1
|
Gelfo V, Venturi G, Zacchini F, Montanaro L. Decoding Ribosome Heterogeneity: A New Horizon in Cancer Therapy. Biomedicines 2024; 12:155. [PMID: 38255260 PMCID: PMC10813612 DOI: 10.3390/biomedicines12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The traditional perception of ribosomes as uniform molecular machines has been revolutionized by recent discoveries, revealing a complex landscape of ribosomal heterogeneity. Opposing the conventional belief in interchangeable ribosomal entities, emerging studies underscore the existence of specialized ribosomes, each possessing unique compositions and functions. Factors such as cellular and tissue specificity, developmental and physiological states, and external stimuli, including circadian rhythms, significantly influence ribosome compositions. For instance, muscle cells and neurons are characterized by distinct ribosomal protein sets and dynamic behaviors, respectively. Furthermore, alternative forms of ribosomal RNA (rRNAs) and their post-transcriptional modifications add another dimension to this heterogeneity. These variations, orchestrated by spatial, temporal, and conditional factors, enable the manifestation of a broad spectrum of specialized ribosomes, each tailored for potentially distinct functions. Such specialization not only impacts mRNA translation and gene expression but also holds significant implications for broader biological contexts, notably in the realm of cancer research. As the understanding of ribosomal diversity deepens, it also paves the way for exploring novel avenues in cellular function and offers a fresh perspective on the molecular intricacies of translation.
Collapse
Affiliation(s)
- Valerio Gelfo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (V.G.); (G.V.)
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
| | - Giulia Venturi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (V.G.); (G.V.)
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
| | - Federico Zacchini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Lorenzo Montanaro
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (V.G.); (G.V.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
2
|
Diamantopoulos MA, Georgoulia KK, Levis P, Kotronopoulos G, Stravodimos K, Kontos CK, Avgeris M, Scorilas A. 28S rRNA-Derived Fragments Represent an Independent Molecular Predictor of Short-Term Relapse in Prostate Cancer. Int J Mol Sci 2023; 25:239. [PMID: 38203408 PMCID: PMC10779029 DOI: 10.3390/ijms25010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancer (PCa) is a global health concern, being a leading cause of cancer-related mortality among males. Early detection and accurate prognosis are crucial for effective management. This study delves into the diagnostic and prognostic potential of 28S rRNA-derived fragments (rRFs) in PCa. Total RNA extracted from 89 PCa and 53 benign prostate hyperplasia (BPH) tissue specimens. After 3'-end polyadenylation, we performed reverse transcription to create first-strand cDNA. Using an in-house quantitative real-time PCR (qPCR) assay, we quantified 28S rRF levels. Post-treatment biochemical relapse served as the clinical endpoint event for survival analysis, which we validated internally through bootstrap analysis. Our results revealed downregulated 28S rRF levels in PCa compared to BPH patients. Additionally, we observed a significant positive correlation between 28S rRF levels and higher Gleason scores and tumor stages. Furthermore, PCa patients with elevated 28S rRF expression had a significantly higher risk of post-treatment disease relapse independently of clinicopathological data. In conclusion, our study demonstrates, for the first time, the prognostic value of 28S rRF in prostate adenocarcinoma. Elevated 28S rRF levels independently predict short-term PCa relapse and enhance risk stratification. This establishes 28S rRF as a potential novel molecular marker for PCa prognosis.
Collapse
Affiliation(s)
- Marios A. Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| | - Konstantina K. Georgoulia
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| | - Panagiotis Levis
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.L.); (G.K.); (K.S.)
| | - Georgios Kotronopoulos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.L.); (G.K.); (K.S.)
| | - Konstantinos Stravodimos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.L.); (G.K.); (K.S.)
