1
|
Bao M, Bu Q, Pan M, Xu R, Chen Y, Yang Y, Wang C, Wang T. Coptidis rhizoma extract alleviates oropharyngeal candidiasis by gC1qR-EGFR/ERK/c-fos axis-induced endocytosis of oral epithelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118305. [PMID: 38729536 DOI: 10.1016/j.jep.2024.118305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptidis rhizoma, first recorded in the "Shen Nong's Herbal Classic", is one of the traditional Chinese medicine (TCM) used to treat infectious diseases, with reputed effectiveness against oropharyngeal candidiasis (OPC). Studies have demonstrated the inhibitory properties of C. rhizoma (CRE) against Candida albicans, yet there is limited information available regarding its treatment mechanism for OPC. AIM OF THE STUDY Our previous research has suggested that CRE can prevent the formation of C. albicans hyphae and their invasion of the oral mucosa, thereby exerting a therapeutic effect on OPC. Nevertheless, the precise therapeutic mechanisms remain incompletely understood. Previous studies have revealed that a receptor for globular heads of C1q (gC1qR), a crucial co-receptor of the epidermal growth factor receptor (EGFR), facilitates the EGFR-mediated internalization of C. albicans. Therefore, this study aims to investigate the potential mechanism of action of CRE and its primary component, berberine (BBR), in treating OPC by exploring their effects on the gC1qR-EGFR co-receptor. MATERIALS AND METHODS To identify the chemical components of CRE, we utilized Ultra-high performance liquid chromatography in conjunction with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MSE), revealing the presence of at least 18 distinct components. To observe the therapeutic effects of CRE on OPC at the animal level, we employed hematoxylin and eosin staining, periodic acid-Schiff staining, scanning electron microscopy, and fungal load detection. Subsequently, we evaluated the anti-inflammatory properties of CRE and its main component, BBR, in treating OPC. This was achieved through enzyme-linked immunosorbent assay (ELISA) both at the animal and cellular levels. Additionally, we assessed the ability of C. albicans to disrupt the epithelial barrier of FaDu cells by studying the protective effects of BBR on the fusion barrier using the transwell assay. To further explore the underlying mechanisms, we analyzed the effects of BBR on the gC1qR-EGFR/extracellular signal-regulated kinase/c-Fos signaling pathway at the cellular level using qRT-PCR, western blotting, and immunofluorescence. Furthermore, we validated the effects of BBR on the gC1qR-EGFR co-receptor through ELISA, qRT-PCR, and western blotting. Finally, to confirm the outcomes observed at the cellular level, we validated the impact of CRE on the gC1qR-EGFR co-receptor in vivo using qRT-PCR, western blotting, and immunofluorescence. These comprehensive methods allowed us to gain a deeper understanding of the therapeutic mechanisms of CRE and BBR in treating OPC. RESULTS Our findings indicate that CRE and its primary component, BBR, effectively alleviated the symptoms of OPC by modulating the gC1qR-EGFR co-receptor. The chemical composition of CRE and BBR was accurately identified using UPLC-Q/TOF-MSE. The gC1qR-EGFR co-receptor plays a crucial role in regulating downstream signaling pathways, emerging as a potential therapeutic target for OPC treatment. Through both in vitro and in vivo experiments, we explored the therapeutic potential of CRE and BBR in OPC. Additionally, we employed overexpression and silencing techniques to confirm that BBR can indeed influence the gC1qR-EGFR co-receptor and regulate the gC1qR-EGFR/extracellular signal-regulated kinase (ERK)/c-Fos signaling pathway, leading to improved OPC outcomes. Furthermore, the significance of CRE's effect on the gC1qR-EGFR co-receptor was validated in vivo. CONCLUSION Our study demonstrates that CRE and its main component, BBR, can effectively alleviate OPC symptoms by targeting the gC1qR-EGFR heterodimer receptor. This discovery offers a promising new therapeutic approach for the treatment of OPC.
