1
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells 2019; 8:cells8111373. [PMID: 31683815 PMCID: PMC6912296 DOI: 10.3390/cells8111373] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
The Nr4a family of nuclear hormone receptors is composed of three members-Nr4a1/Nur77, Nr4a2/Nurr1 and Nr4a3/Nor1. While currently defined as ligandless, these transcription factors have been shown to regulate varied processes across a host of tissues. Of particular interest, the Nr4a family impinge, in a tissue dependent fashion, on cellular proliferation, apoptosis and fuel utilization. The regulation of these processes occurs through both nuclear and non-genomic pathways. The purpose of this review is to provide a balanced perspective of the tissue specific and Nr4a family member specific, effects on cellular proliferation, apoptosis and fuel utilization.
Collapse
|
3
|
Luo Y, Fu Y, Huang R, Gao M, Liu F, Gui R, Nie X. CircRNA_101505 sensitizes hepatocellular carcinoma cells to cisplatin by sponging miR-103 and promotes oxidored-nitro domain-containing protein 1 expression. Cell Death Discov 2019; 5:121. [PMID: 31372241 PMCID: PMC6662675 DOI: 10.1038/s41420-019-0202-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and a leading cause of cancer-related deaths worldwide. Emerging studies have shown that circular RNAs (circRNAs) are differentially expressed in HCC and play an important role in HCC pathogenesis and metastasis. However, the mechanism of circRNA in the chemoresistance of HCC remains unclear. In this study, we aimed to investigate the role of circRNA in cisplatin resistance of HCC. We identified a novel circRNA circRNA_101505 that was decreased in cisplatin-resistant HCC tissues and cell lines, and associated with a poor survival outcome. Gain-of-function investigations showed that overexpression of circRNA_101505 suppressed cancer cell growth in vivo and in vitro, and enhanced cisplatin toxicity in HCC cells. Mechanistic studies found that circRNA_101505 could sensitize HCC cells to cisplatin by sponging miR-103, and thereby promoting oxidored-nitro domain-containing protein 1 (NOR1) expression. In conclusion, the significant inhibitory effects indicate circRNA_101505 to be a potential therapeutic target for HCC treatment. Our findings provide significant evidence to further elucidate the therapeutic use of circRNA in HCC.
Collapse
Affiliation(s)
- Yanwei Luo
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, Tongzipo Road 138, 410013 Changsha, China
| | - Yunfeng Fu
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, Tongzipo Road 138, 410013 Changsha, China
| | - Rong Huang
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, Tongzipo Road 138, 410013 Changsha, China
| | - Meng Gao
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, Tongzipo Road 138, 410013 Changsha, China
| | - Fengxia Liu
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, Tongzipo Road 138, 410013 Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, Tongzipo Road 138, 410013 Changsha, China
| | - Xinmin Nie
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, Tongzipo Road 138, 410013 Changsha, China
| |
Collapse
|
4
|
CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS One 2019; 14:e0216705. [PMID: 31095607 PMCID: PMC6522010 DOI: 10.1371/journal.pone.0216705] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.