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| |
Collapse
|
3
|
Priyadarshini N, Venkatarama Puppala N, Jayaprakash JP, Khandelia P, Sharma V, Mohannath G. Downregulation of ribosomal RNA (rRNA) genes in human head and neck squamous cell carcinoma (HNSCC) cells correlates with rDNA promoter hypermethylation. Gene 2023; 888:147793. [PMID: 37696422 DOI: 10.1016/j.gene.2023.147793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Eukaryotes carry hundreds of ribosomal RNA (rRNA) genes as tandem arrays, which generate rRNA for protein synthesis. Humans carry ∼ 400 rRNA gene copies and their expression is epigenetically regulated. Dysregulation of rRNA synthesis and ribosome biogenesis are characteristic features of cancers. Targeting aberrant rRNA expression for cancer therapy is being explored. Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancers globally. Using quantitative PCR and bisulfite sequencing, we show that rRNA genes are downregulated and their promoters are hypermethylated in HNSCC cell lines. These findings may have relevance for prognosis and diagnosis of HNSCC.
Collapse
Affiliation(s)
- Neha Priyadarshini
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Navinchandra Venkatarama Puppala
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Jayasree Peroth Jayaprakash
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Amelioration for an ignored pitfall in reference gene selection by considering the mean expression and standard deviation of target genes. Sci Rep 2022; 12:11129. [PMID: 35778437 PMCID: PMC9249883 DOI: 10.1038/s41598-022-15277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Routine tissue-specific reference genes are often used in expression studies, but target genes are not taken into account. Using the relative RT-qPCR approach, we evaluated the expression of three target genes. At the same time, meta-analyses were conducted in various ethnic groups, genders, and thyroid cancer subtypes. When eight common reference genes were examined, it was discovered that some of them not only lacked consistent expression but also had considerable expression variance. It is worth noting that while choosing a reference gene, the mean gene expression and its standard deviation should be carefully addressed. An equation was developed based on this, and it was used to perform statistical analysis on over 25,000 genes. According to the subtype of thyroid cancer and, of course, the target genes in this investigation, appropriate reference genes were proposed. The intuitive choice of GAPDH as a common reference gene caused a major shift in the quantitative expression data of target genes, inverting the relative expression values. As a result, choosing the appropriate reference gene(s) for quantification of transcription data, and especially for relative studies of the expression of target gene(s), is critical and should be carefully considered during the study design.
Collapse
|
5
|
Diamantopoulos MA, Georgoulia KK, Scorilas A. Identification and expression analysis of ten novel small non-coding RNAs (sncRNAs) in cancer cells using a high-throughput sequencing approach. Gene 2022; 809:146025. [PMID: 34710527 DOI: 10.1016/j.gene.2021.146025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 01/18/2023]
Abstract
Non-coding RNAs are characterized as RNA molecules, which lack the capacity to encode protein structures and appear to include a level of internal signals. Moreover, they control various stages of gene expression, thus controlling the cell physiology and development. In this study, we implemented a high-throughput sequencing approach based on the primary semi-conductor technology and computational tools, in order to identity novel small non-coding RNAs. Fourteen human cancer cell lines were cultured, and RNA samples were enriched for small RNAs following semi-conductor next generation sequencing (NGS). Bioinformatics analysis of NGS data revealed the existence of several classes of ncRNAs using the miRDeep* and CPSS 2.0 software. To investigate the existence of the predicted non-coding RNA sequences in cDNA pools of cell lines, a developed qPCR-based assay was implemented. The structure of each novel small ncRNA was visualized, using the RNAfold algorithm. Our results support the existence of twenty (20) putative new small ncRNAs, ten (10) of which have had their expression experimentally validated and presented differential profiles in cancerous and normal cells. A deeper comprehension of the ncRNAs interactive network and its role in cancer can therefore be translated into a wide range of clinical applications. Despite this progress, further scientific research from different perspectives and in different fields is needed, so that the riddle of the human transcriptome can be solved.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Konstantina K Georgoulia
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
6
|
Methylation of 45S Ribosomal DNA (rDNA) Is Associated with Cancer and Aging in Humans. Int J Genomics 2021; 2021:8818007. [PMID: 33575316 PMCID: PMC7861956 DOI: 10.1155/2021/8818007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer and aging, two distinct processes of cell development, are two major problems threatening our human health and life in current days. Epigenetic studies, especially DNA methylation, have been intensively investigated on them over the years, though a lot of unanswered issues remain. In the human genome, rDNA is a highly conserved tandem repeat family playing critical roles in protein synthesis, genome stability and integrity, etc. More importantly, rDNA is the significant target of DNA methylation, and a potential association between rDNA methylation and cancer and aging has emerged recently. However, whether there is a general trend that rDNA methylation is associated with cancer and aging remains an open issue. In this study, the involvement of rDNA methylation in a series of records of cancer and aging was investigated and summarized, upon which perspectives about rDNA methylation in cancer and aging were proposed. The results showed that rDNA methylation in most cancer cases displayed a consistent pattern with hypermethylation in the coding region but with hypomethylation in the promoter region, which likely facilitates the proliferation and metastasis of cancerous cells. Distinctively, both the coding and promoter regions of rDNA become increasingly methylated during the process of aging, indicating the decline of rDNA activity. The finding of rDNA methylation also implies its potential application as an epigenetic biomarker in the diagnosis of cancer and aging. This work will shed light on our understanding of the pathogenesis, diagnosis, and treatment of cancer and aging from the perspective of rDNA methylation.