Collapse
Affiliation(s)
- Mengyuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Qingru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Min Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ran Xu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Yujie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Changzhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tianming Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
2
|
Goel A. Current understanding and future prospects on Berberine for anticancer therapy. Chem Biol Drug Des 2023; 102:177-200. [PMID: 36905314 DOI: 10.1111/cbdd.14231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Berberine (BBR) is a potential plant metabolite and has remarkable anticancer properties. Many kinds of research are being focused on the cytotoxic activity of berberine in in vitro and in vivo studies. A variety of molecular targets which lead to the anticancer effect of berberine ranges from p-53 activation, Cyclin B expression for arresting cell cycles; protein kinase B (AKT), MAP kinase and IKB kinase for antiproliferative activity; effect on beclin-1 involved in autophagy; reduced expression of MMP-9 and MMP-2 for the inhibition of invasion and metastasis etc. Berberine also interferes with transcription factor-1 (AP-1) activity responsible for the expression of oncogenes and neoplastic transformation of the cell. It also leads to the inhibition of various enzymes which are directly or indirectly involved in carcinogenesis like N acetyl transferase, Cyclo-oxygenase-2, Telomerase and Topoisomerase. In addition to these actions, Berberine plays a role in, the regulation of reactive oxygen species and inflammatory cytokines in preventing cancer formation. Berberine anticancer properties are demonstrated due to the interaction of berberine with micro-RNA. The summarized information presented in this review article may help and lead the researchers, scientists/industry persons to use berberine as a promising candidate against cancer.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, 281 46, Uttar Pradesh, India
| |
Collapse
|
3
|
Skonieczna M, Adamiec-Organisciok M, Hudy D, Dziedzic A, Los L, Skladany L, Grgurevic I, Filipec-Kanizaj T, Jagodzinski M, Kukla M, Nackiewicz J. Hepatocellular cancer cell lines, Hep-3B and Hep-G2 display the pleiotropic response to resveratrol and berberine. Adv Med Sci 2022; 67:379-385. [DOI: 10.1016/j.advms.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
|
4
|
Ye XW, Wang HL, Cheng SQ, Xia LJ, Xu XF, Li XR. Network Pharmacology-Based Strategy to Investigate the Pharmacologic Mechanisms of Coptidis Rhizoma for the Treatment of Alzheimer's Disease. Front Aging Neurosci 2022; 14:890046. [PMID: 35795239 PMCID: PMC9252849 DOI: 10.3389/fnagi.2022.890046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
BackgroundAlzheimer's disease (AD) is becoming a more prevalent public health issue in today's culture. The experimental study of Coptidis Rhizoma (CR) and its chemical components in AD treatment has been widely reported, but the principle of multi-level and multi-mechanism treatment of AD urgently needs to be clarified.ObjectiveThis study focuses on network pharmacology to clarify the mechanism of CR's multi-target impact on Alzheimer's disease.MethodsThe Phytochemical-compounds of CR have been accessed from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) and Symmap database or HPLC determination. The values of Oral Bioavailability (OB) ≥ 30% and Drug Like (DL) ≥ 0.18 or blood ingredient were used to screen the active components of CR; the interactive network of targets and compounds were constructed by STRING and Cytoscape platform, and the network was analyzed by Molecular Complex Detection (MCODE); Gene Ontology (GO) function, Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) and metabolic pathway enrichment of targets were carried out with Metascape, the Database for Annotation, Visualization and Integrated Discovery (DAVID) and MetaboAnalyst platform; Based on CytoHubba, the potential efficient targets were screened by Maximal Clique Centrality (MCC) and Degree, the correlation between potential efficient targets and amyloid β-protein (Aβ), Tau pathology was analyzed by Alzdata database, and the genes related to aging were analyzed by Aging Altas database, and finally, the core targets were obtained; the binding ability between ingredients and core targets evaluated by molecular docking, and the clinical significance of core targets was assessed with