Collapse
|
5
|
Fusco A, Savio V, De Filippis A, Tufano A, Donnarumma G. Induction of Different Apoptosis Pathways by Two Proteus mirabilis Clinical Isolates Strains in Prostatic Epithelial Cells. Front Physiol 2018; 9:1855. [PMID: 30618851 PMCID: PMC6306403 DOI: 10.3389/fphys.2018.01855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
Abstract
Bacterial prostatitis is believed to be the leading cause of recurrent urinary tract infections (UTIs) in men under 50 years of age and occurs both as an acute febrile disease responsive to antibiotics and as a chronic infection that is often unresponsive to antibiotic treatment. Proteusmirabilis is more commonly associated with UTIs in these abnormalities, especially in patients undergoing catheterisation. This pathogen is able to colonise the host’s tissues and to cause disease thanks to the production of many virulence factors such as fimbriae, flagella, immune avoidance, host-damaging factors, and the ability to form crystalline biofilms. In addition, Proteus lipid A may exhibit apoptotic activity and induce desquamation of epithelial cells. The aim of this work was to evaluate the ability of two clinically isolated strains of P. mirabilis that are phenotypically different, named PM1 of PM2, respectively, to induce apoptosis in human prostatic adenocarcinoma PC-3. Our results demonstrate that PM1 and PM2 are able to activate two different apoptotic pathways, and this different behaviour is confirmed by the expression level of the ZapA gene, molecular fingerprinting and different spectrum of antibiotic resistance. The identification and knowledge of relations between the microorganism and host may provide the basis for new solutions to clinical problems with regard to diagnosis and therapy.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vittoria Savio
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonio Tufano
- Urology School, Sapienza University of Rome, Rome, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
6
|
Chen S, Zheng P, Wang W, Yi M, Chen P, Cai J, Li J, Peng Q, Ban Y, Zhou Y, Zeng Z, Li X, Xiong W, Li G, Xiang B. Abberent expression of NOR1 protein in tumor associated macrophages contributes to the development of DEN-induced hepatocellular carcinoma. J Cell Physiol 2018; 233:5002-5013. [PMID: 29227538 DOI: 10.1002/jcp.26349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and the sixth most common lethal cancer worldwide. Recent evidences demonstrated that oxidored nitro domain containing protein 1 (NOR1), a putative tumor suppressor gene, is overexpressed in human HCC tissues. However, the role of NOR1 in HCC development remains unclear. Here, we described that NOR1 protein level is elevated in HCC and is associated with poorer clinical outcome. However, ecotopic overexpression of NOR1 protein in human HCC cell line HepG2 cells had no effect on cells proliferation, migration, and clonality. Immunofluoresence assay indicates NOR1 protein is mainly expressed at CD163 positive M2 tumor associated macrophages (TAMs). To explore the role of NOR1 in the development of HCC, we interrogated the susceptibility of mice lacking the NOR1 gene to DEN-induced hepatocarcinogenesis. NOR1 deficient mice displayed resistance to DEN-induced HCC. We also demonstrate that mNOR1 protein is enriched in F4/80 positive Kupffer cells (KCs) infiltrated in DEN induced murine HCC tissues. Loss of NOR1 led to increase of iNOS whereas decrease of Arg1, Ym1 expression in KCs. Overexpression of NOR1 in THP-1 macrophages led to decrease of iNOS but increase of Arg1. Mechanistic investigations showed that inflammatory cytokines IL-6, TNF-α production, and NF-κB activation were also decreased in NOR1 knockout mice exposed to DEN treatment. Our data suggested that NOR1 is overexpressed in HCC associated TAMs and promotes M2 alternative polarization. Genetic deletion of NOR1 in mice leads to impairment of IL-6 production and NF-κB activation, which in turn attenuates DEN-induced HCC development.
Collapse
Affiliation(s)
- Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Pan Zheng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Mei Yi
- Department of Dermatology, Xiangya hospital of Central South University, Changsha, China
| | - Pan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
7
|
HnRNP-L promotes prostate cancer progression by enhancing cell cycling and inhibiting apoptosis. Oncotarget 2017; 8:19342-19353. [PMID: 28038443 PMCID: PMC5386688 DOI: 10.18632/oncotarget.14258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/01/2016] [Indexed: 01/23/2023] Open
Abstract
Expression of the RNA-binding protein HnRNP-L was previously shown to associate with tumorigenesis in liver and lung cancer. In this study, we examined the role of HnRNP-L in prostate cancer (Pca). We found that HnRNP-L is overexpressed in prostate tissue samples from 160 PC patients compared with tissue samples from 32 donors with cancers other than Pca. Moreover, HnRNP-L positively correlated with aggressive tumor characteristics. HnRNP-L knockdown inhibited cell proliferation and promoted cell apoptosis of Pca cell lines in vitro, and suppressed tumor growth when the cells were subcutaneously implanted in an athymic mouse model. Conversely, overexpression of HnRNP-L promoted cell proliferation and tumor growth while prohibiting cell apoptosis. HnRNP-L promoted cell proliferation and tumor growth in Pca in part by interacting with endogenous p53 mRNA, which was closely associated with cyclin p21. In addition, HnRNP-L affected cell apoptosis by directly binding the classical apoptosis protein BCL-2. These observations suggest HnRNP-L is an important regulatory factor that exerts pro-proliferation and anti-apoptosis effects in Pca through actions affecting the cell cycle and intrinsic apoptotic signaling. Thus HnRNP-L could potentially serve as a valuable molecular biomarker or therapeutic target in the treatment of Pca.