Collapse
|
7
|
Frequent Germline and Somatic Single Nucleotide Variants in the Promoter Region of the Ribosomal RNA Gene in Japanese Lung Adenocarcinoma Patients. Cells 2020; 9:cells9112409. [PMID: 33153169 PMCID: PMC7692307 DOI: 10.3390/cells9112409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022] Open
Abstract
Ribosomal RNA (rRNA), the most abundant non-coding RNA species, is a major component of the ribosome. Impaired ribosome biogenesis causes the dysfunction of protein synthesis and diseases called “ribosomopathies,” including genetic disorders with cancer risk. However, the potential role of rRNA gene (rDNA) alterations in cancer is unknown. We investigated germline and somatic single-nucleotide variants (SNVs) in the rDNA promoter region (positions −248 to +100, relative to the transcription start site) in 82 lung adenocarcinomas (LUAC). Twenty-nine tumors (35.4%) carried germline SNVs, and eight tumors (9.8%) harbored somatic SNVs. Interestingly, the presence of germline SNVs between positions +1 and +100 (n = 12; 14.6%) was associated with significantly shorter recurrence-free survival (RFS) and overall survival (OS) by univariate analysis (p < 0.05, respectively), and was an independent prognostic factor for RFS and OS by multivariate analysis. LUAC cell line PC9, carrying rDNA promoter SNV at position +49, showed significantly higher ribosome biogenesis than H1650 cells without SNV. Upon nucleolar stress induced by actinomycin D, PC9 retained significantly higher ribosome biogenesis than H1650. These results highlight the possible functional role of SNVs at specific sites of the rDNA promoter region in ribosome biogenesis, the progression of LUAC, and their potential prognostic value.
Collapse
|
8
|
Cherlin T, Magee R, Jing Y, Pliatsika V, Loher P, Rigoutsos I. Ribosomal RNA fragmentation into short RNAs (rRFs) is modulated in a sex- and population of origin-specific manner. BMC Biol 2020; 18:38. [PMID: 32279660 PMCID: PMC7153239 DOI: 10.1186/s12915-020-0763-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
Background The advent of next generation sequencing (NGS) has allowed the discovery of short and long non-coding RNAs (ncRNAs) in an unbiased manner using reverse genetics approaches, enabling the discovery of multiple categories of ncRNAs and characterization of the way their expression is regulated. We previously showed that the identities and abundances of microRNA isoforms (isomiRs) and transfer RNA-derived fragments (tRFs) are tightly regulated, and that they depend on a person’s sex and population origin, as well as on tissue type, tissue state, and disease type. Here, we characterize the regulation and distribution of fragments derived from ribosomal RNAs (rRNAs). rRNAs form a group that includes four (5S, 5.8S, 18S, 28S) rRNAs encoded by the human nuclear genome and two (12S, 16S) by the mitochondrial genome. rRNAs constitute the most abundant RNA type in eukaryotic cells. Results We analyzed rRNA-derived fragments (rRFs) across 434 transcriptomic datasets obtained from lymphoblastoid cell lines (LCLs) derived from healthy participants of the 1000 Genomes Project. The 434 datasets represent five human populations and both sexes. We examined each of the six rRNAs and their respective rRFs, and did so separately for each population and sex. Our analysis shows that all six rRNAs produce rRFs with unique identities, normalized abundances, and lengths. The rRFs arise from the 5′-end (5′-rRFs), the interior (i-rRFs), and the 3′-end (3′-rRFs) or straddle the 5′ or 3′ terminus of the parental rRNA (x-rRFs). Notably, a large number of rRFs are produced in a population-specific or sex-specific manner. Preliminary evidence suggests that rRF production is also tissue-dependent. Of note, we find that rRF production is not affected by the identity of the processing laboratory or the library preparation kit. Conclusions Our findings suggest that rRFs are produced in a regimented manner by currently unknown processes that are influenced by both ubiquitous as well as population-specific and sex-specific factors. The properties of rRFs mirror the previously reported properties of isomiRs and tRFs and have implications for the study of homeostasis and disease.