Gene Expression Omnibus (GEO) database.Results19 active components correspond to 267 therapeutic targets for AD, of which 69 is potentially effective; in module analysis, RELA, TRAF2, STAT3, and so on are the critical targets of each module; among the six core targets, RELA, MAPK8, STAT3, and TGFB1 have clinical therapeutic significance; GO function, including 3050 biological processes (BP), 257 molecular functions (MF), 184 cellular components (CC), whose functions are mainly related to antioxidation, regulation of apoptosis and cell composition; the HIF-1 signaling pathway, glutathione metabolism is the most significant result of 134 KEGG signal pathways and four metabolic pathways, respectively; most of the active components have an excellent affinity in docking with critical targets.ConclusionThe pharmacological target prediction of CR based on molecular network pharmacology paves the way for a multi-level networking strategy. The study of CR in AD treatment shows a bright prospect for curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Xian-wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-li Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-qing Cheng
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-jing Xia
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Xin-fang Xu
| | - Xiang-ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiang-ri Li
| |
Collapse
|
5
|
Bibak B, Shakeri F, Keshavarzi Z, Mollazadeh H, Javid H, Jalili-Nik M, Sathyapalan T, Afshari AR, Sahebkar A. Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy. Curr Med Chem 2022; 29:4507-4528. [PMID: 35209812 DOI: 10.2174/0929867329666220224112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The most typical malignant brain tumor, glioblastoma multiforme (GBM), seems to have a grim outcome, despite the intensive multi-modality interventions. Literature suggests that biologically active phytomolecules may exert anticancer properties by regulating several signaling pathways. Berberine, an isoquinoline alkaloid, has various pharmacological applications to combat severe diseases like cancer. Mechanistically, Berberine inhibits cell proliferation and invasion, suppresses tumor angiogenesis, and induces cell apoptosis. The effect of the antitumoral effect of Berberine in GBM is increasingly recognized. This review sheds new light on the regulatory signaling mechanisms of Berberine in various cancer, proposing its potential role as a therapeutic agent for GBM. .
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Javid
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Adeola HA, Sabiu S, Aruleba RT, Adekiya TA, Adefuye AO, Adefuye OJ, Oyinloye BE. Phytodentistry in Africa: prospects for head and neck cancers. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Orthodox dentistry has undergone significant changes in recent times with the introduction of various omics and molecular targeted therapies both at the experimental/trial and clinical implementation level. Although, significant milestones have been achieved in the molecular dentistry field in the past decade, there remains a dearth of application of phytopharmacological innovation in personalized and targeted therapies for dental diseases.
Main body
From time immemorial, plant products have long been an integral aspect of dental practice ranging from chewing sticks/herbal kinds of toothpaste to dental/impression materials. The current era of precision medicine seeks to apply a multipronged molecular and bio-computational approaches to solve fundamental medical problems that have hitherto remained difficult. Remarkable changes in the molecular/omics era, have transformed empirical therapies into personalized/individualized ones. Furthermore, the combinatorial application and the widespread introduction of high-throughput molecular tools such as pharmacogenomics, phytopharmacology, metabolomics, mathematical modelling, and genetic engineering inter alia, has tremendously improved the diagnostic and therapeutic landscape of medicine. Additionally, the variable molecular epidemiology of diseases among different population and emerging molecular evidence warrants the use of customized novel theranostic techniques. Unfortunately, the footprint of such emerging application is sparse in dental diseases such as maxillofacial cancers.
Conclusion
Hence, this review seeks to evaluate the potential application of phytopharmacological approaches to head and neck cancers in a resource-limited environment, such as Africa.
