1
|
Mahdinia E, Rostami R, Rezaei A, Ghaderi P, Yarahmadi S, Fallah S. Evaluation of autophagy related ATG4B gene, protein and miR-655-3p expression levels in endometrial cancer and hyperplasia. J Gynecol Oncol 2024; 36:36.e33. [PMID: 39302146 DOI: 10.3802/jgo.2025.36.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE The pathogenesis of endometrial cancer (EC) and hyperplasia is complex and poorly understood. Autophagy has emerged as a crucial aspect of this process. METHODS This study examines the role of autophagy in the pathogenesis of EC and hyperplasia by investigating the expression of the autophagy-related 4B cysteine peptidase (ATG4B) gene, protein, and miR-665-3p levels in patients compared to a control group. This cross-sectional case control study analyzed 90 endometrial tissues, including 30 tumors, 30 normal controls, and 30 hyperplasia, using quantitative reverse transcription polymerase chain reaction and Western blot to assess ATG4B gene and protein levels. RESULTS Higher ATG4B gene expression levels were found in the endometrial tissue of EC patients than in hyperplasia patients and controls. Furthermore, protein levels of ATG4B were also higher in EC and hyperplasia patients than in controls. ATG4B gene expression and protein levels were positively correlated in EC patients. However, in EC patients, miR-655-3p showed a significant negative correlation with the ATG4B gene and protein levels. CONCLUSION ATG4B gene and protein expression is elevated in EC tissue, suggesting their role as a tumor promoter. Evaluating their levels could serve as markers for monitoring EC progression and prognosis.
Collapse
Affiliation(s)
- Elmira Mahdinia
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rahim Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Ghaderi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Guan X, Pavani KC, Chunduru J, Broeckx BJG, Van Soom A, Peelman L. Hsa-miR-665 Is a Promising Biomarker in Cancer Prognosis. Cancers (Basel) 2023; 15:4915. [PMID: 37894282 PMCID: PMC10605552 DOI: 10.3390/cancers15204915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons. Dysregulation of miRNAs has been linked with development of several diseases, including many different types of cancer, and abnormal levels can be present in early stages of tumor development. Because miRNAs are stable molecules secreted and freely circulating in blood and urine, they can be sampled with little or no invasion. Here, we present an overview of the current literature, focusing on the types of cancers for which dysregulation of miR-665 has been associated with disease progression, recurrence, and/or prognosis. It needs to be emphasized that the role of miR-665 sometimes seems ambiguous, in the sense that it can be upregulated in one cancer type and downregulated in another and can even change during the progression of the same cancer. Caution is thus needed before using miR-665 as a biomarker, and extrapolation between different cancer types is not advisable. Moreover, more detailed understanding of the different roles of miR-665 will help in determining its potential as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Jayendra Chunduru
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Bart J. G. Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| |
Collapse
|
3
|
Mitchell MC, Pollock J, Downs MB, Stephen D. Metastatic Leptomeningeal Carcinomatosis From Primary Lobular Breast Cancer Found in a Medical School Cadaveric Dissection. Cureus 2023; 15:e44533. [PMID: 37790014 PMCID: PMC10544739 DOI: 10.7759/cureus.44533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Leptomeningeal carcinomatosis (LC) is an uncommon sequelae of metastatic cancer affecting the pia and arachnoid mater. It has been postulated that recent improvements in cancer patient survival time have increased the frequency of LC and other rare metastatic conditions that patients previously would not have lived long enough to experience. LC carries a universally poor prognosis with a mean survival of between two to four months if treated; however, the recent increase in incidence has allowed for further research into the condition and potential treatments. Options for administering chemotherapy have been limited in the past, but recent developments in surgical chemotherapeutic ports have allowed for intrathecal delivery of drugs like methotrexate without systemic exposure. In fact, innovative delivery systems undergoing clinical trials can deliver these drugs in a metronomic fashion to limit the leukoencephalopathy complications of methotrexate. Primary breast cancer is the most common source of metastatic leptomeningeal lesions, and such a lesion was observed by the authors in the cadaver of a 70-year-old Caucasian female with unspecified breast cancer in a medical school anatomic laboratory. The cause of death was listed as "complication of malignant neoplasm of unspecified site of unspecified female breast." Through this case report, we seek to develop our understanding of this rare metastatic phenomenon and highlight the importance of student cadaveric dissection.
Collapse
Affiliation(s)
- Mary C Mitchell
- Medical School, Edward Via College of Osteopathic Medicine, Auburn, USA
| | - James Pollock
- Medical School, Edward Via College of Osteopathic Medicine, Auburn, USA
| | - Mary B Downs
- Anatomy, Edward Via College of Osteopathic Medicine, Auburn, USA
| | - David Stephen
- Pathology, Edward Via College of Osteopathic Medicine, Auburn, USA
| |
Collapse
|
4
|
Zhao W, Jia Y, Sun G, Yang H, Liu L, Qu X, Ding J, Yu H, Xu B, Zhao S, Xing L, Chai J. Single-cell analysis of gastric signet ring cell carcinoma reveals cytological and immune microenvironment features. Nat Commun 2023; 14:2985. [PMID: 37225691 DOI: 10.1038/s41467-023-38426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Gastric signet ring cell carcinoma (GSRC) is a special subtype of gastric cancer (GC) associated with poor prognosis, but an in-depth and systematic study of GSRC is lacking. Here, we perform single-cell RNA sequencing to assess GC samples. We identify signet ring cell carcinoma (SRCC) cells. Microseminoprotein-beta (MSMB) can be used as a marker gene to guide the identification of moderately/poorly differentiated adenocarcinoma and signet ring cell carcinoma (SRCC). The upregulated differentially expressed genes in SRCC cells are mainly enriched in abnormally activated cancer-related signalling pathways and immune response signalling pathways. SRCC cells are also significantly enriched in mitogen-activated protein kinase and oestrogen signalling pathways, which can interact and promote each other in a positive feedback loop. SRCC cells are shown to have lower cell adhesion and higher immune evasion capabilities as well as an immunosuppressive microenvironment, which may be closely associated with the relatively poor prognosis of GSRC. In summary, GSRC exhibits unique cytological characteristics and a unique immune microenvironment, which may be advantageous for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Weizhu Zhao
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
- Department of Radialogy Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Guangyu Sun
- Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Haiying Yang
- Department of Cardiology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Luguang Liu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianlin Qu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jishuang Ding
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hang Yu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Botao Xu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Siwei Zhao
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China.
- Department of Radialogy Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jie Chai
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
5
|
Weng Q, Li Z, Xie Y, Guo J, Zhang Y, Ye G. Characteristics and Predictors of Long-Time Survivors in Non-Metastatic Gastric Signet Ring Cell Carcinoma: A Large Population-Based Study. Int J Gen Med 2022; 15:3133-3142. [PMID: 35342298 PMCID: PMC8942124 DOI: 10.2147/ijgm.s350448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Gastric signet ring cell carcinoma (SRCC) is a distinct entity with a relatively poor prognosis. This study analyzed the clinicopathological characteristics of long-time survivors (LTSs) and identified independent predictors of long-term survival (LTS) in non-metastatic gastric SRCC. Methods Data from 3906 patients with non-metastatic gastric SRCC were retrieved from Surveillance, Epidemiology and End Results according to the inclusion and exclusion criteria. Patients were randomly divided into training and validation cohorts. Predictors of LTS in the training cohort were identified by multivariate logistic regression. A nomogram-based predictive model for LTS was constructed in non-metastatic gastric SRCC. Results There were 800 patients who survived for >5 years and were defined as TLSs. Young age, other race (not black or white population), female gender, married status, small tumor size, low tumor infiltration, and negative lymph node involvement were independent predictors of LTS in non-metastatic gastric SRCC. These seven variables were incorporated into a nomogram model for predicting LTS. The calibration curve showed good consistency between observed and predicted probability of LTS, and the receiver operating characteristic curve showed acceptable discriminative capacity in the training and validation cohorts. Conclusion This study provides an overview of the features of patients with non-metastatic gastric SRCC. Age, race, sex, marital status, tumor size, tumor infiltration, and lymph node involvement were identified as independent predictors of LTS.
