1
|
Abeesh P, Guruvayoorappan C. Inhibition of tumor-specific angiogenesis by AS1411 aptamer functionalized Withaferin A loaded PEGylated nanoliposomes by targeting nucleolin. Biochem Biophys Res Commun 2023; 673:106-113. [PMID: 37379799 DOI: 10.1016/j.bbrc.2023.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Angiogenesis is a vital process for tumor growth and metastasis. Inhibition of angiogenesis is a promising strategy in cancer treatment. In this study, we analyzed the anti-angiogenic activity of AS1411 functionalized Withaferin A encapsulated PEGylated nanoliposomes (ALW) using both in vitro and in vivo models. AS1411 aptamer functionalized nanoliposomes are an efficient drug delivery system for carrying chemotherapeutic agents to target cancer cells, and Withaferin A (WA) is a steroidal lactone known for potent anti-angiogenic activity. ALW showed significant inhibition in the migration and tube formation of endothelial cells, which are critical events in angiogenesis. In vivo angiogenesis study using ALW showed remarkable inhibition of tumor-directed capillary formation by altered serum cytokines, VEGF, GM-CSF, and NO levels. ALW treatment downregulated the gene expression of Matrix metalloproteinase (MMP)-2, MMP-9, VEGF, NF-kB and upregulated the expression of tissue inhibitor of metalloproteinase (TIMP)-1. Our results demonstrate that ALW inhibits tumor-specific angiogenesis by gene expression of NF-κB, VEGF, MMP-2, and MMP-9. The present study shows that using ALW can offer an attractive strategy for inhibiting tumor angiogenesis.
Collapse
Affiliation(s)
- Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Post, Thiruvananthapuram, Kerala, 695011, India; Research Centre, University of Kerala, India
| | - Chandrasekaran Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Post, Thiruvananthapuram, Kerala, 695011, India; Research Centre, University of Kerala, India.
| |
Collapse
|
2
|
Kim TH, Truong VL, Jeong WS. Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Ligularia fischeri Turcz: A Comparison between Leaf and Root Extracts. PLANTS (BASEL, SWITZERLAND) 2022; 11:3005. [PMID: 36365457 PMCID: PMC9656575 DOI: 10.3390/plants11213005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Ligularia fischeri Turcz leaves are widely consumed and have multiple health benefits. We aimed to evaluate the differences in the phytochemical composition and biological properties of the root and leaf extracts from L. fischeri. The root extract exhibited higher antioxidant capacity and total flavonoid levels than the leaf extract. GC/MS analysis revealed the presence of various volatiles, diterpenoids, sesquiterpenes, and other non-polar compounds. Moreover, these extracts enhanced cellular antioxidant defense by reducing the level of reactive oxygen species and upregulating the expression of catalase and heme oxygenase-1 in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The root and leaf extracts also exerted anti-inflammatory effects by suppressing nitric oxide production and diminishing the levels of inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β in LPS-stimulated macrophages. Overall, these findings suggest that L. fischeri root extract contains diverse bioactive compounds for the development of nutraceuticals or functional foods with antioxidant and anti-inflammatory activity.