Collapse
Affiliation(s)
- Tess Cherlin
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Rogan Magee
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Yi Jing
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Phillipe Loher
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
9
|
Oliveira V, Mahajan N, Bates ML, Tripathi C, Kim KQ, Zaher HS, Maggi Jr LB, Tomasson MH. The snoRNA target of t(4;14) in multiple myeloma regulates ribosome biogenesis. FASEB Bioadv 2019; 1:404-414. [PMID: 32095781 PMCID: PMC6996358 DOI: 10.1096/fba.2018-00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
The orphan small nucleolar RNA (snoRNA) ACA11 is overexpressed as a result of the t(4;14) chromosomal translocation in multiple myeloma (MM), increases reactive oxygen species, and drives cell proliferation. Like other snoRNAs, ACA11 is predominantly localized to a sub-nuclear organelle, the nucleolus. We hypothesized that increased ACA11 expression would increase ribosome biogenesis and protein synthesis. We found that ACA11 overexpression in MM cells increased nucleolar area and number as well as silver-binding nucleolar organizing regions (AgNORs). Supporting these data, samples from t(4;14)-positive patients had higher AgNORs scores than t(4;14)-negative samples. ACA11 also upregulated ribosome production, pre-47S rRNA synthesis, and protein synthesis in a ROS-dependent manner. Lastly, ACA11 overexpression enhanced the response to proteasome inhibitor in MM cells, while no effect was found in response to high doses of melphalan. Together, these data demonstrate that ACA11 stimulates ribosome biogenesis and influences responses to chemotherapy. ACA11 may be a useful target to individualize the treatment for t(4;14)-positive myeloma patients.
Collapse
Affiliation(s)
- Vanessa Oliveira
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Internal MedicineUniversity of IowaIowa CityIowa
| | - Nitin Mahajan
- Division of Oncology, Department of MedicineSiteman Cancer Center, Washington University School of MedicineSt. LouisMissouri
| | - Melissa L. Bates
- Department of Health and Human PhysiologyUniversity of IowaIowa CityIowa
- Stead Family Department of PediatricsUniversity of IowaIowa CityIowa
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowa
| | - Chakrapani Tripathi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Internal MedicineUniversity of IowaIowa CityIowa
| | - Kyusik Q. Kim
- Department of BiologyWashington UniversitySt. LouisMissouri
| | - Hani S. Zaher
- Department of BiologyWashington UniversitySt. LouisMissouri
| | - Leonard B. Maggi Jr
- Division of Oncology, Department of MedicineSiteman Cancer Center, Washington University School of MedicineSt. LouisMissouri
| | - Michael H. Tomasson
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Internal MedicineUniversity of IowaIowa CityIowa
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowa
| |
Collapse
|
10
|
Hummel G, Warren J, Drouard L. The multi-faceted regulation of nuclear tRNA gene transcription. IUBMB Life 2019; 71:1099-1108. [PMID: 31241827 DOI: 10.1002/iub.2097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Transfer RNAs are among the most ancient molecules of life on earth. Beyond their crucial role in protein synthesis as carriers of amino acids, they are also important players in a plethora of other biological processes. Many debates in term of biogenesis, regulation and function persist around these fascinating non-coding RNAs. Our review focuses on the first step of their biogenesis in eukaryotes, i.e. their transcription from nuclear genes. Numerous and complementary ways have emerged during evolution to regulate transfer RNA gene transcription. Here, we will summarize the different actors implicated in this process: cis-elements, trans-factors, genomic contexts, epigenetic environments and finally three-dimensional organization of nuclear genomes. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1099-1108, 2019.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jessica Warren
- Department of biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
11
|