Collapse
Affiliation(s)
- Qiuyan Weng
- Department of Neurology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Zhe Li
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
- Institute of Digestive Diseases, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, People’s Republic of China
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
- Institute of Digestive Diseases, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, People’s Republic of China
| | - Yong Zhang
- Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang, People’s Republic of China
- Yong Zhang, Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, 315000, Zhejiang, People’s Republic of China, Email
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
- Institute of Digestive Diseases, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
- Correspondence: Guoliang Ye, Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, People’s Republic of China, Tel +86-574-87035171, Fax +86-574-87380487, Email
| |
Collapse
|
6
|
Kumar NAN, Jose A, Usman N, Rajan K, Munisamy M, Shetty PS, Rao M. Signet ring cell cancer of stomach and gastro-esophageal junction: molecular alterations, stage-stratified treatment approaches, and future challenges. Langenbecks Arch Surg 2021; 407:87-98. [PMID: 34505199 PMCID: PMC8847240 DOI: 10.1007/s00423-021-02314-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022]
Abstract
Purpose There has been an increase in the incidence of signet ring cell cancer (SRCC) of the stomach and gastro-esophageal junction (GEJ). The multistage carcinogenesis involving genetic and epigenetic aberrations may have a major role in the increasing incidence of SRCC. Although there are numerous studies on the prognostic value of SRCC, they are markedly inconsistent in their results, making it impossible to draw any meaningful conclusions. We aimed to examine the available evidences on molecular alterations and stage-stratified treatment approaches in SRCC of the stomach and GEJ. Methods A systematic search was carried out in PubMed. Studies available in English related to SRCC of stomach and gastro-esophageal junction were identified and evaluated. Results This study reviewed the current evidence and provided an insight into the molecular alterations, stage-stratified treatment approaches, and future challenges in the management of SRCC of the stomach and GEJ. Specific therapeutic strategies and personalized multimodal treatment have been recommended based on the tumor characteristics of SRCC. Conclusion Multistage carcinogenesis involving genetic and epigenetic aberrations in SRCC is interlinked with stage-dependent prognosis. Specific therapeutic strategy and personalized multimodal treatment should be followed based on the tumor characteristics of SRCC. Endoscopic resection, radical surgery, and perioperative chemotherapy should be offered in carefully selected patients based on stage and prognostic stratification. Future studies in genetic and molecular analysis, histopathological classification, and options of multimodality treatment will improve the prognosis and oncological outcomes in SRCC of gastric and GEJ.
Collapse
Affiliation(s)
- Naveena A N Kumar
- Department of Surgical Oncology, Manipal Comprehensive Cancer Care Center, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Anmi Jose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nawaz Usman
- Department of Surgical Oncology, Manipal Comprehensive Cancer Care Center, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Keshava Rajan
- Department of Surgical Oncology, Manipal Comprehensive Cancer Care Center, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Preethi S Shetty
- Department of Surgical Oncology, Manipal Comprehensive Cancer Care Center, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Front Pharmacol 2021; 12:736323. [PMID: 34512363 PMCID: PMC8425594 DOI: 10.3389/fphar.2021.736323] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer has become the second greatest cause of death worldwide. Although there are several different classes of anticancer drugs that are available in clinic, some tough issues like side-effects and low efficacy still need to dissolve. Therefore, there remains an urgent need to discover and develop more effective anticancer drugs. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression by inhibiting mRNA translation or reducing the stability of mRNA. An abnormal miRNA expression profile was found to exist widely in cancer cell, which induces limitless replicative potential and evading apoptosis. MiRNAs function as oncogenes (oncomiRs) or tumor suppressors during tumor development and progression. It was shown that regulation of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotypes in cancer cells. The miRNA hence provides an attractive target for anticancer drug development. In this review, we will summarize the latest publications on the role of miRNA in anticancer therapeutics and briefly describe the relationship between abnormal miRNAs and tumorigenesis. The potential of miRNA-based therapeutics for anticancer treatment has been critically discussed. And the current strategies in designing miRNA targeting therapeutics are described in detail. Finally, the current challenges and future perspectives of miRNA-based therapy are conferred.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | | | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
8
|
Khatun MS, Alam MA, Shoombuatong W, Mollah MNH, Kurata H, Hasan MM. Recent development of bioinformatics tools for microRNA target prediction. Curr Med Chem 2021; 29:865-880. [PMID: 34348604 DOI: 10.2174/0929867328666210804090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. High-throughput experimental approaches for miRNA target identification are costly and time-consuming, depending on various factors. It is vitally important to develop the bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies specially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.
Collapse
Affiliation(s)
- Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112. United States
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700. Thailand
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh. 5Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083. Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| |
Collapse
|
9
|
Cumova A, Vymetalkova V, Opattova A, Bouskova V, Pardini B, Kopeckova K, Kozevnikovova R, Lickova K, Ambrus M, Vodickova L, Naccarati A, Soucek P, Vodicka P. Genetic variations in 3´UTRs of SMUG1 and NEIL2 genes modulate breast cancer risk, survival and therapy response. Mutagenesis 2021; 36:269-279. [PMID: 34097065 DOI: 10.1093/mutage/geab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy in women accounting for approximately 2 million new cases worldwide annually. Several genetic, epigenetic and environmental factors are known to be involved in BC development and progression, including alterations in post-transcriptional gene regulation mediated by microRNAs (miRNAs). Single nucleotide polymorphisms (SNPs) located in miRNA binding sites (miRSNPs) in 3'-untranslated (UTR) regions of target genes may affect miRNA-binding affinity and consequently modulate gene expression. We have previously reported a significant association of miRSNPs in the SMUG1 and NEIL2 genes with overall survival in colorectal cancer patients. SMUG1 and NEIL2 are DNA glycosylases involved in base excision DNA repair (BER). Assuming that certain genetic traits are common for solid tumours, we have investigated wherever variations in SMUG1 and NEIL2 genes display an association with BC risk, prognosis, and therapy response in a group of 673 BC patients and 675 healthy female controls. Patients with TC genotype of NEIL2 rs6997097 and receiving only hormonal therapy displayed markedly shorter overall survival (OS) (HR=4.15, 95% CI=1.7-10.16, P= 0.002) and disease-free survival (DFS) (HR=2.56, 95% CI=1.5-5.7, P= 0.02). Our results suggest that regulation of base excision repair glycosylases operated by miRNAs may modulate the prognosis of hormonally treated BC.
Collapse
Affiliation(s)
- Andrea Cumova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alena Opattova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Bouskova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Barbara Pardini
- IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Katerina Lickova
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Miloslav Ambrus
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
10
|
Meng Q, Wang N, Duan G. Long non-coding RNA XIST regulates ovarian cancer progression via modulating miR-335/BCL2L2 axis. World J Surg Oncol 2021; 19:165. [PMID: 34090463 PMCID: PMC8180121 DOI: 10.1186/s12957-021-02274-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.
