1
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Ebrahimi N, Hakimzadeh A, Bozorgmand F, Speed S, Manavi MS, Khorram R, Farahani K, Rezaei-Tazangi F, Mansouri A, Hamblin MR, Aref AR. Role of non-coding RNAs as new therapeutic targets in regulating the EMT and apoptosis in metastatic gastric and colorectal cancers. Cell Cycle 2023; 22:2302-2323. [PMID: 38009668 PMCID: PMC10730205 DOI: 10.1080/15384101.2023.2286804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer (CRC) and gastric cancer (GC), are the two most common cancers of the gastrointestinal tract, and are serious health concerns worldwide. The discovery of more effective biomarkers for early diagnosis, and improved patient prognosis is important. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can regulate cellular processes such as apoptosis and the epithelial-mesenchymal transition (EMT) leading to progression and resistance of GC and CRC tumors. Moreover these pathways (apoptosis and EMT) may serve as therapeutic targets, to prevent metastasis, and to overcome drug resistance. A subgroup of ncRNAs is common to both GC and CRC tumors, suggesting that they might be used as biomarkers or therapeutic targets. In this review, we highlight some ncRNAs that can regulate EMT and apoptosis as two opposite mechanisms in cancer progression and metastasis in GC and CRC. A better understanding of the biological role of ncRNAs could open up new avenues for the development of personalized treatment plans for GC and CRC patients.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hakimzadeh
- Department of Medical Biotechnologies, University of Siena, Tuscany, Italy
| | - Farima Bozorgmand
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Speed
- Medical Campus, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kobra Farahani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine group, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J. Mechanisms of Action And Clinical Implications of MicroRNAs in the Drug Resistance of Gastric Cancer. Front Oncol 2021; 11:768918. [PMID: 34912714 PMCID: PMC8667691 DOI: 10.3389/fonc.2021.768918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of digestive systems worldwide, with high recurrence and mortality. Chemotherapy is still the standard treatment option for GC and can effectively improve the survival and life quality of GC patients. However, with the emergence of drug resistance, the clinical application of chemotherapeutic agents has been seriously restricted in GC patients. Although the mechanisms of drug resistance have been broadly investigated, they are still largely unknown. MicroRNAs (miRNAs) are a large group of small non-coding RNAs (ncRNAs) widely involved in the occurrence and progression of many cancer types, including GC. An increasing amount of evidence suggests that miRNAs may play crucial roles in the development of drug resistance by regulating some drug resistance-related proteins as well as gene expression. Some also exhibit great potential as novel biomarkers for predicting drug response to chemotherapy and therapeutic targets for GC patients. In this review, we systematically summarize recent advances in miRNAs and focus on their molecular mechanisms in the development of drug resistance in GC progression. We also highlight the potential of drug resistance-related miRNAs as biomarkers and therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Liu X, Ma R, Yi B, Riker AI, Xi Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol Sin 2021; 42:1018-1026. [PMID: 33037405 PMCID: PMC8208993 DOI: 10.1038/s41401-020-00540-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are recognized as an essential component of the RNA family, exerting multiple and intricate biological functions, particularly in the process of tumorigenesis, proliferation, and metastatic progression. MiRNAs are altered in gastric cancer (GC), showing activity as both tumor suppressors and oncogenes, although their true roles have not been fully understood. This review will focus upon the recent advances of miRNA studies related to the regulatory mechanisms of gastric tumor cell proliferation, apoptosis, and cell cycle. We hope to provide an in-depth insight into the mechanistic role of miRNAs in GC development and progression. In particular, we summarize the latest studies relevant to miRNAs' impact upon the epithelial-mesenchymal transition, tumor microenvironment, and chemoresistance in GC cells. We expect to elucidate the molecular mechanisms involving miRNAs for better understanding the etiology of GC, and facilitating the development of new treatment regimens for the treatment of GC.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Ruixia Ma
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Bin Yi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Department of Surgery, Anne Arundel Medical Center, Cancer Service Line, Luminis Health, Annapolis, MD, USA.
| | - Yaguang Xi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
5
|
Kim H, Jung W, Kim A, Kim HK, Kim BH. High Paip1 Expression as a Potential Prognostic Marker in Hepatocellular Carcinoma. In Vivo 2021; 34:2491-2497. [PMID: 32871777 DOI: 10.21873/invivo.12065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM Translation plays an important role in the carcinogenesis of various human tumors. Paip1 and eIF4A1 are translation-associated proteins that mediate the function of eukaryotic initiation factor 4F complex. This study aimed to analyse the relationship between the expression status of Paip1 and eIF4A1 and clinicopathologic features in hepatocellular carcinoma (HCC). MATERIALS AND METHODS Immunohistochemical analysis was used to evaluate the expression status of Paip1 and eIF4A1. Two pathologists independently interpreted the immunostained slides. The prognostic value of Paip1 and eIF4A1 was evaluated by the Kaplan-Meier plotter. RESULTS Among 173 HCC patients, 28 (16.1%) and 46 (26.6%) belonged in the Paip1 and eIF4A1 high-expression groups. High expression of Paip1 and eIF4A1 was associated with advanced TNM stage and more frequent vascular tumor invasion. Univariate analysis indicated that high Paip1 expression was associated with worse five-year overall survival (OS). Public dataset analysis by Kaplan-Meier plotter revealed that high mRNA expression of Paip1, and not of eIF4A1, was significantly associated with worse five-year OS and disease-free survival. CONCLUSION Paip1 expression has a potential prognostic value in human HCC.