Collapse
|
7
|
Aggarwal N, Yadav J, Chhakara S, Janjua D, Tripathi T, Chaudhary A, Chhokar A, Thakur K, Singh T, Bharti AC. Phytochemicals as Potential Chemopreventive and Chemotherapeutic Agents for Emerging Human Papillomavirus-Driven Head and Neck Cancer: Current Evidence and Future Prospects. Front Pharmacol 2021; 12:699044. [PMID: 34354591 PMCID: PMC8329252 DOI: 10.3389/fphar.2021.699044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC) usually arises from squamous cells of the upper aerodigestive tract that line the mucosal surface in the head and neck region. In India, HNC is common in males, and it is the sixth most common cancer globally. Conventionally, HNC attributes to the use of alcohol or chewing tobacco. Over the past four decades, portions of human papillomavirus (HPV)-positive HNC are increasing at an alarming rate. Identification based on the etiological factors and molecular signatures demonstrates that these neoplastic lesions belong to a distinct category that differs in pathological characteristics and therapeutic response. Slow development in HNC therapeutics has resulted in a low 5-year survival rate in the last two decades. Interestingly, HPV-positive HNC has shown better outcomes following conservative treatments and immunotherapies. This raises demand to have a pre-therapy assessment of HPV status to decide the treatment strategy. Moreover, there is no HPV-specific treatment for HPV-positive HNC patients. Accumulating evidence suggests that phytochemicals are promising leads against HNC and show potential as adjuvants to chemoradiotherapy in HNC. However, only a few of these phytochemicals target HPV. The aim of the present article was to collate data on various leading phytochemicals that have shown promising results in the prevention and treatment of HNC in general and HPV-driven HNC. The review explores the possibility of using these leads against HPV-positive tumors as some of the signaling pathways are common. The review also addresses various challenges in the field that prevent their use in clinical settings.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Suhail Chhakara
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Malhotra B, Kulkarni GT, Dhiman N, Joshi D, Chander S, Kharkwal A, Sharma AK, Kharkwal H. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Jagetia GC. Anticancer Potential of Natural Isoquinoline Alkaloid Berberine. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Huang J, Feng W, Li S, Tang H, Qin S, Li W, Gong Y, Fang Y, Liu Y, Wang S, Guo Y, Xu Z, Shen Q. Berberine Exerts Anti-cancer Activity by Modulating Adenosine Monophosphate- Activated Protein Kinase (AMPK) and the Phosphatidylinositol 3-Kinase/ Protein Kinase B (PI3K/AKT) Signaling Pathways. Curr Pharm Des 2021; 27:565-574. [PMID: 32988344 DOI: 10.2174/1381612826666200928155728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Background The antagonistic relationship between adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling play a vital role in cancer development. The anti-cancer effects of berberine have been reported as a main component of the traditional Chinese medicine Rhizoma coptidis, although the roles of these signaling pathways in these effects have not been systematically reviewed. METHODS We searched the PubMed database for studies with keywords including ["berberine"] and ["tumor" or "cancer"] and ["AMPK"] or ["AKT"] published between January 2010 and July 2020, to elucidate the roles of the AMPK and PI3K/AKT pathways and their upstream and downstream targets in the anti-cancer effects of berberine. RESULTS The anti-cancer effects of berberine include inhibition of cancer cell proliferation, promotion of apoptosis and autophagy in cancer cells, and prevention of metastasis and angiogenesis. The mechanism of these effects involves multiple cell kinases and signaling pathways, including activation of AMPK and forkhead box transcription factor O3a (FOXO3a), accumulation of reactive oxygen species (ROS), and inhibition of the activity of PI3K/AKT, rapamycin (mTOR) and nuclear factor-κB (NF-κB). Most of these mechanisms converge on regulation of the balance of AMPK and PI3K/AKT signaling by berberine. CONCLUSION This evidence supports the possibility that berberine is a promising anti-cancer natural product, with pharmaceutical potential in inhibiting cancer growth, metastasis and angiogenesis via multiple pathways, particularly by regulating the balance of AMPK and PI3K/AKT signaling. However, systematic preclinical studies are still required to provide scientific evidence for further clinical studies.