Collapse
Affiliation(s)
- Qingjuan Meng
- Medical Examination Center, The Third Hospital of Jinan, Jinan, 250132, China
| | - Ningning Wang
- Department of Obstetrics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China
| | - Guanglan Duan
- Department of Urology Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China.
| |
Collapse
|
11
|
Wu F, Shen K, Xie YI, Wang H, Sun Y, Wang Q. Gene Expression Profiling in Human Brain Microvascular Endothelial Cells in Response to Treponema pallidum Subspecies pallidum. AN ACAD BRAS CIENC 2020; 92:e20191234. [PMID: 33331441 DOI: 10.1590/0001-3765202020191234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/27/2020] [Indexed: 11/22/2022] Open
Abstract
Neurosyphilis (NS) is a neurological disorder caused by Treponema pallidum subspecies pallidum (T. pallidum), but how T. pallidum attach to and cross the blood-brain barrier (BBB) and how BBB response to this bacteria remain unclear. To explore how the human brain microvascular endothelial cells (HBMECs) response to T. pallidum, the Agilent SurePrint G3 Human Gene Expression 8×60K microarray was used. The results revealed that 249 genes were differentially expressed in HBMECs infected with T. pallidum. In particular, genes encoding proteins involved in bacterial adhesion, endothelial cell activation and immune response were regulated by T. pallidum. Furthermore, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to determine the biological functions of differentially expressed genes. In summary, T. pallidum changes the gene expression profile in HBMECs, and differentially expressed genes are associated with widespread biological and pathophysiological functions. Above all, this is the first paper reporting the effects of T. pallidum on HBMECs. These data develop a new platform for further molecular experiments on the pathogenesis of NS.
Collapse
Affiliation(s)
- Fan Wu
- Department of Dermatology, Sir Run Run Hospital, Nanjing Medical University, No. 109 Longmian Road, Molin District, Nanjing, 211100, China
| | - Kangjie Shen
- The First Clinical Medical College of Nanjing Medical University, No. 818 Tianyuandong Road, Molin District, Nanjing, 211100, China
| | - Y I Xie
- The First Clinical Medical College of Nanjing Medical University, No. 818 Tianyuandong Road, Molin District, Nanjing, 211100, China
| | - Hongye Wang
- The First Clinical Medical College of Nanjing Medical University, No. 818 Tianyuandong Road, Molin District, Nanjing, 211100, China
| | - Yifan Sun
- The First Clinical Medical College of Nanjing Medical University, No. 818 Tianyuandong Road, Molin District, Nanjing, 211100, China
| | - Qianqiu Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 12 Jiangwangmiao Road, Xuanwuhu District, Nanjing, 210042, China
| |
Collapse
|
12
|
Differentially Expressed mRNAs and Their Long Noncoding RNA Regulatory Network with Helicobacter pylori-Associated Diseases including Atrophic Gastritis and Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3012193. [PMID: 33282942 PMCID: PMC7686847 DOI: 10.1155/2020/3012193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/28/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
Background Helicobacter pylori (Hp) infection is the strongest risk factor for gastric cancer (GC). However, the mechanisms of Hp-associated GC remain to be explored. Methods The gene expression profiling (GSE111762) data were downloaded from the GEO database. Differentially expressed genes (DEGs) between normal samples (NO) and Hp-atrophic gastritis (GA) or Hp-GA and Hp-GC were identified by GEO2R. Gene Ontology and pathway enrichment analysis were performed using the DAVID database. lncRNA-TF-mRNA and ceRNA regulation networks were constructed using Cytoscape. The cross-networks were obtained by overlapping molecules of the above two networks. GSE27411 and GSE116312 datasets were employed for validation. Results DEGs between NO and Hp-GA are linked to the activity of inward rectifying potassium channels, digestion, etc. DEGs between Hp-GA and Hp-GC were associated with digestion, positive regulation of cell proliferation, etc. According to the lncRNA-TF-mRNA network, 63 lncRNAs, 12 TFs, and 209 mRNAs were involved in Hp-GA while 16 lncRNAs, 11 TFs, and 92 mRNAs were contained in the Hp-GC network. In terms of the ceRNA network, 120 mRNAs, 18 miRNAs, and 27 lncRNAs were shown in Hp-GA while 72 mRNAs, 8 miRNAs, and 1 lncRNA were included in the Hp-GC network. In the cross-network, we found that immune regulation and differentiation regulation were important in the process of NO-GA. Neuroendocrine regulation was mainly related to the process of GA-GC. In the end, we verified that CDX2 plays an important role in the pathological process of NO to Hp-GA. Comparing Hp-GA with Hp-GC, DEGs (FPR1, TFF2, GAST, SST, FUT9, and SHH), TF, and GATA5 were of great significance. Conclusions We identified the DEGs, and their lncRNA regulatory network of Hp-associated diseases might provide insights into the mechanism between Hp infection and GC. Furthermore, in-depth studies of the molecules might be useful to explore the multistep process of gastric diseases.
Collapse
|
13
|
Li Y, Zhu Z, Ma F, Xue L, Tian Y. Gastric Signet Ring Cell Carcinoma: Current Management and Future Challenges. Cancer Manag Res 2020; 12:7973-7981. [PMID: 32943931 PMCID: PMC7478370 DOI: 10.2147/cmar.s268032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/15/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in the epidemiology, pathology, molecular mechanisms, and combined modality therapy (CMT) fields have shown that gastric signet ring cell carcinoma (GSRC) should be considered a distinct cancerous entity. Clinical management of this cancer is challenging, with chemoradioresistance and poor outcomes in advanced stages. Pathological and molecular sets of GSRC demonstrate different features of poor cohesion and differentiation according to the WHO, Japanese Gastric Cancer Association, and Laurén classifications. These features also result in poor response to adjuvant and neoadjuvant chemoradiotherapy. Certain studies of GSRC showed the disputed effectiveness of hyperthermic intraperitoneal chemotherapy and immunotherapy. Our aim was to discuss how an improved understanding of these therapeutic benefits may provide better treatment selection for patients, and therefore improve survival. The challenges in the new understanding of GSRC in routine practice and pathology, and the current limitations of treatment will also be discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhikai Zhu
- School of Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Fuhai Ma
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yantao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
14
|
MiR-155 and MiR-665 Role as Potential Non-invasive Biomarkers for Hepatocellular Carcinoma in Egyptian Patients with Chronic Hepatitis C Virus Infection. J Transl Int Med 2020; 8:32-40. [PMID: 32435610 PMCID: PMC7227164 DOI: 10.2478/jtim-2020-0006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background and Objectives Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer associated death globally. Serum micro RNAs are full of potential as noninvasive biomarkers. Here, we aim to assess the performance of serum MicroRNA-155 and MicroRNA-665 as diagnostic biomarker for HCC comparing to AFP. Methods Serum samples were collected from 200 subjects (40 healthy control, 80 chronic hepatitis C patients with cirrhosis and without HCC (LC) and 80 HCC patients currently infected by hepatitis C infection and didn’t start the treatment). The HCC patients didn’t include alcoholic liver disease, nonalcoholic fatty liver disease nor autoimmune liver disease. MicroRNA-155 and MicroRNA-665 expression were measured by real-time quantitative PCR (RT-qPCR), while AFP level was assessed by ELISA method. Results Both miR-155 and miR-665 were significantly elevated in HCC group as compared to both control and LC groups. The comparison between LC and HCC patients revealed that the serum level of miR-155 was a significant increase in HCC patients compared to LC patients; however, the serum level of miR-665 didn’t show any significant difference between the same two groups. MiR-665 expression level showed a direct correlation with tumor size in HCC patients. Conclusions Using measurement against AFP level in serum, miR-665 is considered a promising serum biomarker for the diagnosis of HCC patients among the LC patients without HCC. MiR-155 didn’t provide a better performance than serum AFP as a diagnostic biomarker among the same group. MiR-665 may serve as a good indicator for HCC prognosis.
