1
|
Wu X, Lin L, Zhou F, Yu S, Chen M, Wang S. The Highly Expressed IFIT1 in Nasopharyngeal Carcinoma Enhances Proliferation, Migration, and Invasion of Nasopharyngeal Carcinoma Cells. Mol Biotechnol 2022; 64:621-636. [PMID: 35038119 DOI: 10.1007/s12033-021-00439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
In this study, we aimed to identify potential targets modulating the progression of nasopharyngeal carcinoma (NPC) using integrated bioinformatics analysis and functional assays. Differentially expressed genes (DEGs) between NPC and normal tissues samples were obtained from publicly availably microarray datasets (GSE68799, GSE34573, and GSE53819) in the Gene Expression Omnibus (GEO) database. The bioinformatics analysis identified 49 common DEGs from three GEO datasets, which were mainly enriched in cytokine/chemokine pathways and extracellular matrix organization pathway. Further protein-protein interaction network analysis identified 11 hub genes from the 49 DEGs. The 11 hub genes were significantly up-regulated in the NPC tissues when compared to normal tissues by analyzing the Oncomine database. The 8 hub genes including COL5A1, COL7A1, COL22A1, CXCL11, IFI44L, IFIT1, RSAD2, and USP18 were significantly up-regulated in the NPC tissues when compared to normal tissues by using the Oncomine database. Further validation studies showed that IFIT1 was up-regulated in the NPC cells. Knockdown of IFI1T1 suppressed the proliferation, migration, and invasion of NPC cells; while IFIT1 overexpression promoted the proliferation, migration, and invasion of NPC cells. In conclusion, a total of 49 DEGs and 11 hub genes in NPC using the integrated bioinformatics analysis. IFIT1 was up-regulated in the NPC cells lines, and IFIT1 may act as an oncogene by promoting NPC cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China. .,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China. .,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China.
| | - Liping Lin
- Department of Oncology, Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Fengrui Zhou
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China.,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Shaokang Yu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China.,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Minhua Chen
- Community Healthcare Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China. .,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China. .,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
2
|
The Hypoxia-Related Gene COL5A1 Is a Prognostic and Immunological Biomarker for Multiple Human Tumors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6419695. [PMID: 35082969 PMCID: PMC8786464 DOI: 10.1155/2022/6419695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 01/19/2023]
Abstract
Background Collagen type V alpha 1 chain (COL5A1) is a hypoxia-related gene (a collagen family protein) and participates in the formation of the extracellular matrix. Although some evidence supports a significant role for COL5A1 in the progression of several cancers, a pan-cancer analysis of COL5A1 is not currently available. Herein, we aimed to assess the prognostic value of COL5A1 in 33 human cancers and to investigate its underlying immunological function. Methods Through multiple bioinformatics methods, we analyzed the data from Oncomine, TCGA, CCLE, HPA, DNMIVD, and cBioPortal database to explore the potential underlying carcinogenic effect of COL5A1, including the relevance of COL5A1 to the outcome, DNA methylation, tumor microenvironment, immune cells infiltration, and drug sensitivity in 33 human cancers. The effects of COL5A1 on glioma cell proliferation, migration, and invasion were verified in cellular experiments. Results Our findings indicated that COL5A1 was expressed at high levels in 13 cancers and was negatively related to the prognosis of 11 cancers. Additionally, COL5A1 was coexpressed with genes encoding the major histocompatibility complex, immune activators, immune suppressors, chemokines, chemokine receptors, mismatch repair genes, and immune checkpoints. We also identified different roles for COL5A1 in the immunocyte infiltration in different cancers. The correlation between COL5A1 and drug sensitivity was found in several cancers. COL5A1 potentially influenced the tumor progression through immune-related pathways, negative regulation of immune system processes, chemokine signaling pathways, JAK-STAT pathways, T cell receptor pathways, lymphocyte migration, and antigen processing and presentation, among other processes. Conclusions Based on our study, COL5A1 may be employed as a prognostic marker in different malignancies because of its impact on tumorigenesis and immune cell infiltration and have implications for cancer immune checkpoint inhibitors and chemotherapy.
