1
|
Kim BS, Choi TH. Development and evaluation of a radiolabelling agent for white blood cell scans. Appl Radiat Isot 2024; 212:111460. [PMID: 39094205 DOI: 10.1016/j.apradiso.2024.111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Radiolabelled autologous leukocytes have been used for the clinical diagnosis of inflammation and infection. To develop a stable and efficient radiopharmaceutical for labelling leukocytes, we prepared a novel radioiodinated cell-penetrating peptide, 125I-TAT, using a bi-functional linker. 125I-TAT was stable for two days under three different temperature conditions of -20 °C, 4 °C, and 40 °C, with its radiochemical purity remaining over 99%. Iodinated TAT was non-toxic to leukocytes with an IC50 value of over 100 μM. The labelling efficiency of 125I-TAT using 1x107 cells ranged from 27% to 53% when the three leukocyte cell lines were pre-treated with DMSO. This is comparable to the labelling efficiency recommended by the guideline for conventional labelling agents using 2x108 cells. Radioiodinated cell-penetrating peptide may be an improved radiopharmaceutical for white blood cell scans by further optimization.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Tae Hyun Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Cai Y, Chu Y, Gong Y, Hong Y, Song F, Wang H, Zhang H, Sun X. Enhanced Transdermal Peptide-Modified Flexible Liposomes for Efficient Percutaneous Delivery of Chrysomycin A to Treat Subcutaneous Melanoma and Intradermal MRSA Infection. Adv Healthc Mater 2023; 12:e2300881. [PMID: 37267625 DOI: 10.1002/adhm.202300881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Superficial skin diseases, including skin infections and tumors, are common healthcare burdens. In this study, the in vivo activity of chrysomycin A (CA) is explored, and a transdermal liposomal CA formulation is further constructed for the simultaneous treatment of cutaneous melanoma and cutaneous methicillin-resistant Staphylococcus aureus (MRSA) infection. The prepared liposomes (TD-LP-CA) display a strong antitumor effect with an IC50 value of less than 0.1 µm in B16-F10 cells, suppress the proliferation of MRSA with a minimum inhibitory concentration (MIC) of 1 µm, and eradicate established MRSA biofilms at 10× MIC in vitro. More importantly, TD-LP-CA shows enhanced stratum corneum (SC) penetration, reaching more than 500 µm beneath the skin's surface due to modification with the TD peptide, and demonstrates excellent subcutaneous tumor penetration after skin application in vivo. TD-LP-CA displays an excellent therapeutic effect against intradermal MRSA infection in mice after topical dermal administration, as well as a moderate inhibitory effect on subcutaneous melanoma with a 75% tumor inhibition rate. The liposomes prepared herein can be a promising carrier for transcutaneous CA transfer for the treatment of superficial diseases such as skin tumors and infections due to their ability to overcome the skin barrier.
Collapse
Affiliation(s)
- Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuteng Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yubei Gong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yulu Hong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Fishery Resources Employment & Utilization of Zhejiang Province, Hangzhou, 310014, China
| | - Huawei Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Future Prospective of Radiopharmaceuticals from Natural Compounds Using Iodine Radioisotopes as Theranostic Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228009. [PMID: 36432107 PMCID: PMC9694974 DOI: 10.3390/molecules27228009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Natural compounds provide precursors with various pharmacological activities and play an important role in discovering new chemical entities, including radiopharmaceuticals. In the development of new radiopharmaceuticals, iodine radioisotopes are widely used and interact with complex compounds including natural products. However, the development of radiopharmaceuticals from natural compounds with iodine radioisotopes has not been widely explored. This review summarizes the development of radiopharmaceuticals from natural compounds using iodine radioisotopes in the last 10 years, as well as discusses the challenges and strategies to improve future discovery of radiopharmaceuticals from natural resources. Literature research was conducted via PubMed, from which 32 research articles related to the development of natural compounds labeled with iodine radioisotopes were reported. From the literature, the challenges in developing radiopharmaceuticals from natural compounds were the purity and biodistribution. Despite the challenges, the development of radiopharmaceuticals from natural compounds is a golden opportunity for nuclear medicine advancement.