Collapse
Affiliation(s)
- Jin Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Feng
- Emergercy Department, South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, China
| | - Shanshan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huiling Tang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qian Shen
- Department of Massage and Physiotherapy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
11
|
Habtemariam S. Recent Advances in Berberine Inspired Anticancer Approaches: From Drug Combination to Novel Formulation Technology and Derivatization. Molecules 2020; 25:molecules25061426. [PMID: 32245062 PMCID: PMC7144379 DOI: 10.3390/molecules25061426] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Berberine is multifunctional natural product with potential to treat diverse pathological conditions. Its broad-spectrum anticancer effect through direct effect on cancer cell growth and metastasis have been established both in vitro and in vivo. The cellular targets that account to the anticancer effect of berberine are incredibly large and range from kinases (protein kinase B (Akt), mitogen activated protein kinases (MAPKs), cell cycle checkpoint kinases, etc.) and transcription factors to genes and protein regulators of cell survival, motility and death. The direct effect of berberine in cancer cells is however relatively weak and occur at moderate concentration range (10–100 µM) in most cancer cells. The poor pharmacokinetics profile resulting from poor absorption, efflux by permeability-glycoprotein (P-gc) and extensive metabolism in intestinal and hepatic cells are other dimensions of berberine’s limitation as anticancer agent. This communication addresses the research efforts during the last two decades that were devoted to enhancing the anticancer potential of berberine. Strategies highlighted include using berberine in combination with other chemotherapeutic agents either to reduce toxic side effects or enhance their anticancer effects; the various novel formulation approaches which by order of magnitude improved the pharmacokinetics of berberine; and semisynthetic approaches that enhanced potency by up to 100-fold.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, ME4 4TB Kent, UK
| |
Collapse
|
12
|
Lee E, Han AR, Nam B, Kim YR, Jin CH, Kim JB, Eun YG, Jung CH. Moscatilin Induces Apoptosis in Human Head and Neck Squamous Cell Carcinoma Cells via JNK Signaling Pathway. Molecules 2020; 25:molecules25040901. [PMID: 32085431 PMCID: PMC7071095 DOI: 10.3390/molecules25040901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Dendrobii Herba is an herbal medicine that uses the stems of Dendrobium species (Orchidacea). It has been traditionally used to treat fever, hydrodipsomania, stomach disorders, and amyotrophia. In our previous study, a bibenzyl compound, moscatilin, which is isolated from Dendrobii Herba, showed potent cytotoxicity against a FaDu human pharyngeal squamous carcinoma cell line. Prompted by this finding, we performed additional studies in FaDu cells to investigate the mechanism of action. Moscatilin induced FaDu cell death by using 5 μM of concentration and by mediating apoptosis, whereas cell proliferation following treatment with 1 μM of moscatilin was not suppressed to the same levels as by the anti-cancer agent, cisplatin. Apoptosis-related protein expression (cleaved caspase-8, cleaved caspase-7, cytochrome c, cleaved caspase-9, cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP) was increased by treating with 5 μM of moscatilin. This suggests that moscatilin-mediated apoptosis is associated with the extrinsic and intrinsic apoptotic signaling pathways. In addition, moscatilin-induced apoptosis was mediated by the c-Jun N-terminal kinase (JNK) signaling pathway. Overall, this study identified additional biological activity of moscatilin derived from natural products and suggested its potential application as a chemotherapeutic agent for the management of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Eunji Lee
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (E.L.); (Y.-G.E.)
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Bomi Nam
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Ye-Ram Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Young-Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (E.L.); (Y.-G.E.)
| | - Chan-Hun Jung
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (E.L.); (Y.-G.E.)
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Korea
- Correspondence: ; Tel.: +82-63-711-102
| |
Collapse
|
13
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
14
|
The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins (Basel) 2019; 11:toxins11110656. [PMID: 31717922 PMCID: PMC6891610 DOI: 10.3390/toxins11110656] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.
Collapse
|
15
|
Grebinyk A, Prylutska S, Buchelnikov A, Tverdokhleb N, Grebinyk S, Evstigneev M, Matyshevska O, Cherepanov V, Prylutskyy Y, Yashchuk V, Naumovets A, Ritter U, Dandekar T, Frohme M. C 60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells. Pharmaceutics 2019; 11:pharmaceutics11110586. [PMID: 31717305 PMCID: PMC6920783 DOI: 10.3390/pharmaceutics11110586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle-C60 fullerene (C60)-for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.