Collapse
|
15
|
Zhao ZT, Li Y, Yuan HY, Ma FH, Song YM, Tian YT. Identification of key genes and pathways in gastric signet ring cell carcinoma based on transcriptome analysis. World J Clin Cases 2020; 8:658-669. [PMID: 32149050 PMCID: PMC7052547 DOI: 10.12998/wjcc.v8.i4.658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/20/2020] [Accepted: 02/14/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gastric signet ring cell carcinoma (GSRCC) is one of the most malignant tumors. It has the features of high invasiveness, rapid progression, and resistance to chemotherapy. However, systematic analyses of mRNAs have not yet been performed for GSRCC.
AIM To identify key mRNAs and signaling pathways in GSRCC.
METHODS A transcriptome analysis of two GSRCC and two non-GSRCC samples was performed in this study. Differentially expressed mRNAs and pathways were identified based on the KEGG and PANTHER pathway annotations. The interactive relationships among the differential genes were mapped with the STRING database. Quantitative real-time polymerase chain reaction was used to validate the key gene expression in GSRCC.
RESULTS About 1162 differential genes (using a 2-fold cutoff, P < 0.05) were identified in GSRCC compared with non-GSRCC. The enriched KEGG and PANTHER pathways for the differential genes included immune response pathways, metabolic pathways, and metastasis-associated pathways. Ten genes (MAGEA2, MAGEA2B, MAGEA3, MAGEA4, MAGEA6, MUC13, GUCA2A, FFAR4, REG1A, and REG1B) were identified as hub genes in the protein-protein interaction network. The expression levels of five genes (MAGEA2, MAGEA3, MAGEA4, MAGEA6, and REG1B) showed potential clinical value.
CONCLUSION We have identified the potential key genes and pathways in GSRCC, and these hub genes and pathways could be diagnostic markers and therapeutic targets for GSRCC.
Collapse
Affiliation(s)
- Zi-Tong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong-Yu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fu-Hai Ma
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Mei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan-Tao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
16
|
Identification of Potential Biomarkers and Biological Pathways in Juvenile Dermatomyositis Based on miRNA-mRNA Network. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7814287. [PMID: 31886250 PMCID: PMC6925816 DOI: 10.1155/2019/7814287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/14/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
Objective The aim of this study is to explore the potential pathogenesis of juvenile dermatomyositis by bioinformatics analysis of gene chips, which would screen the hub genes, identify potential biomarkers, and reveal the development mechanism of juvenile dermatomyositis. Material and Methods We retrieved juvenile dermatomyositis's original expression microarray data of message RNAs (mRNAs) and microRNAs (miRNAs) from NCBI's Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/); through the R package of limma in Bioconductor, we can screen the differentially expressed miRNAs and mRNAs, and then we further analyzed the predicted target genes by the methods such as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and miRNA-mRNA regulatory network construction and protein-protein interaction (PPI) network using Cytoscape 3.6.1. Results Compared with normal juvenile skin tissues, 6 upregulated microRNAs and 5 downregulated microRNAs were identified from 166 downregulated microRNAs and 58 upregulated microRNAs in juvenile dermatomyositis tissues. The enrichment pathways of differentially expressed microRNAs include cell adhesion molecules (CAMs), autoimmune thyroid disease, Type I diabetes mellitus, antigen and presentation, viral myocardium, graft-versus-host disease, and Kaposi sarcoma-associated herpes virus infection. By screening of microRNA-messenger RNA regulatory network and construction of PPI network map, three target miRNAs were identified, namely, miR-193b, miR-199b-5p, and miR-665. Conclusion We identified mir-193b, mir-199b-5p, and mir-6653 target miRNAs by exploring the miRNA-mRNA regulation network mechanism related to the pathogenesis of juvenile dermatomyositis, which will be of great significance for further study on the pathogenesis and targeted therapy of juvenile dermatomyositis.
Collapse
|
17
|
Tang H, Long Q, Zhuang K, Yan Y, Han K, Guo H, Lu X. miR-665 promotes the progression of gastric adenocarcinoma via elevating FAK activation through targeting SOCS3 and is negatively regulated by lncRNA MEG3. J Cell Physiol 2019; 235:4709-4719. [PMID: 31650535 DOI: 10.1002/jcp.29349] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Studies have found that miR-665 acted as a tumor suppressor or an oncogene in different malignancies. miR-665 expression was elevated in gastric adenocarcinoma tissues; however, its role and mechanism in this disease are not fully clarified. The expression of miR-665 and its target gene was detected in human gastric adenocarcinoma tissues and cells. Moreover, we analyzed the effects of miR-665 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) of gastric adenocarcinoma cells as well as tumor growth in vivo. The mechanisms of miR-665 in gastric adenocarcinoma were investigated by using molecular biology techniques. We found miR-665 was upregulated and suppressor of cytokine signaling 3 (SOCS3) was downregulated in gastric adenocarcinoma tissues and cells. Elevated miR-665 was positively correlated with tumor size, lymph node metastasis, invasion depth, TNM stage, and poor differentiation in gastric adenocarcinoma patients. Overexpression of miR-665 promoted, whereas knockdown of miR-665 suppressed the proliferation, migration, and EMT of gastric adenocarcinoma cells. Furthermore, we demonstrated that miR-665 functioned through targeting SOCS3, followed by activation of the FAK/Src signaling pathway in gastric adenocarcinoma cells. miR-665 antagomir inhibited tumor growth as well as the activation of the FAK/Src pathway but increased SOCS3 expression in nude mice. In addition, miR-665 expression was negatively regulated by long noncoding RNA maternally expressed gene 3 (MEG3). In conclusion, miR-665 acted as an oncogene in gastric adenocarcinoma by inhibiting SOCS3 followed by activation of the FAK/Src pathway and it was negatively modulated by MEG3. miR-665 may be a promising therapeutic target for the treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Hailing Tang
- Division of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Qianfa Long
- Division of Neurosurgery, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Kun Zhuang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yuan Yan
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Kun Han
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Hanqing Guo
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Xiaolan Lu
- Division of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Liu L, Tian YC, Mao G, Zhang YG, Han L. MiR-675 is frequently overexpressed in gastric cancer and enhances cell proliferation and invasion via targeting a potent anti-tumor gene PITX1. Cell Signal 2019; 62:109352. [DOI: 10.1016/j.cellsig.2019.109352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022]
|
19
|
Zhao XG, Hu JY, Tang J, Yi W, Zhang MY, Deng R, Mai SJ, Weng NQ, Wang RQ, Liu J, Zhang HZ, He JH, Wang HY. miR-665 expression predicts poor survival and promotes tumor metastasis by targeting NR4A3 in breast cancer. Cell Death Dis 2019; 10:479. [PMID: 31209222 PMCID: PMC6579763 DOI: 10.1038/s41419-019-1705-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is the main cause of death in breast cancer (BC) patients. Therefore, prediction and treatment of metastasis is critical for enhancing the survival of BC patients. In this study, we aimed to identify biomarkers that can predict metastasis of BC and elucidate the underlying mechanism of the functional involvement of such markers in metastasis. miRNA expression profile was analyzed using a custom microarray system in 422 BC tissues. The relationship between the upregulated miR-665, metastasis and survival of BC was analyzed and verified in another set of 161 BC samples. The biological function of miR-665 in BC carcinogenesis was explored with in vitro and in vivo methods. The target gene of miR-665 and its signaling cascade were also analyzed. There are 399 differentially expressed miRNAs between BC and noncancerous tissues, of which miR-665 is the most upregulated miRNA in the BC tissues compared with non-tumor breast tissues (P < 0.001). The expression of miR-665 predicts metastasis and poor survival in 422 BC patients, which is verified in another 161 BC patients and 2323 BC cases from online databases. Ectopic miR-665 expression promotes epithelial–mesenchymal transition (EMT), proliferation, migration and invasion of BC cells, and increases tumor growth and metastasis of BC in mice. Bioinformatics, luciferase assay and other methods showed that nuclear receptor subfamily 4 group A member 3 (NR4A3) is a target of miR-665 in BC. Mechanistically, we demonstrated that miR-665 promotes EMT, invasion and metastasis of BC via inhibiting NR4A3 to activate MAPK/ERK kinase (MEK) signaling pathway. Our study demonstrates that miR-665 upregulation is associated with metastasis and poor survival in BC patients, and mechanistically, miR-665 enhances progression of BC via NR4A3/MEK signaling pathway. This study provides a new potential prognostic biomarker and therapeutic target for BC patients.