Collapse
Affiliation(s)
- Hayeon Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Wonkyung Jung
- Department of Pathology, Sure Quest Lab, Yongin, Republic of Korea
| | - Aeree Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Han Kyeom Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Baek-Hui Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
6
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
7
|
Ghafouri-Fard S, Vafaee R, Shoorei H, Taheri M. MicroRNAs in gastric cancer: Biomarkers and therapeutic targets. Gene 2020; 757:144937. [PMID: 32640300 DOI: 10.1016/j.gene.2020.144937] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that have critical roles in regulation of expression of genes. They can inhibit or decrease expression of target genes mostly via interaction with 3' untranslated region of their targets. Their crucial roles in the regulation of expression of tumor suppressor genes and oncogenes have potentiated them as contributors in tumorigenesis. Moreover, their stability in body fluids has enhanced their potential as cancer biomarkers. In the present review article, we describe the role of miRNAs in the pathogenesis of gastric cancer and advances in application of miRNAs as biomarkers and therapeutic targets in this kind of malignancy.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lin W, Miao Y, Meng X, Huang Y, Zhao W, Ruan J. miRNA-765 mediates multidrug resistance via targeting BATF2 in gastric cancer cells. FEBS Open Bio 2020; 10:1021-1030. [PMID: 32166887 PMCID: PMC7262883 DOI: 10.1002/2211-5463.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Elucidation of the mechanisms underlying multidrug resistance (MDR) is required to ensure the efficacy of chemotherapy against gastric cancer (GC). To investigate this issue, here we identified that microRNA-765 (miRNA-765) is up-regulated both in MDR GC cell lines and in specimens from patients who are not responding to chemotherapy. In addition, down-regulation of miRNA-765 increased the sensitivity of GC cells to anticancer drugs, whereas its overexpression had the opposite effect. Moreover, miRNA-765 suppressed drug-induced apoptosis and positively regulated the expression of MDR-related genes. Finally, we showed that the basic leucine zipper ATF-like transcription factor 2, a tumor suppressor gene, is the functional target of miRNA-765. In summary, these results suggest that miRNA-765 may promote MDR via basic leucine zipper ATF-like transcription factor 2 in GC cells.
Collapse
Affiliation(s)
- Wan Lin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yu Miao
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiangkun Meng
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ying Huang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wanli Zhao
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jigang Ruan
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y, Yang M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer 2020; 19:62. [PMID: 32192494 PMCID: PMC7081551 DOI: 10.1186/s12943-020-01185-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Advanced gastric cancer patients can notably benefit from chemotherapy including adriamycin, platinum drugs, 5-fluorouracil, vincristine, and paclitaxel as well as targeted therapy drugs. Nevertheless, primary drug resistance or acquisition drug resistance eventually lead to treatment failure and poor outcomes of the gastric cancer patients. The detailed mechanisms involved in gastric cancer drug resistance have been revealed. Interestingly, different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are critically involved in gastric cancer development. Multiple lines of evidences demonstrated that ncRNAs play a vital role in gastric cancer resistance to chemotherapy reagents and targeted therapy drugs. In this review, we systematically summarized the emerging role and detailed molecular mechanisms of ncRNAs impact drug resistance of gastric cancer. Additionally, we propose the potential clinical implications of ncRNAs as novel therapeutic targets and prognostic biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yan Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
10
|
Wang L, Liang TT. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express 2020; 10:54. [PMID: 32185543 PMCID: PMC7078418 DOI: 10.1186/s13568-020-00990-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/07/2020] [Indexed: 01/12/2023] Open
Abstract
Co-delivery of two different therapeutics (miRNA-1284 and cisplatin (CDDP)) into the cancer cells in a single nanocarrier provides new dimension to the cancer treatment. In this study, we have designed the CD59sp-conjugated miRNA-1284/cisplatin(CDDP)-loaded liposomes for the enhanced therapeutic effect against cervical cancers. Compared with miRNA-1284/CDDP-loaded liposomes (LP-miCDDP), CD59 antibody-conjugated LP-miCDDP (CD/LP-miCDDP) showed a significantly higher cytotoxicity in HeLa cells. Notably, MiR-1284 showed a typical concentration-dependent cell killing effect in the cervical cancer cells owing to the downregulation of HMGB1. Flow cytometer analysis showed that CD/LP-miCDDP resulted in maximum apoptosis effect (~ 60%) compared to CDDP (~ 20%) or miR-1284 (~ 12%) treated cells indicating the superior anticancer effect in the cancer cells. Importantly, CD/LP-miCDDP significantly prolonged the blood circulation of encapsulated drug in rats with AUC(o-t) of CD/LP-miCDDP showed a 6.9 fold higher value than that of free CDDP. Similarly, CD/LP-miCDDP showed an eightfold decrease in the clearance (CL) and 3.6-fold higher t1/2 compared to that of free CDDP. Overall, results demonstrated that targeted and synergistic co-delivery of therapeutic components could be promising in cervical cancer therapy.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacy, Jining No. 1, People's Hospital, Jining, 272011, Shandong, China
| | - Ting-Ting Liang
- Department of Obstetrics and Gynecology, Weifang No. 2 People's Hospital, No. 7 Yuanxiao Street, Kuiwen District, Weifang, 261041, Shandong, China.
| |
Collapse
|
11
|
Anauate AC, Leal MF, Calcagno DQ, Gigek CO, Karia BTR, Wisnieski F, dos Santos LC, Chen ES, Burbano RR, Smith MAC. The Complex Network between MYC Oncogene and microRNAs in Gastric Cancer: An Overview. Int J Mol Sci 2020; 21:ijms21051782. [PMID: 32150871 PMCID: PMC7084225 DOI: 10.3390/ijms21051782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the advancements in cancer treatments, gastric cancer is still one of the leading causes of death worldwide. In this context, it is of great interest to discover new and more effective ways of treating this disease. Accumulated evidences have demonstrated the amplification of 8q24.21 region in gastric tumors. Furthermore, this is the region where the widely known MYC oncogene and different microRNAs are located. MYC deregulation is key in tumorigenesis in various types of tissues, once it is associated with cell proliferation, survival, and drug resistance. microRNAs are a class of noncoding RNAs that negatively regulate the protein translation, and which deregulation is related with gastric cancer development. However, little is understood about the interactions between microRNAs and MYC. Here, we overview the MYC role and its relationship with the microRNAs network in gastric cancer aiming to identify potential targets useful to be used in clinic, not only as biomarkers, but also as molecules for development of promising therapies.