Collapse
Affiliation(s)
- Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anatoliy Buchelnikov
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Nina Tverdokhleb
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Sergii Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
| | - Maxim Evstigneev
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
- Laboratory of Organic Synthesis and NMR Spectroscopy, Belgorod State University, 308015 Belgorod, Russia
| | - Olga Matyshevska
- Palladin Institute of Biochemistry, NAS of Ukraine, Leontovicha Str. 9, 01030 Kyiv, Ukraine;
| | - Vsevolod Cherepanov
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Valeriy Yashchuk
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anton Naumovets
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, University of Technology Ilmenau, Weimarer Straße 25 (Curiebau), 98693 Ilmenau, Germany;
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Correspondence: ; Tel.: +49-(0)-3375-508-249
| |
Collapse
|
16
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
17
|
Skonieczna M, Hudy D, Poterala-Hejmo A, Hejmo T, Buldak RJ, Dziedzic A. Effects of Resveratrol, Berberine and Their Combinations on Reactive Oxygen Species, Survival and Apoptosis in Human Squamous Carcinoma (SCC-25) Cells. Anticancer Agents Med Chem 2019; 19:1161-1171. [DOI: 10.2174/1871520619666190405111151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
Abstract
Background:
Levels of cellular Reactive Oxygen Species (ROS) influence the oxidized/reduced
states of cellular proteins, and create redox-signaling pathways that can activate transcription factors, kinases,
and phosphatases. ROS levels can be increased radically by external factors, including ionizing and UV radiation or
exposure to chemical compounds. These increased ROS levels can, in turn, lead to oxidative damage of DNA.
Natural plant treatments against cancer can modulate these processes by inducing or decreasing ROS production.
Methods:
Here we report new observations that squamous carcinoma (SCC-25) cells, exposed to 24 hours of
combined resveratrol and berberine treatment, contain increased ROS levels. Using flow cytometry, for drug
activity characteristics, an accumulation of ROS was observed. A combination of different dyes, CellROX
Green (Life Technologies) and DCFH-DA (Sigma), allowed for flow cytometric estimation of levels of cellular
ROS as well as cellular localization.
Results:
Live staining and microscopic observations confirmed the accumulation of ROS in SCC-25 cells following
a combination treatment at concentrations of 10μg/ml. Additionally, the cytotoxicity of the compounds
was significantly improved after their combined application. Additive effects were observed for doses lower
than the calculated IC50 of berberine [IC50=23µg/ml] and resveratrol [IC50=9µg/ml]. Viability (MTS) assays and
analysis of isobolograms revealed a significant impact on cell viability upon combination treatment.
Conclusion:
These results suggest that administration of berberine, in the presence of resveratrol, could be
decreased even to 50% (half the IC50 for berberine) for cancer treatment.
Collapse
Affiliation(s)
- Magdalena Skonieczna
- Biosystems Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Dorota Hudy
- Biosystems Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Aleksandra Poterala-Hejmo
- Biosystems Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Tomasz Hejmo
- Department of Biochemistry, Medical University of Silesia, School of Medicine with the Division of Dentistry, Jordana 19, 41-808 Zabrze, Poland
| | - Rafal J. Buldak
- Department of Biochemistry, Medical University of Silesia, School of Medicine with the Division of Dentistry, Jordana 19, 41-808 Zabrze, Poland
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry and Endodontics, Medical University of Silesia, Pl. Akademicki 17, 41-902 Bytom, Poland
| |
Collapse
|
18
|
Nam B, Ryu SM, Lee D, Jung CH, Jin CH, Kim JB, Lee IS, Han AR. Identification of Two New Phenanthrenes from Dendrobii Herba and Their Cytotoxicity towards Human Hypopharynx Squamous Carcinoma Cell (FaDu). Molecules 2019; 24:molecules24122339. [PMID: 31242649 PMCID: PMC6631096 DOI: 10.3390/molecules24122339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
Two new phenanthrenes, (1R,2R)-1,7-hydroxy-2,8-methoxy-2,3-dihydrophenanthrene-4(1H)-one (1) and 2,7-dihydroxy-phenanthrene-1,4-dione (2), were isolated from the ethyl acetate-soluble fraction of Dendrobii Herba, together with seven known phenanthrenes (3–9), two bibenzyls (10–12), and a lignan (13). Structures of 1 and 2 were elucidated by analyzing one-dimensional (1D) and two-dimensional (2D)-NMR and High-resolution electrospray ionization mass spectra (HR-ESI-MS) data. The absolute configuration of compound 1 was confirmed by the circular dichroism (CD) spectroscopic method. In cytotoxicity assay using FaDu human hypopharynx squamous carcinoma cell line, compounds 3–6, 8, 10, and 12 showed activities, with IC50 values that ranged from 2.55 to 17.70 μM.
