to cisplatin. USP27X was upregulated by TGFβ during EMT and was required for TGFβ-induced expression of Snail1 and other mesenchymal markers in epithelial cells and CAF. In agreement with this, depletion of USP27X prevented TGFβ-induced EMT and fibroblast activation. Collectively, these results indicate that USP27X is an essential protein controlling Snail1 expression and function and may serve as a target for inhibition of Snail1-dependent tumoral invasion and chemoresistance. SIGNIFICANCE: These findings show that inhibition of USP27X destabilizes Snail1 to impair EMT and renders tumor cells sensitive to chemotherapy, thus opening new strategies for the inhibition of Snail1 expression and its protumoral actions.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/1/33/F1.large.jpg.
Collapse
Affiliation(s)
- Guillem Lambies
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Miceli
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Catalina Martínez-Guillamon
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Rubén Olivera-Salguero
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Carolina-Paola Frías
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Irene Calderón
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Boyko S Atanassov
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO) CIBERONC, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Víctor M Díaz
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
24
|
Control of CCND1 ubiquitylation by the catalytic SAGA subunit USP22 is essential for cell cycle progression through G1 in cancer cells. Proc Natl Acad Sci U S A 2018; 115:E9298-E9307. [PMID: 30224477 PMCID: PMC6176615 DOI: 10.1073/pnas.1807704115] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overexpression of the deubiquitylase ubiquitin-specific peptidase 22 (USP22) is a marker of aggressive cancer phenotypes like metastasis, therapy resistance, and poor survival. Functionally, this overexpression of USP22 actively contributes to tumorigenesis, as USP22 depletion blocks cancer cell cycle progression in vitro, and inhibits tumor progression in animal models of lung, breast, bladder, ovarian, and liver cancer, among others. Current models suggest that USP22 mediates these biological effects via its role in epigenetic regulation as a subunit of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional cofactor complex. Challenging the dogma, we report here a nontranscriptional role for USP22 via a direct effect on the core cell cycle machinery: that is, the deubiquitylation of the G1 cyclin D1 (CCND1). Deubiquitylation by USP22 protects CCND1 from proteasome-mediated degradation and occurs separately from the canonical phosphorylation/ubiquitylation mechanism previously shown to regulate CCND1 stability. We demonstrate that control of CCND1 is a key mechanism by which USP22 mediates its known role in cell cycle progression. Finally, USP22 and CCND1 levels correlate in patient lung and colorectal cancer samples and our preclinical studies indicate that targeting USP22 in combination with CDK inhibitors may offer an approach for treating cancer patients whose tumors exhibit elevated CCND1.
Collapse
|
25
|
Kaushal K, Antao AM, Kim KS, Ramakrishna S. Deubiquitinating enzymes in cancer stem cells: functions and targeted inhibition for cancer therapy. Drug Discov Today 2018; 23:1974-1982. [PMID: 29864528 DOI: 10.1016/j.drudis.2018.05.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Abstract
The ability of cancers to evade conventional treatments, such as chemotherapy and radiation therapy, has been attributed to a subpopulation of cancer stem cells (CSCs). CSCs are regulated by mechanisms similar to those that regulate normal stem cells (NSCs), including processes involving ubiquitination and deubiquitination enzymes (DUBs) that regulate the expression of various factors, such as Notch, Wnt, Sonic Hedgehog (Shh), and Hippo. In this review, we discuss the roles of various DUBs involved in the regulation of core stem cell transcription factors and CSC-related proteins that are implicated in the modulation of cellular processes and carcinogenesis. In addition, we discuss the various DUB inhibitors that have been designed to target processes relevant to cancer and CSC maintenance.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
26
|
Choi J, Baek KH. Cellular functions of stem cell factors mediated by the ubiquitin-proteasome system. Cell Mol Life Sci 2018; 75:1947-1957. [PMID: 29423528 PMCID: PMC11105287 DOI: 10.1007/s00018-018-2770-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/16/2022]
Abstract
Stem cells undergo partitioning through mitosis and separate into specific cells of each of the three embryonic germ layers: endoderm, mesoderm, and ectoderm. Pluripotency, reprogramming, and self-renewal are essential elements of embryonic stem cells (ESCs), and it is becoming evident that regulation of protein degradation mediated by the ubiquitin-proteasome system (UPS) is one of the key cellular mechanisms in ESCs. Although the framework of that mechanism may seem simple, it involves complicated proteolytic machinery. The UPS controls cell development, survival, differentiation, lineage commitment, migration, and homing processes. This review is centered on the connection between stem cell factors NANOG, OCT-3/4, SOX2, KLF4, C-MYC, LIN28, FAK, and telomerase and the UPS. Herein, we summarize recent findings and discuss potential UPS mechanisms involved in pluripotency, reprogramming, differentiation, and self-renewal. Interactions between the UPS and stem cell transcription factors can apply to various human diseases which can be treated by generating more efficient iPSCs. Such complexes may permit the design of novel therapeutics and the establishment of biomarkers that may be used in diagnosis and prognosis development. Therefore, the UPS is an important target for stem cell therapeutic product research.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