Ha S, Zhou H, Gautam M, Song Y, Wang C. Reduced ribosomal RNA expression and unchanged ribosomal DNA promoter methylation in oral squamous cell carcinoma. Mol Genet Genomic Med 2019; 7:e00783. [PMID: 31169368 PMCID: PMC6625366 DOI: 10.1002/mgg3.783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background Ribosomal RNA (rRNA) consists of four non‐coding RNAs, the 28S, 5.8S, 18S, and 5S rRNA. Abnormal expression of rRNA has been found in multiple tumors, and the methylation of rDNA promoter may affect rRNA expression as an epigenetic regulatory mechanism. Oral squamous cell carcinoma (OSCC) is a kind of aggressive tumors which occurs in multiple sites in oral cavity. rRNA expression and the methylation of rDNA promoter in modulating rRNA expression in OSCC maintain unclear. This study aims to investigate the rRNA expression, the methylation status within rDNA promoter, and the underlying mechanism of methylation in regulating rRNA expression in OSCC. Methods Twelve primary OSCC and matched normal tissue samples were collected from patients with OSCC. Quantitative real‐time PCR was used to evaluate the rRNA level. HpaII/MspI digestion and bisulfite sequencing were used to investigate the methylation status of rDNA promoter. Results Ribosomal RNA levels were suppressed in OSCC as compared with matched normal tissues. HpaII/MspI digestion and bisulfite sequencing showed no significant differences for the methylation of rDNA promoter between the tumor and matched normal tissues. Conclusion The methylation in rDNA promoter could not explain for the suppressed rRNA expression in OSCC tissues.
Collapse
Affiliation(s)
- Shanshan Ha
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mayank Gautam
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Changning Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Inhibitors of ribosome biogenesis repress the growth of MYCN-amplified neuroblastoma. Oncogene 2018; 38:2800-2813. [PMID: 30542116 PMCID: PMC6484764 DOI: 10.1038/s41388-018-0611-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 12/03/2022]
Abstract
Abnormal increases in nucleolar size and number caused by dysregulation of ribosome biogenesis has emerged as a hallmark in the majority of spontaneous cancers. The observed ribosome hyperactivity can be directly induced by the MYC transcription factors controlling the expression of RNA and protein components of the ribosome. Neuroblastoma, a highly malignant childhood tumor of the sympathetic nervous system, is frequently characterized by MYCN gene amplification and high expression of MYCN and c-MYC signature genes. Here, we show a strong correlation between high-risk disease, MYCN expression, poor survival, and ribosome biogenesis in neuroblastoma patients. Treatment of neuroblastoma cells with quarfloxin or CX-5461, two small molecule inhibitors of RNA polymerase I, suppressed MycN expression, induced DNA damage, and activated p53 followed by cell cycle arrest or apoptosis. CX-5461 repressed the growth of established MYCN-amplified neuroblastoma xenograft tumors in nude mice. These findings suggest that inhibition of ribosome biogenesis represent new therapeutic opportunities for children with high-risk neuroblastomas expressing high levels of Myc.
Collapse
|
13
|
Chan SN, Low END, Raja Ali RA, Mokhtar NM. Delineating inflammatory bowel disease through transcriptomic studies: current review of progress and evidence. Intest Res 2018; 16:374-383. [PMID: 30090036 PMCID: PMC6077315 DOI: 10.5217/ir.2018.16.3.374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), which comprises of Crohn's disease and ulcerative colitis, is an idiopathic relapsing and remitting disease in which the interplay of different environment, microbial, immunological and genetic factors that attribute to the progression of the disease. Numerous studies have been conducted in multiple aspects including clinical, endoscopy and histopathology for the diagnostics and treatment of IBD. However, the molecular mechanism underlying the aetiology and pathogenesis of IBD is still poorly understood. This review tries to critically assess the scientific evidence at the transcriptomic level as it would help in the discovery of RNA molecules in tissues or serum between the healthy and diseased or different IBD subtypes. These molecular signatures could potentially serve as a reliable diagnostic or prognostic biomarker. Researchers have also embarked on the study of transcriptome to be utilized in targeted therapy. We focus on the evaluation and discussion related to the publications reporting the different approaches and techniques used in investigating the transcriptomic changes in IBD with the intention to offer new perspectives to the landscape of the disease.