Collapse
Affiliation(s)
- Bomi Nam
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea.
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea.
| | - Seung Mok Ryu
- Department of Biosystems and Biotechnology, Korea University, Seoul 02841, Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do 58245, Korea.
| | - Dongho Lee
- Department of Biosystems and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Chan-Hun Jung
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea.
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea.
| |
Collapse
|
19
|
Belanova A, Beseda D, Chmykhalo V, Stepanova A, Belousova M, Khrenkova V, Gavalas N, Zolotukhin P. Berberine Effects on NFκB, HIF1A and NFE2L2/AP-1 Pathways in HeLa Cells. Anticancer Agents Med Chem 2019; 19:487-501. [DOI: 10.2174/1871520619666181211121405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
Background:
Berberine has multitudinous anti-cancer stem cells effects making it a highly promising
candidate substance for the next-generation cancer therapy. However, berberine modes of action predispose it to
significant side-effects that probably limit its clinical testing and application.
Materials and Methods:
HeLa cells were treated with two concentrations of berberine (30 and 100 µM) for 24
hours to assess the functioning of the NFE2L2/AP-1, NFκB and HIF1A pathways using 22 RNAs expression
qPCR-based analysis.
Results:
Berberine effects appeared to be highly dose-dependent, with the lower concentration being capable of
suppressing the NFκB functioning and the higher concentration causing severe signaling side-effects seen in the
HIF1A pathway and the NFE2L2 sub-pathways, and especially and more importantly in the AP-1 sub-pathway.
Conclusion:
The results of the study suggest that berberine has clinically valuable anti-NFκB effects however
jeopardized by its side effects on the HIF1A and especially NFE2L2/AP-1 pathways, its therapeutic window
phenomenon and its cancer type-specificity. These, however, may be ameliorated using the cocktail approach,
provided there is enough data on signaling effects of berberine.
Collapse
Affiliation(s)
- Anna Belanova
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Darya Beseda
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Victor Chmykhalo
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Alisa Stepanova
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Mariya Belousova
- English Language Department for Natural Sciences Faculties, Southern Federal University, 5 Sorge st., 344090, Rostov-on-Don, Russian Federation
| | - Vera Khrenkova
- Rostov State Medical University, 119 Suvorova st., 344022, Rostov-on-Don, Russian Federation
| | - Nikolaos Gavalas
- Division of Clinical Therapeutics, National and Kapodistrian University of Athens, 80 Vas. Sofias Av., 11521, Athens, Greece
| | - Peter Zolotukhin
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| |
Collapse
|
20
|
Synergistic anticancer effects of nanocarrier loaded with berberine and miR-122. Biosci Rep 2018; 38:BSR20180311. [PMID: 29769413 PMCID: PMC6019385 DOI: 10.1042/bsr20180311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
We introduced polyethyleneimine (PEI)-cholesterol (PC) as a nanocarrier incorporating berberine (BER) and miR-122 for the treatment of oral squamous cell carcinoma (OSCC). BER was stabilized by incorporating PC to form ber-PC. Ber-PC was further electrostatically complexed with miR-122 to yield mr-ber-PC for the co-delivery of BER and miR-122. mr-ber-PC treatment dramatically decreased the level of invasion and migration of OSCC cells compared with single drug treatments. The present study suggested that PC could be a multifunctional nanocarrier for the co-delivery of anticancer drug BER and miR-122 to significantly increase the anticancer therapeutic effects.