Collapse
|
4
|
Oroujeni M, Xu T, Gagnon K, Rinne SS, Weis J, Garousi J, Andersson KG, Löfblom J, Orlova A, Tolmachev V. The Use of a Non-Conventional Long-Lived Gallium Radioisotope 66Ga Improves Imaging Contrast of EGFR Expression in Malignant Tumours Using DFO-ZEGFR:2377 Affibody Molecule. Pharmaceutics 2021; 13:pharmaceutics13020292. [PMID: 33672373 PMCID: PMC7926986 DOI: 10.3390/pharmaceutics13020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in many malignancies. EGFR-targeted therapy extends survival of patients with disseminated cancers. Radionuclide molecular imaging of EGFR expression would make EGFR-directed treatment more personalized and therefore more efficient. A previous study demonstrated that affibody molecule [68Ga]Ga-DFO-ZEGFR:2377 permits specific positron-emission tomography (PET) imaging of EGFR expression in xenografts at 3 h after injection. We anticipated that imaging at 24 h after injection would provide higher contrast, but this is prevented by the short half-life of 68Ga (67.6 min). Here, we therefore tested the hypothesis that the use of the non-conventional long-lived positron emitter 66Ga (T1/2 = 9.49 h, β+ = 56.5%) would permit imaging with higher contrast. 66Ga was produced by the 66Zn(p,n)66Ga nuclear reaction and DFO-ZEGFR:2377 was efficiently labelled with 66Ga with preserved binding specificity in vitro and in vivo. At 24 h after injection, [66Ga]Ga-DFO-ZEGFR:2377 provided 3.9-fold higher tumor-to-blood ratio and 2.3-fold higher tumor-to-liver ratio than [68Ga]Ga-DFO-ZEGFR:2377 at 3 h after injection. At the same time point, [66Ga]Ga-DFO-ZEGFR:2377 provided 1.8-fold higher tumor-to-blood ratio, 3-fold higher tumor-to-liver ratio, 1.9-fold higher tumor-to-muscle ratio and 2.3-fold higher tumor-to-bone ratio than [89Zr]Zr-DFO-ZEGFR:2377. Biodistribution data were confirmed by whole body PET combined with magnetic resonance imaging (PET/MRI). The use of the positron emitter 66Ga for labelling of DFO-ZEGFR:2377 permits PET imaging of EGFR expression at 24 h after injection and improves imaging contrast.
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (M.O.); (T.X.); (J.G.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (M.O.); (T.X.); (J.G.)
| | - Katherine Gagnon
- GE Healthcare, GEMS PET Systems, 75015 Uppsala, Sweden;
- Department of Medicinal Chemistry, Uppsala University, 75183 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 75183 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Jan Weis
- Department of Medical Physics, Uppsala University Hospital, 75185 Uppsala, Sweden;
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (M.O.); (T.X.); (J.G.)
| | - Ken G. Andersson
- Department of Protein Science, KTH Royal Institute of Technology, 10691 Stockholm, Sweden; (K.G.A.); (J.L.)