Collapse
|
3
|
Kim JH, Kim S, Han S, Ahn EK, Cho YR, Jeong W, Kim SJ, Bae GU, Oh JS, Seo DW. Broussonin A- and B-mediated inhibition of angiogenesis by blockade of VEGFR-2 signalling pathways and integrin β1 expression. J Cell Mol Med 2022; 26:1194-1205. [PMID: 34994065 PMCID: PMC8831976 DOI: 10.1111/jcmm.17173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
In the present study, we demonstrate the regulatory effects and mechanism of broussonin A and B, diphenylpropane derivatives isolated from Broussonetia kazinoki, on vascular endothelial growth factor‐A (VEGF‐A)–stimulated endothelial cell responses in vitro and microvessel sprouting ex vivo. Treatment with broussonin A or B suppressed VEGF‐A‐stimulated endothelial cell proliferation by regulating the expression of cell cycle–related proteins and the phosphorylation status of retinoblastoma protein. In addition, treatment with broussonin A or B abrogated VEGF‐A‐stimulated angiogenic responses including endothelial cell migration, invasion, tube formation and microvessel formation from rat aortic rings. These anti‐angiogenic activities of broussonin A and B were mediated through inactivation of VEGF‐A‐stimulated downstream signalling pathways, localization of vascular endothelial‐cadherin at cell‐cell contacts, and down‐regulation of integrin β1 and integrin‐liked kinase. Furthermore, treatment with broussonin A or B inhibited proliferation and invasion of non–small cell lung cancer and ovarian cancer cells. Taken together, our findings suggest the pharmacological potential of broussonin A and B in the regulation of angiogenesis, cancer cell growth and progression.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Sunho Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Surim Han
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Eun-Kyung Ahn
- Biocenter, Gyeonggi Business & Science Accelerator, Suwon, Republic of Korea
| | - Young-Rak Cho
- Biocenter, Gyeonggi Business & Science Accelerator, Suwon, Republic of Korea
| | - Wonsik Jeong
- Biocenter, Gyeonggi Business & Science Accelerator, Suwon, Republic of Korea
| | - Sung Joon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Gyu-Un Bae
- Department of Pharmacy, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
4
|
Park JH, Ahn EK, Kim JK, Oh JS. Antihyperlipidemic Activity of Ligularia fischeri Extract in Mice Fed a High-Carbohydrate Diet. J Med Food 2019; 22:374-383. [PMID: 30801226 DOI: 10.1089/jmf.2018.4248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ligularia fischeri, indigenous to eastern Asia, has been used as a traditional herbal medicine. Ligularia fischeri reportedly possesses a number of biological activities such as antimutagenic, antioxidant, antigenotoxic, and anti-inflammation. This study demonstrated the effects of ethanol extracts of Ligularia fischeri (ELF) on a high-carbohydrate diet (HCD)-induced hyperlipidemia in C57BL/6 mice. The mice were divided into six groups (n = 7/group) as follows: normal diet, HCD, or HCD+ELF (100, 200, 400, and 800 mg/kg/day), which were orally administered daily for 12 weeks. Various lipid parameters and histological changes in liver and fat tissue were compared among the treatment and control groups. ELF remarkably reduced body weight gain and attenuated hyperlipidemia by improving the plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, atherogenic index, and cardiac risk factor. Moreover, ELF decreased the HCD-induced hepatic accumulation of lipid droplets and adipocyte hypertrophy. These regulatory effects of ELF appeared to be mediated through the phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, sterol regulatory element-binding protein-1c, and expression of fatty acid synthase. Taken together, these findings indicate a functional role for ELF in the regulation of HCD-induced obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Ju-Hyoung Park
- 1 Department of Pharmacy, Dankook University, Cheonan, Chungnam, Korea
| | - Eun-Kyung Ahn
- 2 Department of Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi, Korea
| | - Jin-Kyu Kim
- 2 Department of Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi, Korea
| | - Joa Sub Oh
- 1 Department of Pharmacy, Dankook University, Cheonan, Chungnam, Korea
| |
Collapse
|
5
|
Antihyperglycemic and Antilipidemic Effects of the Ethanol Extract Mixture of Ligularia fischeri and Momordica charantia in Type II Diabetes-Mimicking Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3468040. [PMID: 30386403 PMCID: PMC6189690 DOI: 10.1155/2018/3468040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/24/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022]
Abstract
The extract of the Momordica charantia fruit (MCE) is recognized as an alternative treatment for diabetes. The extract of Ligularia fischeri leaves (LFE) is traditionally used as a folk medicine for treating inflammatory diseases in Korea as well. In this study, we investigated the synergistic effect of MCE combined with LFE on antihyperglycemic and antihyperlipidemic potentials. Based on the α-glucosidase inhibitory effect and promotion of adipocyte differentiation in the 3T3-L1 cell line, the MLM was prepared with MCE:LFE (8:2 weight:weight). MLM showed the synergistic effects in the promotion of the glucose uptake rate, suppression of dipeptidyl peptidase-4 (DPP-4) mRNA expression, upregulation of an insulin receptor substrate and glucose transporter type-4 expression, and an increase in insulin-associated signaling in C2C12 cells. In addition, the efficacy of peroxisome proliferator-activated receptor-γ agonism and glucose uptake rate by MLM supplementation was significantly enhanced in vitro. Then, the antihyperglycemic and antihyperlipidemic effects of MCE, LFE, and MLM at the dose of 50, 100, and 200 mg/kg/day (n = 6 per each group) were determined in streptozotocin (STZ)-insulted mice fed an atherogenic diet (ATH) for 4 weeks. In addition, MLM (50, 100, and 200 mg/kg/day, n = 5 per each group) was supplemented in ATH-fed db/db mice for 10 weeks. Compared with MCE or LFE alone, MLM supplementation led to a more significant reduction of glucose levels in both STZ/ATH and db/db/ATH mice as well as lowered lipid profiles in STZ/ATH mice. In addition, the stimulation of islet of Langerhans regeneration was more pronounced by MLM supplementation in both mice models. In conclusion, antihyperglycemic and antihyperlipidemic effects were strengthened by the combined extracts of L. fischeri and M. charantia (MLM) in diabetes-mimicking mice.