Collapse
|
21
|
Grebinyk A, Yashchuk V, Bashmakova N, Gryn D, Hagemann T, Naumenko A, Kutsevol N, Dandekar T, Frohme M. A new triple system DNA-Nanosilver-Berberine for cancer therapy. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0688-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Choi DW, Kim DK, Kanai Y, Wempe MF, Endou H, Kim JK. JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:599-607. [PMID: 29200902 PMCID: PMC5709476 DOI: 10.4196/kjpp.2017.21.6.599] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 11/30/2022]
Abstract
Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.
Collapse
Affiliation(s)
- Dae Woo Choi
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Do Kyung Kim
- Department of Oral Physiology, Chosun University School of Dentistry, Gwangju 61452, Korea
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Hitoshi Endou
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo 181-8611, Japan.,J-Pharma Co., Ltd., Yokohama, Kanagawa 230-0046, Japan
| | - Jong-Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
23
|
Cho IA, You SJ, Kang KR, Kim SG, Oh JS, You JS, Lee GJ, Seo YS, Kim DK, Kim CS, Lee SY, Kim JS. Biochanin-A induces apoptosis and suppresses migration in FaDu human pharynx squamous carcinoma cells. Oncol Rep 2017; 38:2985-2992. [DOI: 10.3892/or.2017.5953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/31/2017] [Indexed: 11/05/2022] Open
|
24
|
Silver Nanoparticles Exhibit the Dose-Dependent Anti-Proliferative Effect against Human Squamous Carcinoma Cells Attenuated in the Presence of Berberine. Molecules 2016; 21:365. [PMID: 26999092 PMCID: PMC6274313 DOI: 10.3390/molecules21030365] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/17/2022] Open
Abstract
The biological activity of nanosize silver particles towards oral epithelium-derived carcinoma seems to be still underinvestigated. We evaluated the influence of low doses of nanosize scale silver particles on the proliferation and viability of malignant oral epithelial keratinocytes in vitro, alone and in conjunction with the plant alkaloid berberine. Cells of human tongue squamous carcinoma SCC-25 (ATCC CRL-1628), cultivated with the mixture of Dulbecco's modified Eagle’s medium, were exposed to silver nanoparticles alone (AgNPs, concentrations from 0.31 to 10 μg/mL) and to a combination of AgNPs with berberine chloride (BER, 1/2 IC50 concentration) during 24 h and 48 h. The cytotoxic activity of AgNPs with diameters of 10 nm ± 4 nm was measured by 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Cell cycle analysis was performed by treating cells with propidium iodide followed by flow-activated cell sorting. RT-QPCR reaction was used to assess expression of anti-apoptotic proteins Bcl-2 and pro-apoptotic protein Bcl-2-associated X protein Bax genes expression. Monodisperse silver nanoparticles at a concentration of 10 μg/mL arrested SCC-25 cells cycle after 48 h at the G0/G1 phase in a dose- and time-dependent manner through disruption G0/G1 checkpoint, with increase of Bax/Bcl-2 ratio gene expression. AgNPs exhibit cytotoxic effects on SCC-25 malignant oral epithelial keratinocytes, which is diminished when combined with BER. The AgNPs concentration required to inhibit the growth of carcinoma cells by 50% (IC50) after 48 h was estimated at 5.19 μg/mL. AgNPs combined with BER increased the expression of Bcl-2 while decreasing the ratio of Bax/Bcl-2 in SCC-25 cells. Silver particles at low doses therefore reduce the proliferation and viability of oral squamous cell carcinoma cells. SCC-25 cells are susceptible to damage from AgNPs-induced stress, which can be regulated by the natural alkaloid berberine, suggesting that nanoparticles may be potentially used in a chemoprevention/chemotherapy by augmentation of action of standard anti-cancer drugs.
Collapse
|