1
|
Choi MS, Kim JH, Lee CY, Lee YM, Lee S, Chang HK, Kim HJ, Heo K. Gentian Violet Inhibits Cell Proliferation through Induction of Apoptosis in Ovarian Cancer Cells. Biomedicines 2023; 11:1657. [PMID: 37371752 DOI: 10.3390/biomedicines11061657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Gentian violet (GV) is known to have antibacterial and antifungal effects, but recent studies have demonstrated its inhibitory effects on the growth of several types of cancer cells. Here, we investigated the anticancer efficacy of GV in ovarian cancer cells. GV significantly reduced the proliferation of OVCAR8, SKOV3, and A2780 cells. Results of transferase dUTP nick and labeling (TUNEL) assay and Western blot assay indicated that the inhibitory effect of GV on ovarian cancer cells was due to the induction of apoptosis. Moreover, GV significantly increased reactive oxygen species (ROS) and upregulated the expression of p53, PUMA, BAX, and p21, critical components for apoptosis induction, in ovarian cancer cells. Our results suggest that GV is a novel antiproliferative agent and is worthy of exploration as a potential therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Min Sung Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Hyeon Kim
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Chae Yeon Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Yul Min Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Kyun Chang
- Department of Obstetrics and Gynecology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15855, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
2
|
Sakagami H, Furukawa T, Satoh K, Amano S, Iijima Y, Koshikawa T, Asai D, Fukuchi K, Takemura H, Kanamoto T, Yokose S. Re-Evaluation of Chemotherapeutic Potential of Pyoktanin Blue. MEDICINES (BASEL, SWITZERLAND) 2021; 8:medicines8070033. [PMID: 34206186 PMCID: PMC8305689 DOI: 10.3390/medicines8070033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Background: Pyoktanin blue (PB) is used for staining tissues and cells, and it is applied in photodynamic therapy due to its potent bactericidal activity. However, clinical application of PB as an antiviral and antitumor agent has been limited due to its potent toxicity. For clinical application, the antitumor and antiviral activity as well as the neurotoxicity of PB were re-evaluated with a chemotherapeutic index. Methods: Tumor-specificity (TS) was determined by the ratio of CC50 against normal oral cells/oral squamous cell carcinoma (OSCC); neurotoxicity by that of normal oral/neuronal cells; antiviral activity by that of mock-infected/virus-infected cells; and potency-selectivity expression (PSE) by dividing TS by CC50 (OSCC). Results: Antitumor activity of PB (assessed by TS and PSE) was comparable with that of DXR and much higher than that of 5-FU and melphalan. PB induced caspase-3 activation and subG1 cell accumulation in an OSCC cell line (Ca9-22). PB and anticancer drugs showed comparable cytotoxicity against both neuronal cells and OSCC cell lines. PB showed no detectable anti-HIV/HSV activity, in contrast to reverse transferase inhibitors, sulfated glucans, and alkaline extract of leaves of S.P. Conclusions: PB showed first-class anticancer activity and neurotoxicity, suggesting the importance of establishing the safe treatment schedule.
Collapse
Affiliation(s)
- Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Toshiko Furukawa
- Division of Endodontics and Operative Dentistry, School of Dentistry, Meikai University, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (T.F.); (S.Y.)
| | - Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Shigeru Amano
- Research Institute of Odontology (M-RIO), Meikai University, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Yosuke Iijima
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama 350-8550, Japan;
| | - Takuro Koshikawa
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan; (T.K.); (D.A.); (H.T.)
| | - Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan; (T.K.); (D.A.); (H.T.)
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan;
| | - Kunihiko Fukuchi
- Graduate School of Health Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan; (T.K.); (D.A.); (H.T.)
| | - Taisei Kanamoto
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan;
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, School of Dentistry, Meikai University, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (T.F.); (S.Y.)
| |
Collapse
|
3
|
Sandiford OA, Moore CA, Du J, Boulad M, Gergues M, Eltouky H, Rameshwar P. Human Aging and Cancer: Role of miRNA in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:137-152. [PMID: 29754179 DOI: 10.1007/978-3-319-74470-4_9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human aging is an inevitable and complex phenomenon characterized by a progressive, gradual degradation of physiological and cellular processes that leads from vulnerability to death. Mammalian somatic cells display limited proliferative properties in vitro that results in a process of permanent cell cycle arrest commonly known as senescence. Events leading to cellular senescence are complex but may be due to the increase in tumor suppressor genes, caused by lifetime somatic mutations. Cumulative mutation leaves an imprint on the genome of the cell, an important risk factor for the occurrence of cancer. Adults over the age of 65+ are vulnerable to age related diseases such as cancers but such changes may begin at middle age. MicroRNAs (miRNAs), which are small non-coding RNA, can regulate cancer progression, recurrence and metastasis. This chapter discusses the role of miRNA in tumor microenvironment, consequent to aging.