Collapse
Affiliation(s)
- Xin-Ge Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing-Ye Hu
- Department of Basic Medicine, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jun Tang
- Department of Breast Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Yi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Nuo-Qing Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Qi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui-Zhong Zhang
- Department of Breast Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jie-Hua He
- Department of Breast Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
20
|
Bai N, Peng E, Xia F, Wang D, Li X, Li X. CircABCC2 Regulates Hepatocellular Cancer Progression by Decoying MiR-665. J Cancer 2019; 10:3893-3898. [PMID: 31417632 PMCID: PMC6692622 DOI: 10.7150/jca.31362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Numerous studies have shown that circular RNAs (circRNAs) play vital roles in tumor progression. However, how circRNAs function in hepatocellular cancer (HCC) remains mostly unclear. Methods: We analyzed HCC circRNA expression via a microarray, and the expression of an upregulated circRNA, circABCC2, was detected. We next explored the function of circABCC2 in HCC via a series of experiments. We performed RNA immunoprecipitation (RIP) and luciferase assays to explore the competing endogenous RNA (ceRNA) function of circABCC2 in HCC. Results: qRT-PCR verified that circABCC2 was overexpressed in HCC. Inhibition of circABCC2 suppressed HCC cell proliferation and invasion, but promoted apoptosis. Luciferase assays and RIP showed that circABCC2 and ABCC2 could directly bind to miR-665 and that circABCC2 could regulate ABCC2 expression by sponging miR-665. Conclusions: In summary, circABCC2 regulates ABCC2 expression and HCC progression by sponging miR-665. circABCC2 could be used as a biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Ning Bai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Eming Peng
- Department of XIMC Outpatient, Xiangya Hospital, Central South University, Changsha, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaogang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Huang Y, Zou Y, Lin L, Ma X, Zheng R. miR-101 regulates cell proliferation and apoptosis by targeting KDM1A in diffuse large B cell lymphoma. Cancer Manag Res 2019; 11:2739-2746. [PMID: 31040714 PMCID: PMC6455001 DOI: 10.2147/cmar.s197744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background miR-101 is reported to be associated with cell proliferation and apoptosis. However, it is unknown whether miR-101 expression affects cell proliferation and apoptosis in diffuse large B cell lymphoma (DLBCL). The aim of the present study was to investigate the expression of miR-101 and its effect on cell proliferation and apoptosis in DLBCL. Methods miR-101 expression was detected in 30 cases of patients with DLBCL and normal lymph node by qRT-PCR. Then, miR-101 expression was up-regulated and down-regulated in Originated Cell Line-Large Lymphoma 8 (OCL-LY8) cell line, respectively. MTT and flow cytometry assay were used to evaluate the effect of miR-101 on cell proliferation and apoptosis, respectively. As KDM1A was confirmed to be as a specific target of miR-101 by TargetScanHuman, the relationship between MiR-101 and KDM1A was further investigated. Results miR-101 expression in patients with DLBCL was significantly reduced compared those in normal lymph node (P<0.05). miR-101 expression was significantly associated with tumor size, clinical stage and International Prognostic Index (IPI) scores (P<0.05). In OCL-LY8 cell line, miR-101 down-regulation significantly promoted cell proliferation and suppressed cell apoptosis. Meanwhile, miR-101 up-regulation reversed this effect. In addition, miR-101 negatively regulated the expression of KDM1A. KDM1A down-regulation was oberved in normal tissues compared with those in DLBCL tissues, which inhibited cell proliferation and promoted cell apoptosis. Conclusion These data indicate that miR-101 regulates cell proliferation and apoptosis by targeting KDM1A, which provides a potential therapeutic for DLBCL patients.
Collapse
Affiliation(s)
- Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, 363000 Zhangzhou, People's Republic of China,
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, 363000 Zhangzhou, People's Republic of China,
| | - Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, 363000 Zhangzhou, People's Republic of China,
| | - Xudong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, 363000 Zhangzhou, People's Republic of China,
| | - Ruiji Zheng
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, 363000 Zhangzhou, People's Republic of China,
| |
Collapse
|
22
|
Ouyang S, Zhou X, Chen Z, Wang M, Zheng X, Xie M. LncRNA BCAR4, targeting to miR-665/STAT3 signaling, maintains cancer stem cells stemness and promotes tumorigenicity in colorectal cancer. Cancer Cell Int 2019; 19:72. [PMID: 30962766 PMCID: PMC6438025 DOI: 10.1186/s12935-019-0784-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/15/2019] [Indexed: 11/11/2022] Open
Abstract
Background Breast cancer anti-estrogen resistance 4 (BCAR4) is closely associated with colorectal cancer (CRC) initiation and propagation. However, the mechanisms underlying BCAR4 function in colon cancer remains largely unknown. In this study, we hypothesized that BCAR4 could regulate colon cancer stem/initiating cells (CSC) function and further facilitates the colon cancer progression. Methods qRT-PCR was used to examine the expression of BCAR4 and various CSC markers. FACS, acetaldehyde dehydrogenase (ALDH) activity and western blot assays were applicable to test the expression of CSC markers. CCK8, tumorsphere formation and transwell assays were adopted to examine the capacity of CRC cells proliferation, self-renewal and migration. Pull down assay was used to test the interaction between BCAR4 and miR-665. Luciferase reporter assay was used to examine the interaction of miR-665 and activators of transcription (STAT3). In vivo tumor xenograft study was used to verify the malignancy of CRC cells with inhibition of BCAR4. Results Breast cancer anti-estrogen resistance 4 was highly expressed in both CRC cells and stem/initiating cells. In addition, overexpression of BCAR4 facilitated the maintenance of ALDH positive cells (a type of cancer stem/initiating cells) stemness and promoted ALDH+ cells proliferation and migration. Inhibition of BCAR4 restricted ALDH+ cells proliferation and migration. We further proved that miR-665 was the target of BCAR4 and subsequently activated signal transducers and STAT3 signaling which is an important pathway in cancer stem cells self-renewal. Conclusions Breast cancer anti-estrogen resistance 4 promotes the CRC cells stemness through targeting to miR-665/STAT3 signaling and identification of the BCAR4 in CRC stem cells provides a new insight into CRC diagnosis, treatment, prognosis and next-step translational investigations.