Collapse
Affiliation(s)
- Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Bruno Takao Real Karia
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Leonardo Caires dos Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém PA 66075-110, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém PA 66063-240, Brazil
| | - Marília Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
12
|
Zhu Y, Luo C, Korakkandan AA, Fatma YHA, Tao Y, Yi T, Hu S, Liao Q. Function and regulation annotation of up-regulated long non-coding RNA LINC01234 in gastric cancer. J Clin Lab Anal 2020; 34:e23210. [PMID: 32011780 PMCID: PMC7246363 DOI: 10.1002/jcla.23210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Background Accumulated evidences indicate that long non‐coding RNAs (lncRNAs) participate in many biological mechanisms. Moreover, it acts as an essential regulator in various human diseases such as gastric cancer (GC). Nevertheless, the comprehensive regulatory roles and clinical significance of most lncRNAs in GC are not fully understood. Methods In this research, our aim was to investigate the underlying mechanism of lncRNA LINC01234 in GC. Firstly, the usage of qRT‐PCR helped to establish expression pattern of LINC01234 in GC tissues. Following this, appropriate statistical tests were applied to analyze the relation between expression level and clinicopathological factors. Ultimately, potential functions and regulatory network of LINC01234 were concluded via GSEA and a series of bioinformatics tools or databases, respectively. Results Consequently, at the end of research we found LINC01234 is up‐regulated in GC tissues in comparison with adjacent normal tissues. Furthermore, its expression level is correlated with differentiation of patients with GC. It is also important to highlight bioinformatics analysis revealed that LINC01234 is involved in cancer‐associated pathways such as cell cycle and mismatch repair. Also, regulatory network of LINC01234 presented a probability in the involvement of tumorigenesis through regulating cancer‐associated genes. Conclusion Overall, our results suggested that LINC01234 may play a crucial role in GC.
Collapse
Affiliation(s)
- Yinyin Zhu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Cong Luo
- Department of Abdominal Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Arshad Ali Korakkandan
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yislam Hadi Ahmed Fatma
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yang Tao
- Ningbo Yinzhou People's Hospital, Ningbo, China
| | - Tianfei Yi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Shiyun Hu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Qi Liao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Wang Y, Yu X, Wang L, Zhang F, Zhang Y. Research Progress on Chemical Constituents and Anticancer Pharmacological Activities of Euphorbia lunulata Bunge. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3618941. [PMID: 32420336 PMCID: PMC7201523 DOI: 10.1155/2020/3618941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
Euphorbia lunulata Bunge (ELB) is a traditional Chinese medicine possessing the functions of expectoration, cough relief, asthma relief, detoxification, and itching relief. Modern pharmacological studies have showed that ELB exhibits a variety of activities, such as antitumor, antibacterial, and antioxidant activities. In particular, the anticancer activities of ELB have attracted much attention. In this review, we summarize the recent research progress on the chemical constituents and anticancer activities of ELB by searching the PubMed, Web of Science, and China National Knowledge Infrastructure databases. The results show that more than 151 components have been identified from extracts of ELB, including 73 terpenoids, 28 flavonoids, 8 phenylpropanoids, 7 steroids, 19 phenols, and 5 alkaloids. ELB has been shown to exhibit significant inhibitory effects on lung, cervical, gastric, breast, and liver cancers, and its anticancer effects are mainly manifested in the 3 aspects, including cell cycle arrest, cell apoptosis, and inhibition of the migration of cancer cells.
Collapse
Affiliation(s)
- Yuwei Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Yu
- Shandong Medicine Technician College, Tai'an 271016, China
| | - Lingna Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
14
|
Zhao X, Hu GF, Shi YF, Xu W. Research Progress in microRNA-Based Therapy for Gastric Cancer. Onco Targets Ther 2019; 12:11393-11411. [PMID: 31920330 PMCID: PMC6935305 DOI: 10.2147/ott.s221354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of tumor-related mortality. In addition to surgery and endoscopic resection, systemic therapy remains the main treatment option for GC, especially for advanced-stage disease and for cases not suitable for surgical therapy. Hence, improving the efficacy of systemic therapy is still an urgent problem to overcome. In the past decade, the essential roles of microRNAs (miRNAs) in tumor treatment have been increasingly recognized. In particular, miRNAs were recently shown to reverse the resistance to chemotherapy drugs such as 5-fluorouracil, cisplatin, and doxorubicin. Synthesized nanoparticles loaded with mimics or inhibitors of miRNAs can directly target tumor cells to suppress their growth. Moreover, exosomes may serve as promising safe carriers for mimics or inhibitors of miRNAs to treat GC. Some miRNAs have also been shown to play roles in the mechanism of action of other anti-tumor drugs. Therefore, in this review, we highlight the research progress on microRNA-based therapy in GC and discuss the challenges and prospects associated with this strategy. We believe that microRNA-based therapy has the potential to offer a clinical benefit to GC patients, and this review would contribute to and motivate further research to promote this field toward this ultimate goal.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Gao-Feng Hu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wei Xu
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
15
|
Luo YJ, Huang QM, Ren Y, Liu ZL, Xu CF, Wang H, Xiao JW. Non-coding RNA in drug resistance of gastric cancer. World J Gastrointest Oncol 2019; 11:957-970. [PMID: 31798777 PMCID: PMC6883183 DOI: 10.4251/wjgo.v11.i11.957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide. The poorly prognosis and survival of GC are due to diagnose in an advanced, non-curable stage and with a limited response to chemotherapy. The acquisition of drug resistance accounts for the majority of therapy failure of chemotherapy in GC patients. Although the mechanisms of anticancer drug resistance have been broadly studied, the regulation of these mechanisms has not been completely understood. Accumulating evidence has recently highlighted the role of non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, in the development and maintenance of drug resistance due to their regulatory features in specific genes involved in the chemoresistant phenotype of GC. We review the literature on ncRNAs in drug resistance of GC. This review summarizes the current knowledge about the ncRNAs’ characteristics, their regulation of the genes involved in chemoresistance and their potential as targeted therapies for personalized treatment in resistant GC.