| | - John Löfblom
- Department of Protein Science, KTH Royal Institute of Technology, 10691 Stockholm, Sweden; (K.G.A.); (J.L.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 75183 Uppsala, Sweden; (S.S.R.); (A.O.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (M.O.); (T.X.); (J.G.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence:
| |
Collapse
|
5
|
Chen W, Shen B, Sun X. Analysis of Progress and Challenges of EGFR-Targeted Molecular Imaging in Cancer With a Focus on Affibody Molecules. Mol Imaging 2019; 18:1536012118823473. [PMID: 30799684 PMCID: PMC6348515 DOI: 10.1177/1536012118823473] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted cancer therapy requires an accurate estimation of EGFR expression in tumors to identify responsive patients, monitor therapeutic effect, and estimate prognosis. The EGFR molecular imaging is an optimal method for evaluating EGFR expression in vivo accurately and noninvasively. In this review, we discuss the recent advances in EGFR-targeted molecular imaging in cancer, with a special focus on the development of imaging agents, including epidermal growth factor (EGF) ligand, monoclonal antibodies, antibody fragments, Affibody, and small molecules. Each substrate or probe, whether it is an endogenous ligand, antibody, peptide, or small molecule labeled with fluorochrome or radionuclide, has unique advantages and limitations. Antibody-based probes have high affinity but a long metabolic cycle and therefore offer poor imaging quality. Affibody molecules promise to surpass antibody-based probes due to their small size, stable chemical properties, and high affinity to the target. Small-molecule probes are safe, have favorable pharmacokinetics, and show high affinity and specificity, in addition to having an ideal size, but are inadequate for delayed imaging after injection due to their fast clearance.
Collapse
Affiliation(s)
- Weizhi Chen
- 1 Molecular Imaging Research Center, Harbin Medical University, Heilongjiang, China.,2 TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Heilongjiang, China
| | - Baozhong Shen
- 1 Molecular Imaging Research Center, Harbin Medical University, Heilongjiang, China.,2 TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Heilongjiang, China
| | - Xilin Sun
- 1 Molecular Imaging Research Center, Harbin Medical University, Heilongjiang, China.,2 TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Heilongjiang, China
| |
Collapse
|
6
|
Navarro L, Berdal M, Chérel M, Pecorari F, Gestin JF, Guérard F. Prosthetic groups for radioiodination and astatination of peptides and proteins: A comparative study of five potential bioorthogonal labeling strategies. Bioorg Med Chem 2018; 27:167-174. [PMID: 30529152 DOI: 10.1016/j.bmc.2018.11.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023]
Abstract
125I- and 211At-labeled azide and tetrazine based prosthetic groups for bioorthogonal conjugation were designed and tested in a comparative study of five bioorthogonal systems. All five bioconjugation reactions conducted on a model clickable peptide led to quantitative yields within less than a minute to several hours depending on the system used. Transferability to the labeling of an IgG was demonstrated with one of the bioorthogonal system. This study provides several new alternatives to the conventional and suboptimal approach currently in use for radioiodination and astatination of biomolecules and should accelerate the development of new probes with these radionuclides for applications in nuclear imaging and targeted alpha-therapy.
Collapse
Affiliation(s)
- Laurent Navarro
- CRCINA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marion Berdal
- CRCINA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Michel Chérel
- CRCINA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Frédéric Pecorari
- CRCINA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Jean-François Gestin
- CRCINA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France.
| | - François Guérard
- CRCINA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France.
| |
Collapse
|
7
|
Bailly C, Cléry PF, Faivre-Chauvet A, Bourgeois M, Guérard F, Haddad F, Barbet J, Chérel M, Kraeber-Bodéré F, Carlier T, Bodet-Milin C. Immuno-PET for Clinical Theranostic Approaches. Int J Mol Sci 2016; 18:ijms18010057. [PMID: 28036044 PMCID: PMC5297692 DOI: 10.3390/ijms18010057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 02/03/2023] Open
Abstract
Recent advances in molecular characterization of tumors have allowed identification of new molecular targets on tumor cells or biomarkers. In medical practice, the identification of these biomarkers slowly but surely becomes a prerequisite before any treatment decision, leading to the concept of personalized medicine. Immuno-positron emission tomography (PET) fits perfectly with this approach. Indeed, monoclonal antibodies (mAbs) labelled with radionuclides represent promising probes for theranostic approaches, offering a non-invasive solution to assess in vivo target expression and distribution. Immuno-PET can potentially provide useful information for patient risk stratification, diagnosis, selection of targeted therapies, evaluation of response to therapy, prediction of adverse effects or for titrating doses for radioimmunotherapy. This paper reviews some aspects and recent developments in labelling methods, biological targets, and clinical data of some novel PET radiopharmaceuticals.