Collapse
Affiliation(s)
- Oleta A Sandiford
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Jun Du
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Mathieu Boulad
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Marina Gergues
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Hussam Eltouky
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Pranela Rameshwar
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA.
| |
Collapse
|
4
|
Pietrobono S, Morandi A, Gagliardi S, Gerlini G, Borgognoni L, Chiarugi P, Arbiser JL, Stecca B. Down-Regulation of SOX2 Underlies the Inhibitory Effects of the Triphenylmethane Gentian Violet on Melanoma Cell Self-Renewal and Survival. J Invest Dermatol 2016; 136:2059-2069. [PMID: 27373978 DOI: 10.1016/j.jid.2016.06.610] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Abstract
Human melanomas contain a population of tumor-initiating cells that are able to maintain the growth of the tumor. We previously showed that the embryonic transcription factor SOX2 is essential for self-renewal and tumorigenicity of human melanoma-initiating cells. However, targeting a transcription factor is still challenging. Gentian violet (GV) is a cationic triphenylmethane dye with potent antifungal and antibacterial activity. Recently, a combination therapy of imiquimod and GV has shown an inhibitory effect against melanoma metastases. Whether and how GV affects melanoma cells remains unknown. Here we show that GV represses melanoma stem cell self-renewal through inhibition of SOX2. Mechanistically, GV hinders EGFR activation and inhibits the signal transducer and activator of transcription-3 [(STAT3)/SOX2] axis. Importantly, we show that GV treatment decreases STAT3 phosphorylation at residue tyrosine 705, thus preventing the translocation of STAT3 into the nucleus and its binding to SOX2 promoter. In addition, GV affects melanoma cell growth by promoting mitochondrial apoptosis and G2 cell cycle arrest. This study shows that in melanoma, GV affects both the stem cell and the tumor bulk compartments, suggesting the potential use of GV in treating human melanoma alone or in combination with targeted therapy and/or immunotherapy.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Core Research Laboratory-Istituto Toscano Tumori, Viale Pieraccini 6, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Sinforosa Gagliardi
- Core Research Laboratory-Istituto Toscano Tumori, Viale Pieraccini 6, Florence, Italy
| | - Gianni Gerlini
- Plastic Surgery Unit, S.M. Annunziata Hospital-Regional Melanoma Referral Center, Istituto Toscano Tumori, Florence, Italy
| | - Lorenzo Borgognoni
- Plastic Surgery Unit, S.M. Annunziata Hospital-Regional Melanoma Referral Center, Istituto Toscano Tumori, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Jack L Arbiser
- Department of Dermatology, Atlanta Veterans Administration Medical Center, Atlanta, Georgia, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Barbara Stecca
- Core Research Laboratory-Istituto Toscano Tumori, Viale Pieraccini 6, Florence, Italy; Department of Oncology, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
5
|
Yamaguchi M, Murata T. Potential suppressive effects of gentian violet on human breast cancer MDA-MB-231 cells in vitro: Comparison with gemcitabine. Oncol Lett 2016; 12:1605-1609. [PMID: 27446479 DOI: 10.3892/ol.2016.4773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 06/07/2016] [Indexed: 11/05/2022] Open
Abstract
Gentian violet (GV), a cationic triphenylmethane dye, is used as an antifungal and antibacterial agent. Recently, attention has been focused on GV as a potential chemotherapeutic and antiangiogenic agent. The present study was undertaken to determine the suppressive effects of GV on human breast cancer MDA-MB-231 cells in vitro. The proliferation of MDA-MB-231 cells was suppressed by culture with GV (1-200 nM). The suppressive effects of GV on cell proliferation were not potentiated in the presence of various inhibitors that induce cell cycle arrest in vitro. This finding suggested that GV inhibits G1 and G2/M phase cell cycle arrest in MDA-MB-231 cells. The suppressive effects of GV on proliferation are mediated through the inhibition of various signaling pathways or nuclear transcription in vitro. Moreover, the suppressive effects of GV on cell proliferation were compared with that of gemcitabine, a strong antitumor agent that induces nuclear DNA damage. Notably, the culture with gemcitabine >50 nM suppressed cell proliferation, while the effects of GV were observed at >1 nM. The suppressive effects of gemcitabine on cell proliferation were not potentiated by GV. Overall, the present study demonstrated that GV exhibits a potential suppressive effect on the proliferation of human breast cancer MDA-MB-231 cells in vitro.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| |
Collapse
|
6
|
The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:529-38. [PMID: 26905520 DOI: 10.1007/s00210-016-1224-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/17/2016] [Indexed: 01/04/2023]
Abstract
Preclinical data indicate a direct anti-tumor effect of zoledronic acid (ZA) outside the skeleton, but its molecular mechanism is still not completely clarified. The aim of this study was to investigate the anti-cancer effects of ZA in human breast cancer cell lines, suggesting that they may in part be mediated via the miR-21/PTEN/Akt signaling pathway. The effect of ZA on cell viability was measured by MTT assay, and cell death induction was analyzed using either a double AO/EtBr staining and M30 ELISA assay. A Proteome Profiler Human Apoptosis Array was executed to evaluate the molecular basis of ZA-induced apoptosis. Cell cycle analysis was executed by flow cytometry. The effect of ZA on miR-21 expression was quantified by qRT-PCR, and the amount of PTEN protein and its targets were analyzed by Western blot. ZA inhibited cell growth in a concentration- and time-dependent manner, through the activation of cell death pathways and arrest of cell cycle progression. ZA downregulated the expression of miR-21, resulting in dephosphorilation of Akt and Bad and in a significant increase of p21 and p27 proteins expression. These results were observed also in MDA-MB-231 cells, commonly used as an experimental model of bone metastasis of breast cancer. This study revealed, for the first time, an involvement of the miR-21/PTEN/Akt signaling pathway in the mechanism of ZA anti-cancer actions in breast cancer cells. We would like to underline that this pathway is present both in the hormone responsive BC cell line (MCF-7) as well as in a triple negative cell line (MDA-MB-231). Taken together these results reinforce the use of ZA in clinical practice, suggesting the role of miR-21 as a possible mediator of its therapeutic efficacy.
Collapse
|