Collapse
Affiliation(s)
- Seow-Neng Chan
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Eden Ngah Den Low
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Kim JH, Dilthey AT, Nagaraja R, Lee HS, Koren S, Dudekula D, Wood Iii WH, Piao Y, Ogurtsov AY, Utani K, Noskov VN, Shabalina SA, Schlessinger D, Phillippy AM, Larionov V. Variation in human chromosome 21 ribosomal RNA genes characterized by TAR cloning and long-read sequencing. Nucleic Acids Res 2018; 46:6712-6725. [PMID: 29788454 PMCID: PMC6061828 DOI: 10.1093/nar/gky442] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Despite the key role of the human ribosome in protein biosynthesis, little is known about the extent of sequence variation in ribosomal DNA (rDNA) or its pre-rRNA and rRNA products. We recovered ribosomal DNA segments from a single human chromosome 21 using transformation-associated recombination (TAR) cloning in yeast. Accurate long-read sequencing of 13 isolates covering ∼0.82 Mb of the chromosome 21 rDNA complement revealed substantial variation among tandem repeat rDNA copies, several palindromic structures and potential errors in the previous reference sequence. These clones revealed 101 variant positions in the 45S transcription unit and 235 in the intergenic spacer sequence. Approximately 60% of the 45S variants were confirmed in independent whole-genome or RNA-seq data, with 47 of these further observed in mature 18S/28S rRNA sequences. TAR cloning and long-read sequencing enabled the accurate reconstruction of multiple rDNA units and a new, high-quality 44 838 bp rDNA reference sequence, which we have annotated with variants detected from chromosome 21 of a single individual. The large number of variants observed reveal heterogeneity in human rDNA, opening up the possibility of corresponding variations in ribosome dynamics.
Collapse
MESH Headings
- Animals
- Cell Line
- Chromosomes, Human, Pair 21
- Cloning, Molecular
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- DNA, Ribosomal Spacer/chemistry
- Genes, rRNA
- Genetic Variation
- Humans
- Mice
- Nucleic Acid Conformation
- Nucleolus Organizer Region/chemistry
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Jung-Hyun Kim
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| | - Alexander T Dilthey
- National Human Genome Research Institute, Computational and Statistical Genomics Branch, Bethesda, MD 20892, USA
| | - Ramaiah Nagaraja
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - Hee-Sheung Lee
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| | - Sergey Koren
- National Human Genome Research Institute, Computational and Statistical Genomics Branch, Bethesda, MD 20892, USA
| | - Dawood Dudekula
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - William H Wood Iii
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - Yulan Piao
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - Aleksey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20892, USA
| | - Koichi Utani
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| | - Vladimir N Noskov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20892, USA
| | - David Schlessinger
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - Adam M Phillippy
- National Human Genome Research Institute, Computational and Statistical Genomics Branch, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
The Arginine Methyltransferase PRMT6 Regulates DNA Methylation and Contributes to Global DNA Hypomethylation in Cancer. Cell Rep 2018; 21:3390-3397. [PMID: 29262320 DOI: 10.1016/j.celrep.2017.11.082] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/27/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
DNA methylation plays crucial roles in chromatin structure and gene expression. Aberrant DNA methylation patterns, including global hypomethylation and regional hypermethylation, are associated with cancer and implicated in oncogenic events. How DNA methylation is regulated in developmental and cellular processes and dysregulated in cancer is poorly understood. Here, we show that PRMT6, a protein arginine methyltransferase responsible for asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a), negatively regulates DNA methylation and that PRMT6 upregulation contributes to global DNA hypomethylation in cancer. Mechanistically, PRMT6 overexpression impairs chromatin association of UHRF1, an accessory factor of DNMT1, resulting in passive DNA demethylation. The effect is likely due to elevated H3R2me2a, which inhibits the interaction between UHRF1 and histone H3. Our work identifies a mechanistic link between protein arginine methylation and DNA methylation, which is disrupted in cancer.