Collapse
Affiliation(s)
- Ya-Jun Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qing-Mei Huang
- Department of Oncology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yan Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Zi-Lin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Cheng-Fei Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Hao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Jiang-Wei Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
16
|
Wei W, Cao W, Zhan Z, Yan L, Xie Y, Xiao Q. MiR-1284 suppresses gastric cancer progression by targeting EIF4A1. Onco Targets Ther 2019; 12:3965-3976. [PMID: 31190893 PMCID: PMC6535428 DOI: 10.2147/ott.s191015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background: MicroRNAs (miRNAs) play a key role in the development of gastric cancer (GC). MiRNA arrays showed that lymph node metastasis in GC is correlated with the expression of miR-1284. Although its function and mechanisms in GC have not been fully described, the regulation of EIF4A1 by miR-1284 and its role in drug-resistant GC has been reported in our previous studies. Methods: qRT-PCR was used to study the level of miR-1284 expression in GC cell lines and tissues. Subsequently, the CCK-8 assay was used to detect cell proliferation, while transwell assay was used to detect invasion and migration of the GC cells. Flow cytometry was used to detect the effect of miR-1284 on GC cells in vivo by building subcutaneous GC nude mice transplantation tumor model. In addition, the influence of miR-1284 gene expression profile in SGC-7901 cells was detected by total gene expression chip, and the target gene of miR-1284 was detected by luciferase reporter assay, qRT-PCR, and western blotting. Results: The miR-1284 level was down-regulated in GC tssues and cell lines. MiR-1284 was significantly associated with tumor size, degree of differentiation and patients’ distant metastasis. MiR-1284 inhibited invasion, migration, and proliferation of GC cells. During the G1/S phase, miR-1284 arrested the cycle of GC cells in vitro. MiR-1284 also suppressed tumor from growing and metastasizing in xenograft models as well as influenced the gene expression profile in SGC-7901 cells. Also, EIF4A1 was the direct target gene for miR-1284. Further, an inverse correlation between the miR-1284 expression and EIF4A1 was found in GC tissues. Over-expressed miR-1284 decreased c-Myc, MMP12, JUN expression, while increased CDH1 expression. Conclusion: These data suggested that miR-1284 acts as a tumor suppressor, and directly blocked EIF4A1 in GC.
Collapse
Affiliation(s)
- Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Linhai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
17
|
Kang EM, Yin AA, He YL, Chen WJ, Etcheverry A, Aubry M, Barnholtz-Sloan J, Mosser J, Zhang W, Zhang X. A five-CpG signature of microRNA methylation in non-G-CIMP glioblastoma. CNS Neurosci Ther 2019; 25:937-950. [PMID: 31016891 PMCID: PMC6698977 DOI: 10.1111/cns.13133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
AIMS DNA methylation has been found to regulate microRNAs (miRNAs) expression, but the prognostic value of miRNA-related DNA methylation aberration remained largely elusive in cancers including glioblastomas (GBMs). This study aimed to investigate the clinical and biological feature of miRNA methylation in GBMs of non-glioma-CpG island methylator phenotype (non-G-CIMP). METHODS Prognostic miRNA methylation loci were analyzed, with TCGA and Rennes cohort as training sets, and independent datasets of GBMs and low-grade gliomas (LGGs) were obtained as validation sets. Different statistical and bioinformatic analysis and experimental validations were performed to clinically and biologically characterize the signature. RESULTS We identified and validated a risk score based on methylation status of five miRNA-associated CpGs which could predict survival of GBM patients in a series of training and validation sets. This signature was independent of age and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. The risk subgroup was associated with angiogenesis and accordingly differential responses to bevacizumab-contained therapy. MiRNA target analysis and in vitro experiments further confirmed the accuracy of this signature. CONCLUSION The five-CpG signature of miRNA methylation was biologically relevant and was of potential prognostic and predictive value for GBMs. It might be of help for improving individualized treatment.
Collapse
Affiliation(s)
- En-Ming Kang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - An-An Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Neurosurgery, The 88th Hospital of the People's Liberation Army, Taian, China
| | - Ya-Long He
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wei-Jun Chen
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes1, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Marc Aubry
- UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes1, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes1, Rennes, France
| | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Jean Mosser
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes1, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes1, Rennes, France
| | - Wei Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
18
|
Feng W, Su Z, Yin Q, Zong W, Shen X, Ju S. ncRNAs associated with drug resistance and the therapy of digestive system neoplasms. J Cell Physiol 2019; 234:19143-19157. [PMID: 30941775 DOI: 10.1002/jcp.28551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
Digestive system cancer remains a common cancer and the main cause of cancer-related death worldwide. Drug resistance is a major challenge in the therapy of digestive system cancer, and represents a primary obstacle in the treatment of cancer by restricting the efficiency of both traditional chemotherapy and biological therapies. Existing studies indicate that noncoding RNAs play an important role in the evolution and progression of drug resistance in digestive system cancer, mainly by modulating drug transporter-related proteins, DNA damage repair, cell-cycle-related proteins, cell apoptosis-related proteins, drug target-related proteins, and the tumor microenvironment. In this review, we address the potential mechanisms of ncRNAs underlying drug resistance in digestive system tumors and discuss the possible application of ncRNAs against drug resistance in digestive system tumors.
Collapse
Affiliation(s)
- Wei Feng
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhangyao Su
- School of Medicine, Nantong University, Nantong, China
| | - Qingqing Yin
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
Chen C, Tang X, Liu Y, Zhu J, Liu J. Induction/reversal of drug resistance in gastric cancer by non-coding RNAs (Review). Int J Oncol 2019; 54:1511-1524. [PMID: 30896792 PMCID: PMC6438417 DOI: 10.3892/ijo.2019.4751] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent and malignant types of cancer worldwide. In China, it is the second most common type of cancer and the malignancy with the highest incidence and mortality rate. Chemotherapy for GC is not always effective due to the development of drug resistance. Drug resistance, which is frequently observed in GC, undermines the success rate of chemotherapy and the survival of patients with GC. The dysregulation of non‑coding RNAs (ncRNAs), primarily microRNAs (miRNAs or miRs) and long non‑coding RNAs (lncRNAs), is involved in the development of GC drug resistance via numerous mechanisms. These mechanisms contribute to the involvement of a large and complex network of ncRNAs in drug resistance. In this review, we focus on and summarize the latest research on the specific mechanisms of action of miRNAs and lncRNAs that modulate drug resistance in GC. In addition, we discuss future prospects and clinical applications of ncRNAs as potential targeted therapies against the chemoresistance of GC.
Collapse
Affiliation(s)
- Chao Chen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiaohuan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuanda Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jiaming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jingjing Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
20
|
Wu X, Shen J, Xiao Z, Li J, Zhao Y, Zhao Q, Cho CH, Li M. An overview of the multifaceted roles of miRNAs in gastric cancer: Spotlight on novel biomarkers and therapeutic targets. Biochem Pharmacol 2019; 163:425-439. [PMID: 30857828 DOI: 10.1016/j.bcp.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that have displayed strong association with gastric cancer (GC). Through the repression of target mRNAs, miRNAs regulate many biological pathways that are involved in cell proliferation, apoptosis, migration, invasion, metastasis as well as drug resistance. The detection of miRNAs in tissues and in body fluids emerges as a promising method in the diagnosis and prognosis of GC, due to their unique expression pattern in correlation with GC. Notably, miRNAs are also identified as potential therapeutic targets for GC therapy. The present review is thus to highlight the multifaceted roles of miRNAs in GC and in GC therapies, which would give indications for future research.