27
|
Li Y, Yang Y, Li J, Liu H, Chen F, Li B, Cui B, Liu Y. USP22 drives colorectal cancer invasion and metastasis via epithelial-mesenchymal transition by activating AP4. Oncotarget 2018; 8:32683-32695. [PMID: 28427243 PMCID: PMC5464819 DOI: 10.18632/oncotarget.15950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/22/2017] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin specific peptidase 22 (USP22), a putative cancer stem cell marker, is overexpressed in liver metastases of colorectal cancer (CRC). However, the mechanism by which USP22 promotes CRC metastasis remains largely unknown. Here, we report that USP22 and AP4 are simultaneously overexpressed during TGF-β1-induced CRC cell epithelial-mesenchymal transition (EMT). USP22 up-regulation enhances CRC cell migration and invasion and EMT-related marker and AP4 expression, but these effects are partly blocked by AP4 knockdown. In addition, USP22 binds to the promoter region of AP4 to activate its transcription. In vivo, elevated USP22 expression promotes CRC cell metastasis to the lungs in nude mice, as evidenced by the fact that CRC metastatic nodules stain deeply positive for USP22 and AP4. In human CRC tissues, the genes encoding USP22 and AP4 are overexpressed in metastatic liver lesions compared with primary cancer tissues, and their overexpression is significantly associated with poor CRC patient survival. These findings indicate that USP22 and AP4 may serve as prognostic markers for predicting the risk of developing distant metastases in CRC.
Collapse
Affiliation(s)
- Yongmin Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Jingwen Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| | - He Liu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| | - Fuxun Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Bingyang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Binbin Cui
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
28
|
Wang A, Lu C, Ning Z, Gao W, Xie Y, Zhang N, Liang J, Abbasi FS, Yan Q, Liu J. Tumor-associated macrophages promote Ezrin phosphorylation-mediated epithelial-mesenchymal transition in lung adenocarcinoma through FUT4/LeY up-regulation. Oncotarget 2018; 8:28247-28259. [PMID: 28423676 PMCID: PMC5438647 DOI: 10.18632/oncotarget.16001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are key components of tumor microenvironment (TME) during tumorigenesis and progression. However, the role of TAMs in lung adenocarcinoma is still unclear. In this study, we aimed to clarify the mechanism underlying the crosstalk between TAMs and epithelial-mesenchymal transition (EMT) of lung adenocarcinoma. Fucosyltransferase IV (FUT4) and its synthetic cancer sugar antigen Lewis Y (LeY) was aberrantly elevated in various solid tumors, it plays critical role in the invasion and metastasis. Here, we found that in lung adenocarcinoma samples, the density of TAMs correlates with E-cadherin level and LeY level. In vitro assays, M2 macrophages promoted FUT4/LeY expression through the transforming growth factor-β1(TGF-β1)/Smad2/3 signaling pathway. FUT4/LeY was indispensable in M2 macrophages-mediated cytoskeletal remodeling and EMT. Furthermore, fucosylation of Ezrin mediated by FUT4/LeY can promote the phosphorylation of Ezrin, which was the critical mechanism of M2 macrophages-induced EMT. In vivo assays confirmed that M2 macrophages promoted EMT through the up-regulation of LeY and phosphorylated Ezrin. Together, our results revealed that TAMs promote Ezrin phosphorylation-mediated EMT in lung adenocarcinoma through FUT4/LeY- mediated fucosylation. Targeting this newly identified signaling may offer new possibilities for immunotherapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Chang Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Zhen Ning
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Wei Gao
- City College, Zhejiang University, 310000, Hangzhou, China
| | - Yunpeng Xie
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Ningning Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Jinxiao Liang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, 310000, Hangzhou, China
| | - Faisal S Abbasi
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 116011, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| |
Collapse
|
29
|
Qiu GZ, Sun W, Jin MZ, Lin J, Lu PG, Jin WL. The bad seed gardener: Deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. Pharmacol Ther 2017; 172:127-138. [DOI: 10.1016/j.pharmthera.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Träger MM, Dhayat SA. Epigenetics of epithelial-to-mesenchymal transition in pancreatic carcinoma. Int J Cancer 2017; 141:24-32. [DOI: 10.1002/ijc.30626] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Max M. Träger
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| | - Sameer A. Dhayat
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| |
Collapse
|
31
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
32
|
Kosinsky RL, Wegwitz F, Hellbach N, Dobbelstein M, Mansouri A, Vogel T, Begus-Nahrmann Y, Johnsen SA. Usp22 deficiency impairs intestinal epithelial lineage specification in vivo. Oncotarget 2016; 6:37906-18. [PMID: 26431380 PMCID: PMC4741973 DOI: 10.18632/oncotarget.5412] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022] Open
Abstract