Collapse
|
16
|
Flunkert J, Maierhofer A, Dittrich M, Müller T, Horvath S, Nanda I, Haaf T. Genetic and epigenetic changes in clonal descendants of irradiated human fibroblasts. Exp Cell Res 2018; 370:322-332. [PMID: 29964050 DOI: 10.1016/j.yexcr.2018.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
To study delayed genetic and epigenetic radiation effects, which may trigger radiation-induced carcinogenesis, we have established single-cell clones from irradiated and non-irradiated primary human fibroblasts. Stable clones were endowed with the same karyotype in all analyzed metaphases after 20 population doublings (PDs), whereas unstable clones displayed mosaics of normal and abnormal karyotypes. To account for variation in radiation sensitivity, all experiments were performed with two different fibroblast strains. After a single X-ray dose of 2 Gy more than half of the irradiated clones exhibited radiation-induced genome instability (RIGI). Irradiated clones displayed an increased rate of loss of chromosome Y (LOY) and copy number variations (CNVs), compared to controls. CNV breakpoints clustered in specific chromosome regions, in particular 3p14.2 and 7q11.21, coinciding with common fragile sites. CNVs affecting the FHIT gene in FRA3B were observed in independent unstable clones and may drive RIGI. Bisulfite pyrosequencing of control clones and the respective primary culture revealed global hypomethylation of ALU, LINE-1, and alpha-satellite repeats as well as rDNA hypermethylation during in vitro ageing. Irradiated clones showed further reduced ALU and alpha-satellite methylation and increased rDNA methylation, compared to controls. Methylation arrays identified several hundred differentially methylated genes and several enriched pathways associated with in vitro ageing. Methylation changes in 259 genes and the MAP kinase signaling pathway were associated with delayed radiation effects (after 20 PDs). Collectively, our results suggest that both genetic (LOY and CNVs) and epigenetic changes occur in the progeny of exposed cells that were not damaged directly by irradiation, likely contributing to radiation-induced carcinogenesis. We did not observe epigenetic differences between stable and unstable irradiated clones. The fact that the DNA methylation (DNAm) age of clones derived from the same primary culture varied greatly suggests that DNAm age of a single cell (represented by a clone) can be quite different from the DNAm age of a tissue. We propose that DNAm age reflects the emergent property of a large number of individual cells whose respective DNAm ages can be highly variable.
Collapse
Affiliation(s)
- Julia Flunkert
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Anna Maierhofer
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany.
| |
Collapse
|
17
|
Overexpression of Ribosomal RNA in the Development of Human Cervical Cancer Is Associated with rDNA Promoter Hypomethylation. PLoS One 2016; 11:e0163340. [PMID: 27695092 PMCID: PMC5047480 DOI: 10.1371/journal.pone.0163340] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
The ribosomal RNA (rRNA) gene encodes rRNA for protein synthesis. Aberrant expression of the rRNA gene has been generally observed in tumor cells and levels of its promoter methylation as an epigenetic regulator affect rRNA gene transcription. The possible relationship between expression and promoter methylation of rDNA has not been examined in human clinical cervical cancer. Here we investigate rRNA gene expression by quantitative real time PCR, and promoter methylation levels by HpaII/MspI digestion and sodium bisulfite sequencing in the development of human cervical cancer. We find that indeed rRNA levels are elevated in most of cervical intraepithelial neoplasia (CIN) specimens as compared with non-cancer tissues. The rDNA promoter region in cervical intraepithelial neoplasia (CIN) tissues reveals significant hypomethylation at cytosines in the context of CpG dinucleotides, accompanied with rDNA chromatin decondensation. Furthermore treatment of HeLa cells with the methylation inhibitor drug 5-aza-2’-deoxycytidine (DAC) demonstrates the negative correlation between the expression of 45S rDNA and the methylation level in the rDNA promoter region. These data suggest that a decrease in rDNA promoter methylation levels can result in an increase of rRNA synthesis in the development of human cervical cancer.
Collapse
|