Collapse
|
3
|
Synthetic Evaluation of MicroRNA-1-3p Expression in Head and Neck Squamous Cell Carcinoma Based on Microarray Chips and MicroRNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6529255. [PMID: 34485523 PMCID: PMC8410410 DOI: 10.1155/2021/6529255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Abstract
Background MicroRNA-1-3p (miR-1-3p) exerts significant regulation in various tumor cells, but its molecular mechanisms in head and neck squamous cell carcinoma (HNSCC) are still ill defined. This study is aimed at detecting the expression of miR-1-3p in HNSCC and at determining its significant regulatory pathways. Methods Data were obtained from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Oncomine, ArrayExpress, Sequence Read Archive (SRA) databases, and additional literature. Expression values of miR-1-3p in HNSCC were analyzed comprehensively. The R language software was employed to screen differentially expressed genes, and bioinformatics assessment was performed. One sequence dataset (HNSCC: n = 484; noncancer: n = 44) and 18 chip datasets (HNSCC: n = 656; noncancer: n = 199) were obtained. Results The expression of miR-1-3p in HNSCC was visibly decreased in compare with noncancerous tissues. There were distinct differences in tumor state (P = 0.0417), pathological stage (P = 0.0058), and T stage (P = 0.0044). Comprehensive analysis of sequence and chip data also indicated that miR-1-3p was lowly expressed in HNSCC. The diagnostic performance of miR-1-3p in HNSCC is reflected in the sensitivity and specificity of the collection, etc. Bioinformatics analysis showed the possible biological process, cellular component, molecular function, and KEGG pathways of miR-1-3p in HNSCC. And ITGB4 was a possible target of miR-1-3p. Conclusions miR-1-3p's low expression may facilitate tumorigenesis and evolution in HNSCC through signaling pathways. ITGB4 may be a key gene in targeting pathways but still needs verification through in vitro experiments.
Collapse
|
4
|
Lu Y, Fang Z, Li M, Chen Q, Zeng T, Lu L, Chen Q, Zhang H, Zhou Q, Sun Y, Xue X, Hu Y, Chen L, Su S. Dynamic edge-based biomarker non-invasively predicts hepatocellular carcinoma with hepatitis B virus infection for individual patients based on blood testing. J Mol Cell Biol 2020; 11:665-677. [PMID: 30925583 PMCID: PMC6788726 DOI: 10.1093/jmcb/mjz025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/27/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths in Asia and Africa. Developing effective and non-invasive biomarkers of HCC for individual patients remains an urgent task for early diagnosis and convenient monitoring. Analyzing the transcriptomic profiles of peripheral blood mononuclear cells from both healthy donors and patients with chronic HBV infection in different states (i.e. HBV carrier, chronic hepatitis B, cirrhosis, and HCC), we identified a set of 19 candidate genes according to our algorithm of dynamic network biomarkers. These genes can both characterize different stages during HCC progression and identify cirrhosis as the critical transition stage before carcinogenesis. The interaction effects (i.e. co-expressions) of candidate genes were used to build an accurate prediction model: the so-called edge-based biomarker. Considering the convenience and robustness of biomarkers in clinical applications, we performed functional analysis, validated candidate genes in other independent samples of our collected cohort, and finally selected COL5A1, HLA-DQB1, MMP2, and CDK4 to build edge panel as prediction models. We demonstrated that the edge panel had great performance in both diagnosis and prognosis in terms of precision and specificity for HCC, especially for patients with alpha-fetoprotein-negative HCC. Our study not only provides a novel edge-based biomarker for non-invasive and effective diagnosis of HBV-associated HCC to each individual patient but also introduces a new way to integrate the interaction terms of individual molecules for clinical diagnosis and prognosis from the network and dynamics perspectives.
Collapse
Affiliation(s)
- Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoyuan Fang
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiyi Li
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Minhang Branch, Zhongshan Hospital/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Qian Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lina Lu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qilong Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Sun
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Xuefeng Xue
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Yiyang Hu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Shibing Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Serafini MS, Lopez-Perez L, Fico G, Licitra L, De Cecco L, Resteghini C. Transcriptomics and Epigenomics in head and neck cancer: available repositories and molecular signatures. CANCERS OF THE HEAD & NECK 2020; 5:2. [PMID: 31988797 PMCID: PMC6971871 DOI: 10.1186/s41199-020-0047-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 02/06/2023]
Abstract
For many years, head and neck squamous cell carcinoma (HNSCC) has been considered as a single entity. However, in the last decades HNSCC complexity and heterogeneity have been recognized. In parallel, high-throughput omics techniques had allowed picturing a larger spectrum of the behavior and characteristics of molecules in cancer and a large set of omics web-based tools and informative repository databases have been developed. The objective of the present review is to provide an overview on biological, prognostic and predictive molecular signatures in HNSCC. To contextualize the selected data, our literature survey includes a short summary of the main characteristics of omics data repositories and web-tools for data analyses. The timeframe of our analysis was fixed, encompassing papers published between January 2015 and January 2019. From more than 1000 papers evaluated, 61 omics studies were selected: 33 investigating mRNA signatures, 11 and 13 related to miRNA and other non-coding-RNA signatures and 4 analyzing DNA methylation signatures. More than half of identified signatures (36) had a prognostic value but only in 10 studies selection of a specific anatomical sub-site (8 oral cavity, 1 oropharynx and 1 both oral cavity and oropharynx) was performed. Noteworthy, although the sample size included in many studies was limited, about one-half of the retrieved studies reported an external validation on independent dataset(s), strengthening the relevance of the obtained data. Finally, we highlighted the development and exploitation of three gene-expression signatures, whose clinical impact on prognosis/prediction of treatment response could be high. Based on this overview on omics-related literature in HNSCC, we identified some limits and strengths. The major limits are represented by the low number of signatures associated to DNA methylation and to non-coding RNA (miRNA, lncRNA and piRNAs) and the availability of a single dataset with multiple omics on more than 500 HNSCC (i.e. TCGA). The major strengths rely on the integration of multiple datasets through meta-analysis approaches and on the growing integration among omics data obtained on the same cohort of patients. Moreover, new approaches based on artificial intelligence and informatic analyses are expected to be available in the next future.