Collapse
Affiliation(s)
- Shurui Ouyang
- Department of Gastrointestinal, The Affiliated Hospital of Zunyi Medical College, Huichuan Area, Dalian Road 149, Zunyi, 563000 Guizhou Province China
| | - Xin Zhou
- Department of Gastrointestinal, The Affiliated Hospital of Zunyi Medical College, Huichuan Area, Dalian Road 149, Zunyi, 563000 Guizhou Province China
| | - Zhengquan Chen
- Department of Gastrointestinal, The Affiliated Hospital of Zunyi Medical College, Huichuan Area, Dalian Road 149, Zunyi, 563000 Guizhou Province China
| | - Maijian Wang
- Department of Gastrointestinal, The Affiliated Hospital of Zunyi Medical College, Huichuan Area, Dalian Road 149, Zunyi, 563000 Guizhou Province China
| | - Xinbin Zheng
- Department of Gastrointestinal, The Affiliated Hospital of Zunyi Medical College, Huichuan Area, Dalian Road 149, Zunyi, 563000 Guizhou Province China
| | - Ming Xie
- Department of Gastrointestinal, The Affiliated Hospital of Zunyi Medical College, Huichuan Area, Dalian Road 149, Zunyi, 563000 Guizhou Province China
| |
Collapse
|
23
|
Zhu L, Chen Y, Nie K, Xiao Y, Yu H. MiR-101 inhibits cell proliferation and invasion of pancreatic cancer through targeting STMN1. Cancer Biomark 2019; 23:301-309. [PMID: 30198871 DOI: 10.3233/cbm-181675] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MiRNAs regulated most genes expression, which were proved important in various tumors. In this study, we want to investigate miR-101 effect and molecular mechanism on pancreatic cancer (PC), the research about this was blank now. RT-PCR analysis showed that miR-101 expression was declined in PC. MTT assay found that miR-101 mimic suppressed cell viability, while suppressing miR-101 facilitated cell proliferation. Transwell assay showed that miR-101 mimic inhibited cell invasion, but promoted cell invasion by miR-101 inhibitor. With TargetScanHuman's help, we verified STMN1 as a specific target of miR-101 and luciferase reporter assay was carried out to further confirm this discovery. STMN1 expression was reduced by miR-101 mimic and increased by miR-101 inhibitor. We next found that STMN1 was elevated in PC and its expression was negatively correlated with miR-101 expression. Furthermore, STMN1 siRNA curbed cell proliferation and invasion, which was opposite to miR-101 inhibitor effect on PC progression and STMN1 siRNA attenuated miR-101 inhibitor effect on cell proliferation and invasion. In conclusion, miR-101 inhibited PC cell proliferation and invasion via regulating STMN1, which provided a potential therapeutic for PC patients.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Radiology, Dongfang Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| | - Yinan Chen
- Department of Radiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Kai Nie
- Department of Radiology, Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Yongxin Xiao
- Department of Radiology, Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Hong Yu
- Department of Radiology, Dongfang Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| |
Collapse
|
24
|
miR-665 promotes hepatocellular carcinoma cell migration, invasion, and proliferation by decreasing Hippo signaling through targeting PTPRB. Cell Death Dis 2018; 9:954. [PMID: 30237408 PMCID: PMC6148030 DOI: 10.1038/s41419-018-0978-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022]
Abstract
Growing evidence suggests that aberrant microRNA (miRNA) expression contributes to hepatocellular carcinoma (HCC) development and progression. However, the potential role and mechanism of miR-665 in the progression of liver cancer remains largely unknown. Our current study showed that miR-665 expression was upregulated in HCC cells and tissues. High expression of miR-665 exhibited more severe tumor size, vascular invasion and Edmondson grading in HCC patients. Gain- or loss-of-function assays demonstrated that miR-665 promoted cell proliferation, migration, invasion, and the epithelial-mesenchymal transition (EMT) of HCC cells in vitro and in vivo. Tyrosine phosphatase receptor type B (PTPRB) was downregulated in HCC tissues, and was negatively correlated with miR-665 expression. Through western blotting and luciferase reporter assay, PTPRB was identified as a direct downstream target of miR-665. Restoration of PTPRB reverses the effects of miR-665 on HCC migration, invasion, and cell proliferation. A mechanistic study showed that PTPTRB mediated the functional role of miR-665 through regulation of the Hippo signaling pathway. In conclusion, our results suggested that miR-665 was a negative regulator of the PTPRB and could promote tumor proliferation and metastasis in HCC through decreasing Hippo signaling pathway activity, which can be a potential target for HCC treatment.
Collapse
|
25
|
Liu J, Jiang Y, Wan Y, Zhou S, Thapa S, Cheng W. MicroRNA‑665 suppresses the growth and migration of ovarian cancer cells by targeting HOXA10. Mol Med Rep 2018; 18:2661-2668. [PMID: 30015865 PMCID: PMC6102655 DOI: 10.3892/mmr.2018.9252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer and its metastasis leads to a poor prognosis. The present study was designed to elucidate how microRNA (miR)-665 regulates the proliferation and migration of ovarian tumor cells. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that miR-665 expression was decreased in ovarian cancer tissues. Increased expression of miR-665 suppressed the growth and migration of ovarian cancer cells, whereas the downregulated expression of miR-665 led to the opposite results. Bioinformatics tools identified homeobox A10 (HOXA10) as a target of miR-665. Following miR-665 overexpression, HOXA10 protein expression was significantly reduced. A dual luciferase assay revealed that miR-665 bound to the 3′-untranslated region of HOXA10. Immunohistochemistry and RT-PCR revealed that the expression of HOXA10 was negatively correlated with the expression of miR-665. It was concluded that miR-665 targets HOXA10 and may act as a tumor-suppressing gene in ovarian cancer. This pathway may be involved in the development and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Sunita Thapa
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
26
|
Lopez S, Bermudez B, Montserrat-de la Paz S, Abia R, Muriana FJ. A microRNA expression signature of the postprandial state in response to a high-saturated-fat challenge. J Nutr Biochem 2018; 57:45-55. [DOI: 10.1016/j.jnutbio.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/23/2018] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
|
27
|
Wu YC, Liu X, Wang JL, Chen XL, Lei L, Han J, Jiang YS, Ling ZQ. Soft-shelled turtle peptide modulates microRNA profile in human gastric cancer AGS cells. Oncol Lett 2017; 15:3109-3120. [PMID: 29435044 DOI: 10.3892/ol.2017.7692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/14/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer prevention using natural micronutrition on epigenetic mechanisms primarily revolves around plant extracts. However, the role of macronutrition, including animal peptides, on epigenetic modification in cancer has been elusive. In traditional Chinese medicine, the soft-shelled turtle has a long-history of being a functional food that strengthens immunity through unknown mechanisms. The present study aimed to investigate the impact of soft-shelled turtle peptide on microRNA (miRNA) expression in gastric cancer (GC) cells and to analyze the potential anticancer mechanisms for GC. Affymetrix GeneChip miRNA 3.0 Array and quantitative polymerase chain reaction were used to detect the miRNA expression profile in human GC AGS cells treated with the soft-shelled turtle peptide. The results demonstrated that 101 miRNAs (49 upregulated miRNAs and 52 downregulated miRNAs) were significantly differentially expressed in the AGS cells following soft-shelled turtle peptide treatment. Several tumor suppressor miRNAs were upregulated markedly, including miRNA-375, let-7d, miRNA-429, miRNA-148a/148b and miRNA-34a. Pathway analysis indicated that soft-shelled turtle peptide may function with anticancer properties through the Hippo signaling pathway and the forkhead box O signaling pathway. Therefore, these results demonstrated that soft-shelled turtle peptide has the capacity to influence cancer-related pathways through the regulation of miRNA expression in GC cells.