Collapse
Affiliation(s)
- Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M.) Affiliated to Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
21
|
Chen J, Li G. MiR-1284 enhances sensitivity of cervical cancer cells to cisplatin via downregulating HMGB1. Biomed Pharmacother 2018; 107:997-1003. [PMID: 30257412 DOI: 10.1016/j.biopha.2018.08.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chemotherapy is one of the commonest therapeutic method for cervical cancer. There are some common chemotherapy drugs, such as cisplatin, docetaxel, paclitaxel and selenium nanoparticle. microRNAs (miRNAs) have been verified to be regulators in various human cancers. This study aims to investigate the effects of miR-1284 on the cisplatin sensitivity of cervical cancer cells. METHODS The levels of miR-1284 in different tissues and cell lines were detected through using qRT-PCR analysis. Kaplan Meier analysis was utilized to analyze the influence of miR-1284 expression on the overall survival rate of cervical cancer patients. The biological effects of miR-1284 on the progression and chemosensitivity of cervical cancer were tested through conducting functional assays. Mechanism investigations were used to prove the binding relation between miR-1284 and HMGB1. Rescue assays were applied to demonstrate the effects of miR-1284-HMGB1 axis on chemosensitivity of cervical cancer cells. RESULTS miR-1284 was down-expressed in cervical cancer tissues and cell lines. Patients with low level of miR-1284 had low overall survival rate. Upregulation of miR-1284 suppressed proliferation and invasion, while promoted apoptosis. Moreover, upregulated miR-1284 enhanced sensitivity of cervical cancer cells to cisplatin. HMGB1 was a target gene of miR-1284. HMGB1 reversed the effects of miR-1284 on the progression and chemosensitivity of cervical cancer cells. CONCLUSION miR-1284 enhances sensitivity of cervical cancer cells to cisplatin via targeting HMGB1.
Collapse
Affiliation(s)
- Jia Chen
- AnKang University, Ankang, Shanxi Province, 725000, China.
| | - Gaojun Li
- DaPing Hospital, Research Institute of Surgery Third Military M University, Chongqing, 400010, China
| |
Collapse
|
22
|
miRNA-1284, a regulator of HMGB1, inhibits cell proliferation and migration in osteosarcoma. Biosci Rep 2018; 38:BSR20171675. [PMID: 29899164 PMCID: PMC6043716 DOI: 10.1042/bsr20171675] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Previous literatures have reported the role of human micro RNA-1284 (hsa-miR-1284, in short miR-1284) in diverse cancers. However, its biological function in osteosarcoma pathogenesis remains unknown. In the present study, we investigated the potential role of miR-1284 in osteosarcoma. Expression of miR-1284 and high mobility group box 1 (HMGB1) were examined in 80 tissues obtained from 40 patients. MiR-1284 level was measured in five osteosarcoma cell lines. Relative luciferase activity and HMGB1 expression were examined in MG-63 and U2OS cells transfected with wild-type or mutant 3′-UTR of HMGB1 in the presence of miR-1284 mimics or miR-NC. Cell viability, colony formation, and cell migration were measured in MG-63, U2OS and hFOB 1.19 cells, which were transfected with miR-1284 mimics or miR-NC. In the rescue experiments, recombinant HMGB1 plasmid was transfected into MG-63 and U2OS cells, and cell viability and migration were determined again. Our results indicated that relative level of miR-1284 was lower in tumor tissues compared with its adjacent tissues and it was found suppressed at lower levels in MG-63 and U2OS cell lines. Expression of HMGB1 is significantly elevated in tumor tissues and negatively correlated with miR-1284 expression. MiR-1284 exerted its function by directly binding to 3′-UTR of HMGB1 and regulates expression of HMGB1. The overexpression of miR-1284 inhibited the cell proliferation and migration, and altered the protein expression of epithelial–mesenchymal transition (EMT)-associated genes (E-cadherin, N-cadherin, Vimentin, and Snail), which was reversed by HMGB1 overexpression. In conclusion, miR-1284 can function as a new regulator to inhibit osteosarcoma cell proliferation and migration by targeting HMGB1.
Collapse
|
23
|
Wang H, Qin R, Guan A, Yao Y, Huang Y, Jia H, Huang W, Gao J. HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression. J Cell Biochem 2018; 119:7226-7234. [PMID: 29856087 DOI: 10.1002/jcb.26901] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022]
Abstract
Drug resistance is a big obstacle for clinical anti-tumor treatment outcome. However, the role of HOTAIR in drug resistance in gastric cancer (GC) remains unknown. In this study, we showed that overexpression of HOTAIR enhanced paclitaxel and doxorubicin resistance in GC cells. Furthermore, the expression of HOTAIR was upregulated in GC tissues and higher expression of HOTAIR was associated with late stage. In addition, we showed that miR-217 expression was lower in GC tissues compared with the paired non-tumour tissues and downregulated expression of miR-217 was correlated with late stage. Interestingly, the expression of miR-217 was negatively correlated with HOTAIR expression in GC tissues. Ectopic expression of HOTAIR increased GC cell proliferation, cell cycle, and migration. Elevated expression of HOTAIR suppressed miR-217 expression and enhanced GPC5 and PTPN14 expression. Furthermore, we demonstrated that overexpression of miR-217 suppressed paclitaxel and doxorubicin resistance in GC cells. Ectopic expression of HOTAIR promoted drug resistance and increased GC cell proliferation, cell cycle, and migration by targeting miR-217. These data suggested that overexpression of HOTAIR enhanced paclitaxel and doxorubicin resistance in GC cells through inhibiting miR-217 expression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rong Qin
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Aoran Guan
- Department of General Surgery, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ying Yao
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun Huang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongping Jia
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Weikang Huang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jianpeng Gao
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
24
|