Collapse
Affiliation(s)
- Mara S Serafini
- 1Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Laura Lopez-Perez
- 2Life Supporting Technologies, Universidad Politécnica de Madrid, Madrid, Spain
| | - Giuseppe Fico
- 2Life Supporting Technologies, Universidad Politécnica de Madrid, Madrid, Spain
| | - Lisa Licitra
- 3Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,4University of Milan, Milan, Italy
| | - Loris De Cecco
- 1Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Carlo Resteghini
- 3Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
6
|
Prospective molecular mechanism of COL5A1 in breast cancer based on a microarray, RNA sequencing and immunohistochemistry. Oncol Rep 2019; 42:151-175. [PMID: 31059074 PMCID: PMC6549075 DOI: 10.3892/or.2019.7147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) has a complex etiology and pathogenesis, and is the most common malignant tumor type in females, in USA in 2018, yet its relevant molecular mechanisms remain largely unknown. The collagen type V α-1 chain (COL5A1) gene is differentially expressed in renal and ovarian cancer. Using bioinformatics methods, COL5A1 was determined to also be a significant gene in BC, but its association with BC has not been sufficiently reported. COL5A1 microarray and relevant clinical data were collected from the Gene Expression Omnibus, The Cancer Genome Atlas and other databases to summarize COL5A1 expression in BC and its subtypes at the mRNA and protein levels. All associated information was comprehensively analyzed by various software. The clinical significance of the mutation was obtained via the cBioPortal. Furthermore, Gene Ontology functional annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were also performed to investigate the mechanism of COL5A1 in BC. Immunohistochemistry was also conducted to detect and confirm COL5A1 expression. It was determined that COL5A1 was highly expressed in BC tissues, compared with normal tissues at the mRNA level [standard mean difference, 0.84; 95% confidence interval (CI), 0.60-1.07; P=0.108]. The area under the summary receiver operator characteristic curve for COL5A1 was 0.87 (95% CI, 0.84-0.90). COL5A1 expression was altered in 32/817 (4%) sequenced samples. KEGG analysis confirmed the most notable pathways, including focal adhesion, extracellular matrix-receptor interaction and regulation of the actin cytoskeleton. Immunohistochemical detection was used to verify the expression of COL5A1 in 136 selected cases of invasive BC tissues and 55 cases of adjacent normal tissues, while the rate of high expression of COL5A1 in BC was up to 90.4%. These results indicated that COL5A1 is highly expressed at the mRNA and protein levels in BC, and the prognosis of patients with BC with high COL5A1 expression may be reduced; therefore, COL5A1 may be used independently or combined with other detection factors in BC diagnosis.
Collapse
|
7
|
Liu W, Wei H, Gao Z, Chen G, Liu Y, Gao X, Bai G, He S, Liu T, Xu W, Yang X, Jiao J, Xiao J. COL5A1 may contribute the metastasis of lung adenocarcinoma. Gene 2018; 665:57-66. [PMID: 29702185 DOI: 10.1016/j.gene.2018.04.066] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/09/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lung cancer leads to the largest number of cancer-related deaths worldwide and is usually accompanied with metastasis which is the primary cause of those death and correlated with poor prognosis. However, the mechanism of lung cancer metastasis is still lack of definition. METHODS We compared the primary lung adenocarcinoma (AD) and its metastasis tissues induced by overexpression of KrasG12D and inactivation of P53 in mouse lungs by analyzing GSE40222 about the differentially expressed genes (DEGs), pathways and hub genes. And human lung AD databases are used to verify the conversed changes of identified key gene and then followed functional studies are performed to explore the functions of key gene. RESULTS We identified 165 genes differentially expressed in lung AD metastasis compared to primary AD. Pathway analysis identified 649 GO biological processes and 8 KEGG pathways, such as ECM-receptor interaction. Biological network interaction identified the hub genes during lung adenocarcinoma metastasis, such as the up-regulated COL5A1, a novel gene in AD metastasis. We found it's also increased in human AD and advanced stage. Knockdown of COL5A1 in human AD metastatic cells inhibited cell growth and invasion, and induced cell apoptosis. Notably, higher expression of COL5A1 was observed in the lung AD patients with recurrence and short survive. CONCLUSION By analyzing mouse lung AD and its metastases, we identified the potential key genes and pathways regulating lung AD metastasis, such as COL5A1. The following analysis of COL5A1 in human AD database and cells explores its functions, holding the implications of target therapy in AD metastasis and also providing more clues for future studies.
