1
|
Liu D, Li P, Wang X, Wang W. hsa-miR-195-5p inhibits cell proliferation of human thyroid carcinoma cells via modulation of p21/cyclin D1 axis. Transl Cancer Res 2020; 9:5190-5199. [PMID: 35117886 PMCID: PMC8799136 DOI: 10.21037/tcr-20-1083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Background Based on existing evidence, microRNAs (miRs) are gene regulators that undertake key functions in the oncogenesis and tumor progression of every single human malignant disease, such as thyroid carcinoma (TC). Previous clinical findings showed that expression of miR-195 is down-regulated in TC, which implies that miR-195 may be practically involved in TC pathogenesis. Nevertheless, the function of hsa-miR-195-5p in TC is still largely unclear. Herein, we detected the conceivable involvement of hsa-miR-195-5p in TC cell proliferation. Methods Real time PCR examination was performed to assess the expression level of hsa-miR-195-5p in TC cell lines TPC-1 and B-CPAP. TPC-1 cells were transfected with either hsa-miR-195-5p mimics or hsa-miR-195-5p inhibitor. After confirmation of transfection efficiency, the effect of hsa-miR-195-5p on proliferation and cell cycle of TPC-1 cells was assessed. The expression of cyclin D1 and p21 was simultaneously detected by western blotting. Moreover, targetScan 6.2 was used to predict hsa-miR-195-5p target genes. Subsequently, luciferase reporter was performed to examine whether there is a possible binding of hsa-miR-195-5p to 3’-UTR of cyclin D1 mRNA. Furthermore, cyclin D1 mRNA and protein levels were measured to check whether hsa-miR-195-5p exerts its function at the post-transcriptional level. In addition, to explore the function of cyclin D1 in TPC-1 cells overexpressing hsa-miR-195-5p, cyclin D1 siRNA was used to silence the expression of cyclin D1 in TPC-1 cells overexpressing hsa-miR-195-5p. Results We quantified the expression of hsa-miR-195-5p in TC cells and normal thyroid cells and found a remarkable decrease in hsa-miR-195-5p expression in TC cells. Over-expression of hsa-miR-195-5p obviously resulted in downgraded proliferation of TC cells. Moreover, hsa-miR-195-5p caused cell arrest at the GO/G1 phase. Further in silico analyses and the dual-luciferase reporter assay confirmed that 3’-UTR of cyclin D1 is a direct target of hsa-miR-195-5p. Western blot analysis uncovered that hsa-miR-195-5p over-expression led to decreased levels of cyclin D1 and p21. In mechanistic analyses, we found that silencing of cyclin D1 reversed the inhibitory effect of hsa-miR-195-5p on the proliferation of TC cells, which indicates that hsa-miR-195-5p suppresses TC cell proliferation by adversely regulating cyclin D1. Conclusions We concluded that hsa-miR-195-5p is a candidate tumor-suppressor miRNA in TC and that the hsa-miR-195-5p/p21/cyclin D1 pathway could be a potential therapeutic target for TC.
Collapse
Affiliation(s)
- Dexin Liu
- Department of Radiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ping Li
- Department of Radiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaodong Wang
- Department of Radiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei Wang
- Department of Radiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
2
|
Shen Z, Li Y, Fang Y, Lin M, Feng X, Li Z, Zhan Y, Liu Y, Mou T, Lan X, Wang Y, Li G, Wang J, Deng H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol Oncol 2020; 14:387-406. [PMID: 31876369 PMCID: PMC6998659 DOI: 10.1002/1878-0261.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sorting nexin 16 (SNX16), a member of the sorting nexin family, has been implicated in tumor development. However, the function of SNX16 has not yet been investigated in colorectal cancer (CRC). Here, we showed that SNX16 expression was significantly upregulated in CRC tissues compared with normal counterparts. Upregulated mRNA levels of SNX16 predicted poor survival of CRC patients. Functional experiments showed that SNX16 could promote CRC cells growth both in vitro and in vivo. Knockdown of SNX16 induced cell cycle arrest and apoptosis, whereas ectopic overexpression of SNX16 had the opposite effects. Mechanistically, SNX16‐eukaryotic translation elongation factor 1A2 (eEF1A2) interaction could inhibit the degradation and ubiquitination of eEF1A2, followed by activation of downstream c‐Myc signaling. Our study unveiled that the SNX16/eEF1A2/c‐Myc signaling axis could promote colorectal tumorigenesis and SNX16 might potentially serve as a novel biomarker for the diagnosis and an intervention of CRC.