Fu Z, Han X, Du J, Han X, Liu W, Shao S, Liu X. Euphorbia lunulata extract acts on multidrug resistant gastric cancer cells to inhibit cell proliferation, migration and invasion, arrest cell cycle progression, and induce apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:8-17. [PMID: 28811220 DOI: 10.1016/j.jep.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The milky sap or the aboveground part of the plant Euphorbia lunulata has long been used by Chinese people to treat noncancerous growths and cancerous ailments but the specific mode of action and the action mechanism remain to be elucidated. AIM OF THE STUDY To investigate the effects of Euphorbia lunulata extract on cell proliferation, migration, invasion, cell cycle progression, and apoptosis of multidrug resistant human gastric cancer cells; To study the mechanism of apoptosis induction by Euphorbia lunulata extract in multidrug resistant human gastric cancer cells. MATERIALS AND METHODS The aboveground part of fresh Euphorbia lunulata plant was extracted first with ethanol and then with n-hexane. The aseptic extract at varying concentrations was used to treat the multidrug resistant human gastric cancer SGC7901/ADR cells. After treatment, the inhibition of cell proliferation was examined by MTT assay. The inhibitions of cell migration and invasion were detected by Transwell method. The alteration of cell cycle progression was studied by flow cytometry. The morphological changes of cell nuclei were observed with fluorescence microscopy following Hoechst 33258 staining and the apoptotic indexes were calculated. The activation of caspase enzymes was analyzed by spectrophotometry. The sub-cellular distribution of cytochrome complex and the expression of Bax and Bcl-2 proteins were determined by Western blot. RESULTS The proliferation, migration, and invasion of SGC7901/ADR cells were significantly inhibited by Euphorbia lunulata extract, which showed time- and dose-dependent manners. Cell cycle was arrested in G2/M phase. Significant apoptotic morphological changes were observed in the nuclei of the treated cells, and apoptotic indexes were increased significantly; these changes were diminished when Z-VAD-FMK, a caspase inhibitor, was also presented. The activities of caspase-3, caspase-8, and caspase-9 were increased. The sub-cellular distribution of cytochrome complex was altered----reduced in the mitochondria and increased in the cytoplasm. The expression of Bax was upregulated, while that of Bcl-2 was downregulated. CONCLUSION Euphorbia lunulata extract inhibited the proliferation, migration, and invasion of SGC7901/ADR cells, arrested cell cycle progression, and induced cell apoptosis; the mechanism of apoptosis induction involved both the extrinsic and the intrinsic pathways.
Collapse
Affiliation(s)
- Zhaoying Fu
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China; Institute of Molecular Biology and Immunology, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Xiaodong Han
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China; Institute of Molecular Biology and Immunology, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Juan Du
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China; Institute of Molecular Biology and Immunology, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Xiaoxiao Han
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Weipeng Liu
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Shumei Shao
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Xiaobin Liu
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| |
Collapse
|
25
|
Cao W, Wei W, Zhan Z, Xie D, Xie Y, Xiao Q. Regulation of drug resistance and metastasis of gastric cancer cells via the microRNA647-ANK2 axis. Int J Mol Med 2018; 41:1958-1966. [PMID: 29328428 PMCID: PMC5810220 DOI: 10.3892/ijmm.2018.3381] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
Due to a lack of effective methods for early diagnosis, the majority of patients with gastric cancer (GC) are diagnosed during the late stages of the disease, which are often accompanied by metastasis. For these patients, despite being considered an important therapeutic modality in the treatment of cancer, chemotherapy is usually not effective due to multidrug resistance (MDR). The expression levels of MDR/metastasis-associated genes are regulated by numerous microRNAs (miRNAs/miRs). The expression of miR-647 in GC tissues and SGC7901/VCR cell line (drug resistance to vincristine) was detected by qRT-PCR. The effect of overexpression of miR-647 on drug resistance was evaluated by measuring the half maximal inhibitory concentration (IC50) value of SGC-7901/VCR to vincristine and tumor growth in vivo. Moreover, drug-induced cell apoptosis and cell cycle were evaluated by flow cytometry, as well as the ability of cell migration and invasiveness detected by wound healing and transwell assay. Furthermore, underlying targets of miR-647 were predicted by TargetScan and MicroRNA; meanwhile, the expression of ANK2, FAK, MMP2, MMP12,CD44,SNAIL1 were observed by qRT-PCR and western blot analysis. The present study established that the expression levels of miR-647 were downregulated in GC tissues from patients with metastasis and in the vincristine-resistant SGC7901 (SGC-7901/VCR) GC cell line. The IC50 value for vincristine was significantly decreased, whereas the proportion of cells in G0/G1 phase and the drug-induced apoptotic rate were significantly increased following upregulation of miR-647. Furthermore, the results demonstrated that miR-647 overexpression led to decreased migration and invasion of SGC-7901/VCR cells. Overexpression of miR-647 was also demonstrated to sensitize tumors to chemotherapy in vivo. In addition, miR-647 overexpression was able to reduce the expression levels of ankyrin-B, focal adhesion kinase, matrix metalloproteinase (MMP)2, MMP12, cluster of differentiation 44 and snail family transcriptional repressor 1. In conclusion, these findings demonstrated that miR-647 may function as a novel target to ameliorate drug resistance and metastasis of GC cells.
Collapse
Affiliation(s)
- Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dongyi Xie
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yubo Xie
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
26
|
Abstract
Our understanding of the epigenetic changes occurring in gastrointestinal cancers has gained tremendous advancements in recent years, and some epigenetic biomarkers are already translated into the clinics for cancer diagnostics. In parallel, pharmacoepigenetics and pharmacoepigenomics of solid tumors are relevant novel, but emerging and promising fields. Areas covered: A comprehensive review of the literature to summarize and update the emerging field of pharmacoepigenetics and pharmacoepigenomics of gastrointestinal cancers. Expert commentary: Several epigenetic modifications have been proposed to account for interindividual variations in drug response in gastrointestinal cancers. Similarly, single-agent or combined strategies with high doses of drugs that target epigenetic modifications (epi-drugs) were scarcely tolerated by the patients, and current research has moved to their combination with standard therapies to achieve chemosensitization, radiosensitization, and immune modulation of cancerous cells. In parallel, recent genome-wide technologies are revealing the pathways that are epigenetically deregulated during cancer-acquired resistance, including those targeted by non-coding RNAs. Indeed, novel, less toxic, and more specific molecules are under investigation to specifically target those pathways. The field is rapidly expanding and gathering together information coming from these investigations has the potential to lead to clinical applications in the coming new years.