Collapse
|
6
|
Cho YR, Park K, Kang JS, Byun HW, Oh JS, Seo DW, Ahn EK. Trigonostemon reidioides modulates endothelial cell proliferation, migration and tube formation via downregulation of the Akt signaling pathway. Oncol Lett 2017; 14:4677-4683. [PMID: 29085467 PMCID: PMC5649608 DOI: 10.3892/ol.2017.6760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
Trigonostemon reidi`oides (TR) is used as a Thai traditional medicine for the treatment of drug addiction, asthma, food poisoning, constipation and snake bites. The present study investigated the effects and molecular mechanisms of the ethanolic extract of TR (ETR) on mitogen-induced human umbilical vein endothelial cells (HUVECs) responses, proliferation, adhesion, migration and tube formation. ETR treatment inhibited mitogen-induced HUVEC proliferation by downregulation of cell cycle-associated proteins, including cyclins and cyclin-dependent kinases, which induced retinoblastoma protein hypophosphorylation. The present study also demonstrated that ETR treatment suppressed mitogen-induced HUVEC adhesion, migration, invasion and tube formation, and that these anti-angiogenic activities were mediated by inactivation of mitogen-induced Akt and matrix metalloproteinase (MMP)-2, but not of extracellular signal-regulated kinase, p70 ribosomal S6 kinase or MMP-9. Collectively, the results of the present study suggested pharmacological functions and molecular mechanisms of ETR in regulating endothelial cell fates, and supported further evaluation and development of ETR as a potential therapeutic agent for the treatment and prevention of angiogenesis-associated diseases, including cancer.
Collapse
Affiliation(s)
- Young-Rak Cho
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Gyeonggi 16229, Republic of Korea
| | - Kyuhee Park
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Gyeonggi 16229, Republic of Korea
| | - Jae-Shin Kang
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Seo, Incheon 22689, Republic of Korea
| | - Hye-Woo Byun
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Seo, Incheon 22689, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheong 31116, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheong 31116, Republic of Korea
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Gyeonggi 16229, Republic of Korea
| |
Collapse
|
7
|
In JK, Kim JK, Oh JS, Seo DW. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways. Int J Oncol 2016; 48:1907-12. [PMID: 26984670 DOI: 10.3892/ijo.2016.3436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/24/2016] [Indexed: 11/06/2022] Open
Abstract
In the present study, we investigated the effects and molecular mechanism of 5-caffeoylquinic acid (5-CQA), a natural phenolic compound isolated from Ligularia fischeri, on cell invasion, proliferation and adhesion in p53 wild-type A549 and p53-deficient H1299 non-small cell lung cancer (NSCLC) cells. 5-CQA abrogated mitogen-stimulated invasion, but not proliferation, in both A549 and H1299 cells. In addition, 5-CQA inhibited mitogen-stimulated adhesion in A549 cells only. Anti-invasive activity of 5-CQA in A549 cells was mediated by the inactivation of p70(S6K)-dependent signaling pathway. In contrast, in H1299 cells the inactivation of Akt was found to be involved in 5-CQA-mediated inhibition of cell invasion. Collectively, these findings demonstrate the pharmacological roles and molecular targets of 5-CQA in regulating NSCLC cell fate, and suggest further evaluation and development of 5-CQA as a potential therapeutic agent for the treatment and prevention of lung cancer.
Collapse
Affiliation(s)
- Jae-Kyung In
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Kyu Kim
- Biocenter, Gyeonggi Institute of Science and Technology Promotion, Suwon 16229, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|