Collapse
|
8
|
Xiang T, Zhang S, Cheng N, Ge S, Wen J, Xiao J, Wu X. Oxidored-nitro domain-containing protein 1 promotes liver fibrosis by activating the Wnt/β-catenin signaling pathway in vitro. Mol Med Rep 2017; 16:5050-5054. [PMID: 28791396 DOI: 10.3892/mmr.2017.7165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/26/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatic fibrosis is a characteristic of various types of chronic liver diseases, and may further develop into liver cirrhosis and liver cancer. Oxidored‑nitro domain‑containing protein 1 (NOR1) expression levels are greater in hepatitis, cirrhosis and hepatocellular carcinoma samples compared with from normal liver samples. However, the importance of NOR1 in liver fibrosis remains to be elucidated. The present study aimed to investigate the effect of NOR1 on the proliferation and matrix expression of human hepatic stellate cells (HSCs) in vitro. Additionally, the molecular mechanisms underlying the role of NOR1 in the activation of HSCs was investigated. The present study determined that transforming growth factor β1 (TGF‑β1) may induce NOR1 expression in HSCs in a dose‑dependent manner, as determined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. NOR1‑small hairpin (sh)RNA was transfected into TGF‑β1‑treated HSCs to knock down NOR1. The MTT assay revealed that TGF‑β1‑induced cell proliferation was significantly inhibited in the NOR1‑shRNA group. In addition, NOR1 knockdown significantly inhibited TGF‑β1‑induced protein expression of fibrosis indexes, including collagen 1, 3 and α‑smooth muscle actin (α‑SMA). Subsequently, NOR1‑pcDNA3.1 was transfected into HSCs to overexpress NOR1. It was revealed that NOR1 overexpression may activate the Wnt/β‑catenin pathway in HSCs. The gain‑of function experiments demonstrated that NOR1 overexpression promoted cell proliferation and the expression of fibrosis indexes; however, these effects may be attenuated by dickkopf‑1, an inhibitor of the Wnt/β‑catenin signaling pathway. In conclusion, the present study demonstrated that NOR1 activates HSCs and contributes to liver fibrosis in vitro and this effect was achieved through the activation of the Wnt/β‑catenin pathway. Therefore, the current study may provide a novel target for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Tianxin Xiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Na Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shanfei Ge
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiangxiong Wen
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoping Wu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
NOR1 promotes hepatocellular carcinoma cell proliferation and migration through modulating the Notch signaling pathway. Exp Cell Res 2017; 352:375-381. [DOI: 10.1016/j.yexcr.2017.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 12/19/2022]
|
10
|
Yi M, Yang J, Li W, Li X, Xiong W, McCarthy JB, Li G, Xiang B. The NOR1/OSCP1 proteins in cancer: from epigenetic silencing to functional characterization of a novel tumor suppressor. J Cancer 2017; 8:626-635. [PMID: 28367242 PMCID: PMC5370506 DOI: 10.7150/jca.17579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/27/2016] [Indexed: 12/16/2022] Open
Abstract
NOR1 (Oxidored-nitro domain-containing protein 1), also known as OSCP1, was first identified in nasopharyngeal carcinoma (NPC) cells in 2003. NOR1 is evolutionarily conserved among species with its expression is restricted to brain, testis and respiratory epithelial cells. NOR1 was downregulated in NPC and the downregulation associates with poor prognosis. Previous study demonstrated that hypermethylation of NOR1 promoter was observed in NPC and hematological malignancies, which has been believed to be the main epigenetic cause for NOR1 silencing in these cancers. Recently, the NOR1 tumor suppressor status has been fully established. NOR1 inhibited cancer cell growth by disturbing tumor cell energe metabolism. NOR1 also promote tumor cells apoptosis in oxidative stress and hypoxia by inhibition of stress induced autophagy. Moreover, NOR1 suppressed cancer cell epithelial-mesenchymal transition, invasion and metastasis via activation of FOXA1/HDAC2-slug regulatory network. Deciphering the molecular mechanisms underlying NOR1 mediated tumor suppressive role would be helpful to a deeper understanding of carcinogenesis and, furthermore, to the development of new therapeutic approaches. Here we summarize the current knowledge on NOR1 focusing on its expression pattern, epigenetic and genetic association with human cancers and its biological functions. This review will also elucidate the potential application of NOR1/OSCP1 for some human malignancies.