Collapse
Affiliation(s)
- Clément Bailly
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - Pierre-François Cléry
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - Alain Faivre-Chauvet
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - Mickael Bourgeois
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - François Guérard
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
| | - Ferid Haddad
- Groupement d'Intérêt Public Arronax, 1, rue Aronnax, CS 10112, 44817 Saint-Herblain, France.
| | - Jacques Barbet
- Groupement d'Intérêt Public Arronax, 1, rue Aronnax, CS 10112, 44817 Saint-Herblain, France.
| | - Michel Chérel
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO)-René Gauducheau, Boulevard Jacques Monod, 44805 Saint-Herblain, France.
| | - Françoise Kraeber-Bodéré
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
- Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO)-René Gauducheau, Boulevard Jacques Monod, 44805 Saint-Herblain, France.
| | - Thomas Carlier
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - Caroline Bodet-Milin
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| |
Collapse
|
8
|
Kim EJ, Kim BS, Choi DB, Chi SG, Choi TH. Improved In Vivo Stability of Radioiodinated Rituximab Using an Iodination Linker for Radioimmunotherapy. Cancer Biother Radiopharm 2016; 31:287-294. [PMID: 27689933 DOI: 10.1089/cbr.2016.2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Directly radioiodinated [131I]-rituximab has been developed as a radioimmunotherapeutic agent in patients with CD20-positive B cell non-Hodgkin's lymphoma. However, there are concerns over its in vivo catabolism and deiodination. A novel radioiodination linker, N-(4-isothiocyanatobenzyl)-2-(3-(tributylstannyl)phenyl) acetamide (IBPA), was synthesized for the preparation of stable radioiodinated proteins. METHODS The authors evaluated the potential of IBPA as a stable radioiodinated linker for rituximab. [125I]-IBPA was purified and conjugated with rituximab, and in vitro stability testing was performed in serum and liver microsomes. In vivo studies were performed after i.v. injection of [125I]-rituximab or [125I]-IBPA-rituximab to nude mice. RESULTS In in vitro studies, [125I]-IBPA-rituximab was stable in serum and liver microsomes. In static scans, high radioactivity was evident in the thyroid following injection of [125I]-rituximab, but low radioactivity was seen in the thyroid following injection of [125I]-IBPA-rituximab. In biodistribution studies, radioactivity uptake in thyroid glands of [125I]-IBPA-rituximab was decreased by approximately sevenfold compared to [125I]-rituximab. In pharmacokinetics, the half-life of [125I]-rituximab was shorter than that of [125I]-IBPA-rituximab in plasma of nude mice. CONCLUSIONS The authors demonstrate that [125I]-IBPA-rituximab is more stable to metabolic deiodination in vivo than is [125I]-rituximab. Radioiodination of rituximab using IBPA is thus preferable to direct labeling in terms of in vivo stability.
Collapse
Affiliation(s)
- Eun Jung Kim
- 1 Korea Drug Development Platform using Radio-Isotope (KDePRI), Korea Institute of Radiological and Medical Sciences , Seoul, Korea.,2 School of Life Sciences and Biotechnology, Korea University , Seoul, Korea
| | - Byoung Soo Kim
- 1 Korea Drug Development Platform using Radio-Isotope (KDePRI), Korea Institute of Radiological and Medical Sciences , Seoul, Korea.,3 Department of Molecular Imaging, Korea Institute of Radiological and Medical Sciences , Seoul, Korea
| | - Dan Bee Choi
- 1 Korea Drug Development Platform using Radio-Isotope (KDePRI), Korea Institute of Radiological and Medical Sciences , Seoul, Korea
| | - Sung-Gil Chi
- 2 School of Life Sciences and Biotechnology, Korea University , Seoul, Korea
| | - Tae Hyun Choi
- 3 Department of Molecular Imaging, Korea Institute of Radiological and Medical Sciences , Seoul, Korea
| |
Collapse
|