Epigenetic regulatory mechanisms play a central role in controlling gene expression during development, cell differentiation and tumorigenesis. Monoubiquitination of histone H2B is one epigenetic modification which is dynamically regulated by the opposing activities of specific ubiquitin ligases and deubiquitinating enzymes (DUBs). The Ubiquitin-specific Protease 22 (USP22) is the ubiquitin hydrolase component of the human SAGA complex which deubiquitinates histone H2B during transcription. Recently, many studies have investigated an oncogenic potential of USP22 overexpression. However, its physiological function in organ maintenance, development and its cellular function remain largely unknown. A previous study reported embryonic lethality in Usp22 knockout mice. Here we describe a mouse model with a global reduction of USP22 levels which expresses the LacZ gene under the control of the endogenous Usp22 promoter. Using this reporter we found Usp22 to be ubiquitously expressed in murine embryos. Notably, adult Usp22lacZ/lacZ displayed low residual Usp22 expression levels coupled with a reduced body size and weight. Interestingly, the reduction of Usp22 significantly influenced the frequency of differentiated cells in the small intestine and the brain while H2B and H2Bub1 levels remained constant. Taken together, we provide evidence for a physiological role for USP22 in controlling cell differentiation and lineage specification.
Collapse
Affiliation(s)
- Robyn L Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany.,Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Nicole Hellbach
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany
| | - Ahmed Mansouri
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, RG Molecular Cell Differentiation, 37077 Göttingen, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Yvonne Begus-Nahrmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
33
|
Ezaka K, Kanda M, Sugimoto H, Shimizu D, Oya H, Nomoto S, Sueoka S, Tanaka Y, Takami H, Hashimoto R, Okamura Y, Yamada S, Fujii T, Nakayama G, Koike M, Fujiwara M, Kodera Y. Reduced Expression of Adherens Junctions Associated Protein 1 Predicts Recurrence of Hepatocellular Carcinoma After Curative Hepatectomy. Ann Surg Oncol 2015; 22 Suppl 3:S1499-507. [PMID: 26122373 DOI: 10.1245/s10434-015-4695-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) frequently recurs after curative resection. Therefore, the availability of sensitive biomarkers for progression and recurrence is essential for managing patients' clinical course. Adherens junctions associated protein 1 (AJAP1) may serve this purpose, because it mediates activities of tumor cells. METHODS AJAP1 mRNA levels and those of genes encoding potential interacting proteins, such as SRC in HCC cell lines, and 144 pairs of resected liver tissues were determined as well as the methylation status of the AJAP1 promoter and copy number changes at AJAP1 locus. The expression pattern of AJAP1 protein was evaluated using immunohistochemistry. RESULTS AJAP1 mRNA levels varied among nine HCC cell lines, and AJAP1 expression was reactivated after demethylation of its promoter. AJAP1 mRNA levels correlated inversely with those of SRC in HCC cell lines and tissues. AJAP1 mRNA levels were suppressed in HCC tissues. The expression pattern of AJAP1 correlated significantly with that of AJAP1 mRNA. Low levels of AJAP1 mRNA in patients with HCC associated significantly with elevated levels of tumor markers, larger tumor size, serosal infiltration, vascular invasion, hypermethylation of the AJAP1 promoter, and copy number loss at AJAP1 locus. Patients with low levels of AJAP1 expression were more likely to experience shorter disease-free survival (DFS), and multivariate analysis identified low AJAP1 expression as an independent factor for predicting DFS. CONCLUSIONS AJAP1 may function as a key regulatory molecule associated with the recurrence of HCC. Hypermethylation of the AJAP1 promoter is a key regulatory mechanism controlling AJAP1 expression.
Collapse
Affiliation(s)
- Kazuhiro Ezaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisaharu Oya
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Nomoto
- Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Satoshi Sueoka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuri Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoji Hashimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiyasu Okamura
- Department of Hepato-biliary-pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
34
|
Wu Q, Qin H, Zhao Q, He XX. Emerging role of transcription factor-microRNA-target gene feed-forward loops in cancer. Biomed Rep 2015; 3:611-616. [PMID: 26405533 DOI: 10.3892/br.2015.477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/28/2015] [Indexed: 12/28/2022] Open
Abstract
Transcriptional regulatory networks are biological network motifs that act in accordance with each other to play decisive roles in the pathological processes of cancer. One of the most common types, the feed-forward loop (FFL), has recently attracted interest. Three connected deregulated nodes, a transcription factor (TF), its downstream microRNA (miRNA) and their shared target gene can make up a class of cancer-involved FFLs as ≥1 of the 3 can act individually as a bona fide oncogene or a tumor suppressor. Numerous notable elements, such as p53, miR-17-92 cluster and cyclins, are proven members of their respective FFLs. Databases of interaction prediction, verification of experimental methods and confirmation of loops have been continually emerging during recent years. Development of TF-miRNA-target loops may help understand the mechanism of tumorgenesis at a higher level and explain the discovery and screening of the therapeutic target for drug exploitation.