Collapse
Affiliation(s)
- Yi-Chen Wu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiang Liu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Jiu-Li Wang
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiang-Liu Chen
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Lan Lei
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Han
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - You-Shui Jiang
- Zhejiang Agricultural Group Co., Ltd., Hangzhou, Zhejiang 310021, P.R. China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
28
|
The lncRNA XIST interacts with miR-140/miR-124/iASPP axis to promote pancreatic carcinoma growth. Oncotarget 2017; 8:113701-113718. [PMID: 29371940 PMCID: PMC5768357 DOI: 10.18632/oncotarget.22555] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the development and progression of many tumors. In this study, XIST was specifically upregulated in pancreatic carcinoma tissues and cell lines; a higher XIST expression was correlated to poorer clinicopathologic features. After XIST knockdown, the proliferation of PC cell lines was suppressed and cell cycle stagnated in G1 phase; XIST knockdown also reduced the protein levels of inhibitor of apoptosis-stimulating protein of p53 (iASPP) and Cyclin-dependent kinase 1 (CDK1), increased the protein level of P21, a potent CDK inhibitor. In PC cell lines, XIST and miR-140/miR-124, two tumor-associated miRNAs, could inversely regulate each other, respectively; miR-140/miR-124 could bind to XIST and the 3’UTR of PPP1R13L, respectively. XIST and miR-140/miR-124 exerted opposite effects on iASPP, CDK1, P21 and P27 proteins; whereas the effects of LV-sh-XIST on the indicated protein levels could be partially reversed by miR-140 and/or miR-124 inhibitor. In PC tissues, miR-140 and miR-124 expression was down-regulated, iASPP and CDK1 mRNA expression was up-regulated. XIST positively correlated with iASPP and CDK1, inversely correlated with miR-140 and miR-124, respectively. Taken together, our data indicated that XIST might be an oncogenic lncRNA that promoted proliferation of PC cell line through inhibiting miR-140/miR-124 expression and promoting cell cycle-related factor expression, and could be regarded as a therapeutic target in human pancreatic carcinoma.
Collapse
|
29
|
Song X, Zhong H, Wu Q, Wang M, Zhou J, Zhou Y, Lu X, Ying B. Association between SNPs in microRNA machinery genes and gastric cancer susceptibility, invasion, and metastasis in Chinese Han population. Oncotarget 2017; 8:86435-86446. [PMID: 29156806 PMCID: PMC5689696 DOI: 10.18632/oncotarget.21199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/30/2017] [Indexed: 02/05/2023] Open
Abstract
Objective The present study investigates the influence of genetic variants in miRNA machinery genes (DROSHA, DICER, AGO1, and GEMIN4) on gastric cancer in Chinese Han population, further revealing the genetic mechanisms of gastric cancer occurrence and development. Methods Genotyping of single nucleotide polymorphisms (SNPs) was performed in 628 patients with GC and 502 frequency-matched (age and gender) controls by the high resolution melting (HRM) method. Results The SNPs rs3742330 (DICER) and rs7813 (GEMIN4) were associated with susceptibility to gastric cancer (P = 0.002 and 0.010, respectively). Stratified analysis showed that the G allele of rs3742330 and genotype TT as well as T allele of rs7813 were associated with a later stage of gastric cancer (P=0.027, 0.032 and 0.018, respectively). Furthermore, the genotype TT and T allele of rs7813 appeared to be associated with a higher level of lymphatic metastasis of gastric cancer (P=0.021 and 0.030, respectively), while the genotype AA and A allele of rs636832 (AGO1) were correlated with a lower level of lymphatic metastasis of gastric cancer (P=0.016 and 0.041, respectively). There was no significant association between rs10719 (DROSHA) and gastric cancer. Conclusion The present data demonstrated that genetic variants in miRNA machinery genes had a significant association with GC susceptibility (DICER and GEMIN4) and malignant behavior such as tumor stage (DICER and GEMIN4) and lymphatic metastasis of GC (GEMIN4 and AGO1) in Chinese Han population.
Collapse
Affiliation(s)
- Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huiyu Zhong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qian Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
30
|
Exosomal miR-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis. Oncotarget 2017; 8:80666-80678. [PMID: 29113334 PMCID: PMC5655229 DOI: 10.18632/oncotarget.20881] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/26/2017] [Indexed: 12/23/2022] Open
Abstract
Recent studies have shown that circulating microRNAs are potential biomarkers for various types of malignancies. The aim of this study was to investigate the feasibility of using serum exosomal microRNAs (miRNAs) as novel serological biomarkers for hepatocellular carcinoma (HCC) diagnosis and prognosis. Exosomes are small membranous vesicles (30–100 nm). Exosomal miR-665 levels in HCC patients were significantly higher than those in healthy subjects (P < 0.05), and exosomal miR-665 levels were significantly upregulated in tumours larger in size (> 5 cm), in tumours with local invasion and in those at an advanced clinical stage (stage III/IV) of HCC (P = 0.0042, 0.0197, and 0.0276, respectively). The survival time of the exosomal miR-665 high-expression group (n = 17) was significantly shorter than that of the low-expression group (n = 13) (P = 0.036). In addition, we found that HCC cell-derived exosomes promoted hepatoma cell proliferation and upregulated the expression level of proteins in the MAPK/ERK pathway in vitro and in vivo. This study suggests that serum exosomal miR-665 may be a novel minimally invasive biomarker for HCC diagnosis and prognosis.
Collapse
|
31
|
Tang Y, He R, An J, Deng P, Huang L, Yang W. lncRNA XIST interacts with miR-140 to modulate lung cancer growth by targeting iASPP. Oncol Rep 2017; 38:941-948. [DOI: 10.3892/or.2017.5751] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/28/2016] [Indexed: 11/06/2022] Open
|
32
|
Liang XG, Meng WT, Hu LJ, Li L, Xing H, Xie G, Wang AQ, Jia YQ. MicroRNA-184 Modulates Human Central Nervous System Lymphoma Cells Growth and Invasion by Targeting iASPP. J Cell Biochem 2017; 118:2645-2653. [PMID: 28012196 DOI: 10.1002/jcb.25856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Xiao-gong Liang
- Department of Hematology; West China Hospital; Sichuan University; Chengdu 610041 China
- Department of Hematology; Mianyang Central Hospital; Chengdu 621000 China
| | - Wen-tong Meng
- Department of Hematology; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Lian-jie Hu
- Department of Hematology; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Lin Li
- Department of Pathology, West China Hospital; Sichuan University; Chengdu 610041 China
| | - Hongyun Xing
- Department of Hematology; Affiliated Southwest Medical University; Luzhou 646000 China
| | - Gan Xie
- Department of Pathology; Mianyang Central Hospital; Mianyang 621000 China
| | - An-qiong Wang
- Department of Pathology; Mianyang Central Hospital; Mianyang 621000 China
| | - Yong-qian Jia
- Department of Hematology; West China Hospital; Sichuan University; Chengdu 610041 China
| |
Collapse
|
33
|
Yang ZM, Chen LH, Hong M, Chen YY, Yang XR, Tang SM, Yuan QF, Chen WW. Serum microRNA profiling and bioinformatics analysis of patients with type 2 diabetes mellitus in a Chinese population. Mol Med Rep 2017; 15:2143-2153. [PMID: 28260062 PMCID: PMC5364922 DOI: 10.3892/mmr.2017.6239] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by islet β-cell dysfunction and insulin resistance, which leads to an inability to maintain blood glucose homeostasis. Circulating microRNAs (miRNAs) have been suggested as novel biomarkers for T2DM prediction or disease progression. However, miRNAs and their roles in the pathogenesis of T2DM remain to be fully elucidated. In the present study, the serum miRNA expression profiles of T2DM patients in Chinese cohorts were examined. Total RNA was extracted from serum samples of 10 patients with T2DM and five healthy controls, and these was used in reverse-transcription‑quantitative polymerase chain reaction analysis with the Exiqon PCR system of 384 serum/plasma miRNAs. A total of seven miRNAs were differentially expressed between the two groups (fold change >3 or <0.33; P<0.05). The serum expression levels of miR‑455‑5p, miR‑454‑3p, miR‑144‑3p and miR‑96‑5p were higher in patients with T2DM, compared with those of healthy subjects, however, the levels of miR‑409‑3p, miR‑665 and miR‑766‑3p were lower. Hierarchical cluster analysis indicated that it was possible to separate patients with T2DM and control individuals into their own similar categories by these differential miRNAs. Target prediction showed that 97 T2DM candidate genes were potentially modulated by these seven miRNAs. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that 24 pathways were enriched for these genes, and the majority of these pathways were enriched for the targets of induced and repressed miRNAs, among which insulin, adipocytokine and T2DM pathways, and several cancer‑associated pathways have been previously associated with T2DM. In conclusion, the present study demonstrated that serum miRNAs may be novel biomarkers for T2DM and provided novel insights into the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Ze-Min Yang
- Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
- Correspondence to: Professor Ze-Min Yang, Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, 280 Waihuan Road East, Guangzhou, Guangdong 510006, P.R. China, E-mail:
| | - Long-Hui Chen
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Min Hong
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Ying-Yu Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao-Rong Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Si-Meng Tang
- Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Qian-Fa Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Wei-Wen Chen
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
34
|
Upregulation of miR-665 promotes apoptosis and colitis in inflammatory bowel disease by repressing the endoplasmic reticulum stress components XBP1 and ORMDL3. Cell Death Dis 2017; 8:e2699. [PMID: 28333149 PMCID: PMC5386569 DOI: 10.1038/cddis.2017.76] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/15/2016] [Accepted: 01/24/2017] [Indexed: 02/08/2023]
Abstract
MicroRNAs are critical post-transcriptional regulators of gene expression and key mediators of pathophysiology of inflammatory bowel disease (IBD). This study is aimed to study the role of miR-665 in the progression of IBD. Real-time PCR analysis was used to determine miR-665 expression in 89 freshly isolated IBD samples and dextran sulfate sodium (DSS)-induced colonic mucosal tissues. The role of miR-665 in inducing apoptosis and colitis were examined by Annexin V, TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining, colony formation in vitro and DSS-induced colitis mice model in vivo. Moreover, luciferase reporter assay, western blot analysis and microribonucleoprotein immunoprecipitation were performed to determine that miR-665 directly repressed XBP1 (X-box-binding protein-1) and ORMDL3 expression. Herein, our results revealed that miR-665 was markedly upregulated in active colitis. Gain-of-function and loss-of-function studies showed that ectopic expression of miR-665 promoted apoptosis under different inflammatory stimuli. Importantly, delivery of miR-665 mimic promoted, while injection of antagomiR-665 markedly impaired DSS-induced colitis in vivo. Mechanistically, we demonstrated that miR-665 induced apoptosis by inhibiting XBP1 and ORMDL3. Taken together, our findings reveal a new regulatory mechanism for ER stress signaling and suggest that miR-665 might be a potential target in IBD therapy.
Collapse
|
35
|
Lu Y, Ji N, Wei W, Sun W, Gong X, Wang X. MiR-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1α) in the tumor microenvironments. Biol Open 2017; 6:252-259. [PMID: 28069592 PMCID: PMC5312097 DOI: 10.1242/bio.021774] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs regulate most protein-coding genes, including genes important in cancer and other diseases. In this study, we demonstrated that the expression of miR-142 could be significantly suppressed in pancreatic cancer specimens and cell lines compared to their adjacent tissues and normal pancreatic cells. Growth and invasion of PANC-1 and SW1990 cells were attenuated by overexpression of miR-142 in vitro. With the help of bioinformatics analysis, hypoxia-inducible factor 1 (HIF-1α) was identified to be a direct target of miR-142, and a luciferase reporter experiment confirmed this discovery. Overexpression of miR-142 decreases protein expression of HIF-1α. In the hypoxic microenvironment, HIF-1α was up-regulated while miR-142 was down-regulated. The invaded cells significantly increased in the hypoxic microenvironment compared to the normoxic microenvironment. The hypoxia treatment induced cells’ proliferation, and invasion could be inhibited by miR-142 overexpression or HIF-1α inhibition. Moreover, expression of epithelial-mesenchymal transition (EMT) markers, Vimentin, VEGF-C and E-cad, was altered under hypoxia conditions and regulated by miR-142/HIF-1α. Above all, these findings provided insights on the functional mechanism of miR-142, suggesting that the miR-142/HIF-1α axis may interfere with the proliferative and invasive properties of pancreatic cancer cells, and indicated that miR-142 could be a potential therapeutic target for pancreatic cancer. Summary: Our findings provide insights to the functional mechanism of miR-142, suggesting that the miR-142/HIF-1α axis may interfere with the proliferative and invasive property of pancreatic cancer cells.
Collapse
Affiliation(s)
- Yebin Lu
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Niandong Ji
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Wei Wei
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Weijia Sun
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xuejun Gong
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xitao Wang
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
36
|
Wang JL, Ling ZQ. Progress in research of gastric signet ring cell carcinoma. Shijie Huaren Xiaohua Zazhi 2017; 25:358-363. [DOI: 10.11569/wcjd.v25.i4.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric signet ring cell carcinoma is a special type of gastric cancer. In recent years the incidence of gastric cancer has decreased, but the incidence of gastric signet ring cell carcinoma is still rising. Although a large number of studies reported the clinicopathologic features and oncogenesis of gastric signet ring cell carcinoma, the results are inconsistent. This article mainly discusses the clinicopathologic features, prognosis, and molecular characteristics of oncogenesis of gastric signet ring cell carcinoma to provide a basis and strategy for individualized treatment of this malignancy.
Collapse
|
37
|
Liang S, Gong X, Zhang G, Huang G, Lu Y, Li Y. MicroRNA-140 regulates cell growth and invasion in pancreatic duct adenocarcinoma by targeting iASPP. Acta Biochim Biophys Sin (Shanghai) 2016; 48:174-81. [PMID: 26787707 DOI: 10.1093/abbs/gmv127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/21/2015] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are ∼22 nucleotide RNAs processed from RNA hairpin structures that play important roles in regulating protein expression level via binding to mRNA, either suppressing its translation or speeding up its degradation. In humans, they regulate most protein-coding genes, including genes important in cancer and other diseases. In this study, the expression of microRNA-140 (miR-140) was demonstrated to be significantly suppressed in pancreatic duct adenocarcinoma specimens and cell lines, compared with their adjacent normal tissues. With the help of bioinformatics analysis, inhibitor of apoptosis-stimulating protein of p53 (iASPP) was identified to be a direct target of miR-140, and luciferase reporter experiment confirmed this discovery. Overexpression of miR-140 decreases the protein expressions of iASPP, ΔNp63, MMP2, and MMP9. Growth and invasion of PANC-1 cells were attenuated by overexpression of miR-140 in vitro. The suppressive effect of miR-140 on PANC-1 cell line could be partly balanced out by manual overexpression of iASPP. Above all, these findings provided insights into the functional mechanism of miR-140, suggested that the miR-140/iASPP axis may interfere with the proliferative and invasive property of pancreatic duct adenocarcinoma cells, and indicated that miR-140 could be a potential therapeutic target for pancreatic duct adenocarcinoma.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Pancreatic Biliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuejun Gong
- Department of Pancreatic Biliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gewen Zhang
- Department of Pancreatic Biliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gengwen Huang
- Department of Pancreatic Biliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yebin Lu
- Department of Pancreatic Biliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yixiong Li
- Department of Pancreatic Biliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|