Collapse
Affiliation(s)
- Angela Lopomo
- a Department of Translational Research and New Technologies in Medicine and Surgery, Laboratory of Medical Genetics , University of Pisa, Medical School , Pisa , Italy
| | - Fabio Coppedè
- a Department of Translational Research and New Technologies in Medicine and Surgery, Laboratory of Medical Genetics , University of Pisa, Medical School , Pisa , Italy
| |
Collapse
|
27
|
Yang W, Ma J, Zhou W, Cao B, Zhou X, Yang Z, Zhang H, Zhao Q, Fan D, Hong L. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer. Expert Opin Ther Targets 2017; 21:1063-1075. [PMID: 28994330 DOI: 10.1080/14728222.2017.1389900] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.
Collapse
Affiliation(s)
- Wanli Yang
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Zhiping Yang
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Hongwei Zhang
- c Department of Digestive Surgery, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | - Qingchuan Zhao
- c Department of Digestive Surgery, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | | | - Liu Hong
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
28
|
Li J, Jin H, Yu H, Wang B, Tang J. miRNA‑1284 inhibits cell growth and induces apoptosis of lung cancer cells. Mol Med Rep 2017; 16:3049-3054. [PMID: 28713980 PMCID: PMC5547959 DOI: 10.3892/mmr.2017.6949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 03/07/2017] [Indexed: 01/20/2023] Open
Abstract
Lung cancer is the most common cancer worldwide, and morbidity and mortality associated with lung cancer has been increasing annually in recent decades. MicroRNAs (miRNAs), which are short non-coding RNA sequences that are involved in the regulation of gene expression, have been previously demonstrated to be key regulators in cancer. The present study aimed to clarify the role of miRNA (miR)-1284 in lung cancer. A549 lung carcinoma cells were transfected with miR-1284 mimic or miR-1284 inhibitor using Lipofectamine 2000. Subsequently, cell viability, growth and apoptosis of A459 cells in the miR-1284 mimic, miR-1284 inhibitor and control groups were assayed by MTT assay, bromodeoxyuridine assay and flow cytometry, respectively. Furthermore, the protein expression levels of p27, p21, Bax, pro-caspase-3, activated caspase-3 and Myc were detected by western blot analysis to investigate the molecular mechanisms underlying the effect of miR-1284 on A549 cells. The cell viability and growth of A549 cells were significantly decreased in the miR-1284 mimic group compared with the control group, whereas the percentage of apoptotic cells was significantly increased. By contrast, miR-1284 inhibitor transfection significantly increased the cell viability and growth compared with control, and decreased apoptosis. Furthermore, expression of p27 was increased in miR-1284 mimic-transfected A549 cells compared with the control group, whereas p21 was unaffected by miR-1284 overexpression or inhibition. The expression of Myc was decreased by miR-1284 mimic transfection compared with the control group. For the other apoptosis-associated proteins that were investigated (Bax, pro-caspase-3 and active caspase-3), the expression levels in the miR-1284 mimic transfected cells were higher than in the other two groups (control and miR-1284 inhibitor). In conclusion, the results suggest that miR-1284 affects cell proliferation and apoptosis of lung cancer cells, indicating that miR-1284 may have a key role in lung tumorigenesis.
Collapse
Affiliation(s)
- Jie Li
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hairong Jin
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua Yu
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jian Tang
- Department of Cardio‑Thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
29
|
Zhao D, Zhang Y, Song L. MiR-16-1 Targeted Silences Far Upstream Element Binding Protein 1 to Advance the Chemosensitivity to Adriamycin in Gastric Cancer. Pathol Oncol Res 2017; 24:483-488. [PMID: 28667493 DOI: 10.1007/s12253-017-0263-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
Chemotherapy can prevent metastasis and recurrence of gastric cancer (GC), and is a well supplement for operation. But, chemotherapy resistance has severely restricted the application of chemotherapy. This study aimed to investigate the regulatory roles and molecular mechanism of miR-16-1 to the chemosensitivity to adriamycin in GC. In this study, the expression of miR-16-1 and FUBP1 was down-regulated and up-regulated respectively in adriamycin-resistant GC tissues and cell lines, and represented a negative relationship between them. MiR-16-1 could silence FUBP1 directly and specifically, FUBP1 was a target gene of miR-16-1. Silence of FUBP1 inhibited the half maximal inhibitory concentration (IC50) of SGC7901/AR cell line to adriamycin, chemosensitivity enhanced significantly. Moreover, FUBP1 silence in SGC7901/AR cell line also inhibited proliferation and invasion, and advanced cell apoptosis. To sum up, the expression of miR-16-1 was positively related with the chemosensitivity of GC to adriamycin, and miR-16-1 could targeted silence FUBP1 to advance the chemosensitivity to adriamycin in GC, which might be a novel potential therapeutic target for GC.
Collapse
Affiliation(s)
- Danyi Zhao
- Department of Oncology, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027, China
| | - Yang Zhang
- Department of Oncology, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027, China
| | - Lei Song
- Department of Oncology, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027, China. .,Department of Interventional Therapy, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027, China.
| |
Collapse
|
30
|
Bao J, Xu Y, Wang Q, Zhang J, Li Z, Li D, Li J. miR-101 alleviates chemoresistance of gastric cancer cells by targeting ANXA2. Biomed Pharmacother 2017; 92:1030-1037. [PMID: 28609840 DOI: 10.1016/j.biopha.2017.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chemoresistance remains a main clinical obstacle in the treatment of gastric cancer (GC). microRNAs have been revealed to participate in the regulation of drug resistance in a variety of cancers. However, little is known about the function and detailed molecular mechanism of miR-101 in GC chemoresistance. METHODS The expressions of miR-101 and Annexin A2 (ANXA2) in GC tissues and cells were detected by qRT-PCR and western blot. The effects of miR-101 overexpression on P-glycoprotein (P-gp) at mRNA and protein levels, cell viability, and apoptosis in drug-resistant GC cells were examined by qRT-PCR, western blot, MTT and flow cytometry analysis, respectively. Luciferase reporter assay, RNA immunoprecipitation (RIP) and qRT-PCR were applied to confirm whether miR-101 could target ANXA2 and regulate its expression. Rescue experiment was performed to verify the mechanism by which miR-101 involved in chemoresistance. RESULTS miR-101 was downregulated in GC tissues and drug-resistant GC cells. A negative correlation between miR-101 and ANXA2 expression was observed in GC tissues. Forced expression of miR-101 significantly reduced P-gp expression at mRNA and protein levels in drug-resistant GC cells. Overexpression of miR-101 enhanced sensitivity to cisplatin (DDP) or vincristine (VCR) via viability inhibition and apoptosis promotion. ANXA2 was identified as a direct target of miR-101 and miR-101 negatively regulated ANXA2 expression. Moreover, ectopic expression of ANXA2 reversed the effect of miR-101 on P-gp expression, cell viability and apoptosis. CONCLUSION miR-101 alleviated chemoresistance of gastric cancer cells by targeting ANXA2. Therefore, targeting miR-101 may be a potential therapeutic approach for drug-resistant GC.