Collapse
Affiliation(s)
- Qian Wu
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hua Qin
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiu Zhao
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
35
|
Oya H, Kanda M, Sugimoto H, Shimizu D, Takami H, Hibino S, Hashimoto R, Okamura Y, Yamada S, Fujii T, Nakayama G, Koike M, Nomoto S, Fujiwara M, Kodera Y. Dihydropyrimidinase-like 3 is a putative hepatocellular carcinoma tumor suppressor. J Gastroenterol 2015; 50:590-600. [PMID: 25173447 DOI: 10.1007/s00535-014-0993-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/17/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with hepatocellular carcinoma (HCC) may relapse after curative resection. Sensitive biomarkers for HCC are required to enhance disease management. Dihydropyrimidinase-like 3 (DPYSL3) suppresses cell proliferation and tumorigenicity of certain malignancies; however, its role in HCC is unknown. METHODS The expression levels of DPYSL3 and genes encoding potential interacting proteins vascular endothelial growth factor (VEGF), focal adhesion kinase (FAK), ezrin, and cellular src were determined using RT-PCR. Further, we determined the methylation status of the DPYSL3 promoter in HCC cells lines and the effect of inhibiting DPYSL3 expression on their phenotype. DPYSL3 expression was determined in 151 pairs of resected liver tissues. RESULTS DPYSL3 mRNA levels were down-regulated in most HCC cell lines with DPYSL3 promoter hypermethylation, and expression was restored after demethylation. DPYSL3 expression levels inversely correlated with those of VEGF and FAK. Knockdown of DPYSL3 significantly increased migration and the invasive properties of HCC cells. The mean level of DPYSL3 mRNA was significantly lower in HCC tissues compared with corresponding noncancerous tissues. The expression patterns of DPYSL3 mRNA and protein were consistent. DPYSL3 mRNA expression in HCC tissues inversely correlated with preoperative serum tumor markers and was significantly lower in patients with extrahepatic recurrences. Disease-specific and recurrence-free survival was significantly shorter in patients with down-regulated DPYSL3 expression. CONCLUSIONS Our results indicate that DPYSL3 is a putative HCC tumor suppressor, and promoter hypermethylation potently regulates DPYSL3 transcription. Down-regulation of DPYSL3 expression in HCC tissues may serve as a predictive biomarker for HCC after curative resection.
Collapse
Affiliation(s)
- Hisaharu Oya
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hu J, Yang D, Zhang H, Liu W, Zhao Y, Lu H, Meng Q, Pang H, Chen X, Liu Y, Cai L. USP22 promotes tumor progression and induces epithelial-mesenchymal transition in lung adenocarcinoma. Lung Cancer 2015; 88:239-45. [PMID: 25907317 DOI: 10.1016/j.lungcan.2015.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Our previous study showed that USP22 as an oncogene may mediate cancer development and progression in NSCLC, but the underlying molecular mechanism remains uncharacterized. Epithelial-mesenchymal transition (EMT) has been reported to play an important role in migration and invasion of the tumor cells. Thus, this study aims to determine the clinical significance and the possible roles of USP22 in EMT and progression of lung adenocarcinoma. METHODS Immunohistochemistry was used to determine the expression of USP22 in clinical samples. The clinical correlations and prognostic significance of the aberrantly expressed proteins were evaluated by statistical analysis. Moreover, we evaluated whether USP22 could induce EMT in cultured lung cancer cells. RESULTS The USP22 expression was positive in 76.03% of specimens and was correlated with advanced clinicopathologic classifications (differentiation, T and AJCC stages) and TGF-β1 expression (p=0.008). Multivariate Cox regression analysis revealed that USP22 expression level was an independent prognostic factor for both overall survival and disease-free survival (HR, 2.060; p=0.013 and HR, 1.993; p=0.016). In vitro study revealed that USP22 can regulate proliferation and invasive properties, and induce EMT of lung adenocarcinoma cells. Moreover, USP22 may up-regulate TGF-β1 expression. CONCLUSIONS Our data indicated that USP22 may promote lung adenocarcinoma cell invasion by the induction of EMT.
Collapse
Affiliation(s)
- Jing Hu
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Dongdong Yang
- Department of Oncological Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huijuan Zhang
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Wei Liu
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanbin Zhao
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hailing Lu
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qingwei Meng
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hui Pang
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xuesong Chen
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Li Cai
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|