Collapse
Affiliation(s)
- Weibo Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhengyu Gao
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Guanghui Chen
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yujie Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin Gao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guangjian Bai
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shaohui He
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Tielong Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Xinghai Yang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
8
|
Li J, Ju J, Ni B, Wang H. The emerging role of miR-506 in cancer. Oncotarget 2018; 7:62778-62788. [PMID: 27542202 PMCID: PMC5308765 DOI: 10.18632/oncotarget.11294] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. They are involved in almost all biological processes, and many have been identified as potential oncogenes or tumor suppressor genes. miR-506 was recently discovered to play pivotal roles in regulating cell proliferation, differentiation, migration and invasion. Dysregulation of miR-506 has been demonstrated in multiple types of cancers; however, whether it functions as an oncogene or a tumor suppressor seems to be context-dependent. Altered miR-506 expression in cancer is caused by promoter methylation and changes in upstream transcription factors. In this review, we summarize the current understanding of the diverse roles and underlying mechanisms of miR-506 and its involvement in cancer, and suggest the potential therapeutic strategy based on miR-506.
Collapse
Affiliation(s)
- Jian Li
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Jingfang Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, PR China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
9
|
Shao J, Cao J, Liu Y, Mei H, Zhang Y, Xu W. MicroRNA-519a promotes proliferation and inhibits apoptosis of hepatocellular carcinoma cells by targeting FOXF2. FEBS Open Bio 2015; 5:893-9. [PMID: 26693396 PMCID: PMC4660191 DOI: 10.1016/j.fob.2015.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
Recent studies report that microRNA-519a (miR-519a) is a novel oncomir, which facilitates the onset and progression of human cancers. However, the clinical significance of miR-519a and its functional role and underlying mechanisms in hepatocellular carcinoma (HCC) are poorly investigated. In the present study, elevated expression of miR-519a was observed in HCC tissues compared with adjacent non-tumor tissues. The increased level of miR-519a expression was significantly correlated with adverse clinical features of HCC including hepatitis B virus (HBV) infection, large tumor size, cirrhosis and advanced tumor-node-metastasis tumor stage. Furthermore, high expression of miR-519a was prominently associated with a poorer 5-year overall survival and recurrence-free survival of HCC patients. Gain- and loss-of function experiments showed that miR-519a overexpression enhanced proliferation and reduced apoptosis of Huh7 cells. By contrast, miR-519a knockdown inhibited SMMC-7721 cell proliferation and induced apoptosis. Importantly, up-regulation of miR-519a reduced the expression of FOXF2 mRNA and protein in Huh7 cells, while down-regulation of miR-519a resulted in increased expression of FOXF2 in SMMC-7721 cells. An inverse correlation between mRNA levels of miR-519a and FOXF2 was observed in HCC tissues. Thus, Forkhead box F2 (FOXF2) was identified as a downstream target of miR-519a in HCC. Mechanistically, the effects of miR-519a knockdown on SMMC-7721 cells were abrogated by FOXF2 repression. In conclusion, miR-519a is a novel prognostic predictor for HCC patients and it may potentiate proliferation and inhibits apoptosis of HCC cells by targeting FOXF2.
Collapse
Affiliation(s)
- Junwei Shao
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430070, China
| | - Jun Cao
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430070, China
| | - Yong Liu
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430070, China
| | - Hongliang Mei
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430070, China
| | - Yang Zhang
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430070, China
| | - Weitian Xu
- Department of Gastroenterology, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430070, China
- Corresponding author at: Department of Gastroenterology, Wuhan General Hospital of Guangzhou Military Command, No. 627 Wuluo Road, Wuhan 430070, China. Tel./fax: +86 027 50772032.Department of GastroenterologyWuhan General Hospital of Guangzhou Military CommandNo. 627 Wuluo RoadWuhan430070China
| |
Collapse
|