Collapse
Affiliation(s)
- Mei Yi
- Department of Dermatology, Xiangya Hospital, The Central South University, Changsha, 410008, Hunan, China;; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Wenjuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| |
Collapse
|
11
|
Milosavljevic V, Haddad Y, Merlos Rodrigo MA, Moulick A, Polanska H, Hynek D, Heger Z, Kopel P, Adam V. The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy. PLoS One 2016; 11:e0163983. [PMID: 27727290 PMCID: PMC5058503 DOI: 10.1371/journal.pone.0163983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug.
Collapse
Affiliation(s)
- Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Amitava Moulick
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Hana Polanska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic, European Union
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| |
Collapse
|
12
|
Duggan SP, Behan FM, Kirca M, Zaheer A, McGarrigle SA, Reynolds JV, Vaz GMF, Senge MO, Kelleher D. The characterization of an intestine-like genomic signature maintained during Barrett's-associated adenocarcinogenesis reveals an NR5A2-mediated promotion of cancer cell survival. Sci Rep 2016; 6:32638. [PMID: 27586588 PMCID: PMC5009315 DOI: 10.1038/srep32638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Barrett’s oesophagus (BO), an intestinal-type metaplasia (IM), typically arising in conjunction with gastro-oesophageal reflux disease, is a prominent risk factor for the development of oesophageal adenocarcinoma (OAC). The molecular similarities between IM and normal intestinal tissues are ill-defined. Consequently, the contribution of intestine-enriched factors expressed within BO to oncogenesis is unclear. Herein, using transcriptomics we define the intestine-enriched genes expressed in meta-profiles of BO and OAC. Interestingly, 77% of the genes differentially expressed in a meta-profile of BO were similarly expressed in intestinal tissues. Furthermore, 85% of this intestine-like signature was maintained upon transition to OAC. Gene networking analysis of transcription factors within this signature revealed a network centred upon NR5A2, GATA6 and FOXA2, whose over-expression was determined in a cohort of BO and OAC patients. Simulated acid reflux was observed to induce the expression of both NR5A2 and GATA6. Using siRNA-mediated silencing and an NR5A2 antagonist we demonstrate that NR5A2-mediated cancer cell survival is facilitated through augmentation of GATA6 and anti-apoptotic factor BCL-XL levels. Abrogation of NR5A2-GATA6 expression in conjunction with BCL-XL co-silencing resulted in synergistically increased sensitivity to chemotherapeutics and photo-dynamic therapeutics. These findings characterize the intestine-like signature associated with IM which may have important consequences to adenocarcinogenesis.