Collapse
Affiliation(s)
- Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Qunying Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jinping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhenjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Dongying Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jiansheng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
31
|
Li W, Chen A, Xiong L, Chen T, Tao F, Lu Y, He Q, Zhao L, Ou R, Xu Y. miR-133a acts as a tumor suppressor in colorectal cancer by targeting eIF4A1. Tumour Biol 2017; 39:1010428317698389. [PMID: 28466778 DOI: 10.1177/1010428317698389] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence indicates that microRNAs play critical roles in carcinogenesis and cancer progression. In this study, miR-133a was found to be significantly downregulated in colon tumor tissues. We aimed to determine its biological function, molecular mechanisms, and direct target genes in colorectal cancer. From these results, we found that miR-133a was significantly downregulated in primary tumor tissues and colon cancer cell lines. Ectopic expression of miR-133a in colon cancer cell lines significantly suppressed cell growth, as evidenced by cell viability and colony formation assays, as well as reduced xenograft tumor growth in nude mice. However, the effect of miR-133a was abolished by the overexpression of eIF4A1. Moreover, miR-133a inhibited cellular migration and invasiveness. A luciferase activity assay revealed oncogene eukaryotic translation initiation factor 4A1 as a direct target gene of miR-133a, whose expression was inversely correlated with that of miR-133a. Our results demonstrate that miR-133a plays a pivotal role in colorectal cancer by inhibiting cell proliferation, invasion, and migration by targeting oncogenic eukaryotic translation initiation factor 4A1, which acts as a tumor suppressor and may provide a new potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Wenfeng Li
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,2 Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anqi Chen
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,3 Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingling Xiong
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,3 Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting Chen
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,3 Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengxing Tao
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,3 Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyi Lu
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,3 Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qin He
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,3 Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Zhao
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,4 Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongying Ou
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,5 Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- 1 Laboratory for Advanced Interdisciplinary Research, Center for Personalized Medicine/Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,3 Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
33
|
Pan C, Wang D, Zhang Y, Yu W. MicroRNA-1284 Inhibits Cell Viability and Induces Apoptosis of Ovarian Cancer Cell Line OVCAR3. Oncol Res 2016; 24:429-435. [PMID: 28281963 PMCID: PMC7838609 DOI: 10.3727/096504016x14685034103518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is a malignancy with high mortality among women. Multiple reports show that microRNAs (miRs) act as regulators in ovarian cancer inhibition, while the role of miR-1284 in ovarian cancer is still unknown. This study aimed to investigate the effects of miR-1284 on ovarian cancer cells. Human ovarian cancer cell line OVCAR3 was cultured and transfected with miR-1284 mimics, inhibitors, or control. Viability and apoptosis of transfected cells were then determined by MTT assay, BrdU assay, and flow cytometry. Expression changes of p27, p21, and PI3K/Akt pathway-related proteins were measured by Western blot. Results showed that miR-1284 overexpression suppressed cell viability while increasing the apoptosis in OVCAR3 cells. Moreover, the expression level of p27 was upregulated by miR-1284 overexpression. Furthermore, miR-1284 overexpression and Akt inhibitor GSK690693 downregulated the levels of p-Akt and Bcl-2 while upregulating the levels of Bax and caspase 3. However, miR-1284 suppression attenuated the regulatory effects of GSK690693 on these proteins. In conclusion, miR-1284 could inhibit cell viability via regulating the expression of p27 and induce apoptosis via regulating the PI3K/Akt pathway in OVCAR3 cells.
Collapse
Affiliation(s)
- Changqing Pan
- Department of Obstetrics and Gynecology, Mianyang Central Hospital, Mianyang, Sichuan, P.R. China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Mianyang Central Hospital, Mianyang, Sichuan, P.R. China
| | - Yao Zhang
- Department of Obstetrics and Gynecology, Mianyang Central Hospital, Mianyang, Sichuan, P.R. China
| | - Wenliang Yu
- Department of Obstetrics and Gynecology, Mianyang Central Hospital, Mianyang, Sichuan, P.R. China
| |
Collapse
|
34
|
Huang M, Wu L, Luo S, Qin H, Yang Y, Chen J, Li Z, Qin Y. MicroRNA-1284 inhibits proliferation and induces apoptosis in SGC-7901 human gastric cancer cells. Biotechnol Lett 2016; 39:33-38. [DOI: 10.1007/s10529-016-2213-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
|
35
|
Arias Sosa LA, Bernal Gómez BM, Cuspoca Orduz AF. Supresión tumoral por microARN en el cáncer gástrico. GACETA MEXICANA DE ONCOLOGÍA 2016. [DOI: 10.1016/j.gamo.2016.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Wang S, Yuan L. Predictive biomarkers for targeted and cytotoxic agents in gastric cancer for personalized medicine. Biosci Trends 2016; 10:171-80. [PMID: 27251446 DOI: 10.5582/bst.2016.01078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer. The treatment of GC remains challenging as the outcomes achieved with surgery alone or adjuvant or neoadjuvant chemotherapy and radiotherapy are relatively poor. New treatment strategies are emerging and are being tested in solid tumors including GC. Over the past few years, the treatment of metastatic colorectal cancer (CRC) has made great advances, but strategies to manage GC have improved little. Multiple drug resistance is common in GC chemotherapy and targeted therapy; some patients appear to receive treatment that is suboptimal or even inefficacious. Unfortunately, there are few validated predictive biomarkers to guide the tailored treatment of GC. ToGA and AVAGAST are two phase III trials that tested the efficacy and safety of targeted agents in advanced gastric cancer (AGC), and results clearly indicated that patients need to be selected and that targeted agents are the best hope for better results. This review aims to provide an overview of potential predictive biomarkers for cytotoxic and targeted agents in GC.
Collapse
Affiliation(s)
- Shalong Wang
- Geriatric Surgery Department, Second Xiangya Hospital Affiliated with Central South University
| | | |
Collapse
|