Collapse
Affiliation(s)
- Shane P Duggan
- Department of Medicine, Division of Gastroenterology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia, Canada.,Life Science Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Fiona M Behan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, St James' Hospital, Dublin, Ireland
| | - Murat Kirca
- Department of Gastroenterology, St James' Hospital, Dublin, Ireland
| | - Abdul Zaheer
- Department of Gastroenterology, St James' Hospital, Dublin, Ireland
| | - Sarah A McGarrigle
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St James' Hospital, Dublin 8, Ireland
| | - John V Reynolds
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St James' Hospital, Dublin 8, Ireland
| | - Gisela M F Vaz
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity College Dublin, the University of Dublin, St James' Hospital, Dublin 8, Ireland
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity College Dublin, the University of Dublin, St James' Hospital, Dublin 8, Ireland
| | - Dermot Kelleher
- Department of Medicine, Division of Gastroenterology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia, Canada.,Life Science Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Li DQ, Qiu M, Nie XM, Gui R, Huang MZ. Oxidored-nitro domain-containing protein 1 expression is associated with the progression of hepatocellular carcinoma. Oncol Lett 2016; 11:3003-3008. [PMID: 27123053 PMCID: PMC4840759 DOI: 10.3892/ol.2016.4362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatocarcinogenesis is a stepwise process during which multiple genes are altered. Understanding the molecular mechanisms that induce hepatocarcinogenesis may improve the screening, prevention and treatment of patients with hepatocellular carcinoma (HCC). In recent years, the oxidored-nitro domain-containing protein 1 (NOR1) gene has been identified to have an important role in the development of HCC in vitro experiments. The current study aimed to examine the expression of NOR1 mRNA and protein expression in specimens of normal liver, hepatitis, cirrhosis and HCC, together representing the process of HCC development. Furthermore, the association between NOR1 expression and clinicopathological parameters of HCC patients was analyzed. Tissue microarrays containing the specimens of human normal liver, hepatitis, cirrhosis and HCC were purchased, and in situ hybridization and immunohistochemistry were used to detect the expression of NOR1 mRNA and protein expression, respectively. It was revealed that the positive rate of NOR1 protein and mRNA expression in the specimens of hepatitis and cirrhosis were not significantly different from that in the normal liver samples. However, the specimens of HCC exhibited an increased positive rate of NOR1 protein and mRNA expression in comparison with the normal liver samples. In addition, a higher positive rate of NOR1 protein expression was observed in HCC patients with a poor pathological differentiation grade and high tumor node metastasis (TNM) stage. In conclusion, the present study provides evidence, for the first time, of the increased expression of NOR1 in human HCC tissues, and its correlation with the pathological stage and TNM status. These findings indicate that NOR1 may be involved in the progression of HCC and it could be employed as a predictive biomarker in HCC development.
Collapse
Affiliation(s)
- Deng-Qing Li
- Department of Laboratory Medicine, Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ming Qiu
- Department of Laboratory Medicine, Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xin-Min Nie
- Clinical Laboratory Centre of The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Rong Gui
- Clinical Laboratory Centre of The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Min-Zhu Huang
- Public Health School of Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
14
|
Huu NT, Yoshida H, Yamaguchi M. Tumor suppressor gene OSCP1/NOR1 regulates apoptosis, proliferation, differentiation, and ROS generation during eye development of Drosophila melanogaster. FEBS J 2015; 282:4727-46. [PMID: 26411401 DOI: 10.1111/febs.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 12/15/2022]
Abstract
OSCP1/NOR1 (organic solute carrier partner 1/oxidored nitrodomain-containing protein 1) is a known tumor suppressor protein. OSCP1 has been reported to mediate transport of various organic solutes into cells; however, its role during development has not yet been addressed. Here we report the results of studies on dOSCP1 (the Drosophila ortholog of hOSCP1) to elucidate the role of OSCP1/NOR1 during development. Knockdown of dOSCP1 in the eye imaginal discs induced a rough-eye phenotype in adult flies. This phenotype resulted from induction of caspase-dependent apoptosis followed by a compensatory cell proliferation and generation of reactive oxygen species in eye imaginal discs. The induction of apoptosis appears to be associated with down-regulation of the anti-apoptotic Buffy gene and up-regulation of the pro-apoptotic Debcl gene. These effects of knockdown of dOSCP1 lead to mitochondrial fragmentation, degradation, and a shortfall in ATP production. We also found that knockdown of dOSCP1 causes a defect in cone cell and pigment cell differentiation in pupal retinae. Moreover, mutations in epidermal growth factor receptor pathway-related genes, such as Spitz and Drk, enhanced the rough-eye phenotype induced by dOSCP1 knockdown. These results suggest that dOSCP1 positively regulates the epidermal growth factor receptor signaling pathway. Overall, our findings indicate that dOSCP1 plays multiple roles during eye development in Drosophila.
Collapse
Affiliation(s)
- Nguyen Tho Huu
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Hideki Yoshida
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| |
Collapse
|