Collapse
Affiliation(s)
- Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingdao Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaochuang Feng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhi Zhan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Lan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiping Wang
- Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Chen X, Cai S, Li B, Zhang X, Li W, Linag H, Cao X. Identification of key genes and pathways for esophageal squamous cell carcinoma by bioinformatics analysis. Exp Ther Med 2018; 16:1121-1130. [PMID: 30112053 PMCID: PMC6090437 DOI: 10.3892/etm.2018.6316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to identify the differentially expressed genes (DEGs) in esophageal squamous-cellcarcinoma (ESCC) and provide potential therapeutic targets. The microarray dataset GSE20347 was downloaded from the Gene Expression Omnibus (GEO) database, and included 17 tissue samples and 13 normal adjacent tissue samples from patients with ESCC. A total of 22,277 DEGs were identified. A heat map for the DEGs was constructed with the Morpheus online tool and the top 200 genes (100 upregulated and 100 downregulated) were selected for further bioinformatics analysis, including analysis of gene ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, protein-protein interaction networks and Spearman's correlation tests. The results of the GO analysis indicated that the upregulated DEGs were most significantly enriched in membrane-bounded vesicles in the cellular component (CC) category, but were not significantly enriched in any GO terms of the categories biological process (BP) or molecular function (MF); furthermore, the downregulated DEGs were most significantly enriched in regulation of DNA metabolic processes, nucleotide binding and chromosomes in the categories BP, MF and CC, respectively. The KEGG analysis indicated that the downregulated DEGs were enriched in the regulation of cell cycle pathways. The top 10 hub proteins in the protein-protein interaction network were cyclin-dependent kinase 4, budding uninhibited by benzimidazoles 1, cyclin B2, heat shock protein 90AA1, aurora kinase A, H2A histone family member Z, replication factor C subunit 4, and minichromosome maintenance complex component 2, −4 and −7. These proteins are mainly involved in regulating tumor progression. The genes in the four top modules were mainly implicated in regulating cell cycle pathways. Secreted Ly-6/uPAR-related protein (SLURP) was the hub gene, and SLURP and its interacting genes were most enriched in the chromosomal part in the CC category, organelle organization in the BP category and protein binding in the MF category, and were involved in pathways including DNA replication, cell cycle and P53 signaling. The expression of SLURP-1 in fifteen patients with esophageal carcinoma was detected using quantitative polymerase chain reaction analysis, and the results indicated that SLURP-1 expression was significantly decreased in the tumor samples relative to that in normal adjacent tissues. These results suggest that several hub proteins and the hub gene SLURP-1 may serve as potential therapeutic targets, and that gene dysfunction may be involved in the tumorigenesis of ESCC.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Sina Cai
- Department of Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Baoxia Li
- State Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaona Zhang
- Graceland Medical Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wenhui Li
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Henglun Linag
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Xiaolong Cao
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| |
Collapse
|
4
|
RLIM suppresses hepatocellular carcinogenesis by up-regulating p15 and p21. Oncotarget 2017; 8:83075-83087. [PMID: 29137325 PMCID: PMC5669951 DOI: 10.18632/oncotarget.20904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinogenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation and apoptosis. p15 and p21 are cyclin-dependent kinase inhibitors, which arrest cell proliferation and serve as critical tumor suppressors. Here we report that the E3 ubiquitin ligase RLIM expression is downregulated in hepatocellular carcinoma patients, and correlated with p15 and p21 expression in clinical progression. In addition, we showed that RLIM overexpression suppresses the cell growth and arrests cell cycle progression of hepatocellular carcinoma. Mechanistically, we found that RLIM directly binds to MIZ1, disrupting the interaction between c-MYC and MIZ1, and enhancing p15 and p21 transcription. Our results demonstrate that RLIM is an important suppressor in hepatocellular carcinogenesis.
Collapse
|
5
|
Chen Q, Zhou H, Yang Y, Chi M, Xie N, Zhang H, Deng X, Leavesley D, Shi H, Xie Y. Investigating the potential of Oxymatrine as a psoriasis therapy. Chem Biol Interact 2017; 271:59-66. [PMID: 28450041 DOI: 10.1016/j.cbi.2017.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 12/29/2022]
Abstract
Psoriasis vulgaris is a chronic inflammatory skin disease, stubbornly intractable, with substantial consequences for patient physical and mental welfare. Approaches currently available to treat psoriasis are not satisfactory due to undesirable side-effects or expense. Psoriasis is characterized by hyperproliferation and inflammation. Oxymatrine, an active component extracted from Sophora flavescens, has been demonstrated to possess anti-proliferation, anti-inflammatory, anti-tumorigenic, immune regulation and pro-apoptotic properties. This investigation presents a detailed retrospective review examining the effect of Oxymatrine on psoriasis and investigates the mechanisms underlying patient responses to Oxymatrine. We confirm that Oxymatrine administration significantly reduced the Psoriasis Area Severity Index score, with high efficacy compared to the control group. In addition, we have found that Oxymatrine significantly inhibits the viability, proliferation and differentiation of human keratinocyte in vitro. Immunohistochemical analysis indicates Oxymatrine significantly suppresses the expression of Pan-Cytokeratin, p63 and keratin 10. The results indicate that the suppression of p63 expression may lead to the anti-proliferation effect of Oxymatrine on human skin keratinocytes. Oxymatrine does not affect the formation of basement membrane, which is very important to maintain the normal function of human skin keratinocytes. In summary, Oxymatrine offers an effective, economical, and safe treatment for patients presenting with intractable psoriasis vulgaris.
Collapse
Affiliation(s)
- Qian Chen
- Ningxia Medical University, Ningxia, China
| | - Hui Zhou
- Department of Dermatology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yinxue Yang
- President of General Hospital of Ningxia Medical University, Ningxia, China
| | - Mingwei Chi
- Medical Affairs Office, General Hospital of Ningxia Medical University, Ningxia, China
| | - Nan Xie
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Hong Zhang
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | | | - David Leavesley
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; Tissue Technologies, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Lee Kong Chain School of Medicine, Nanyang Technological University, Singapore
| | - Huijuan Shi
- Department of Dermatology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Yan Xie
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
6
|
Xie Y, Wang B. Downregulation of TNFAIP2 suppresses proliferation and metastasis in esophageal squamous cell carcinoma through activation of the Wnt/β-catenin signaling pathway. Oncol Rep 2017; 37:2920-2928. [PMID: 28393234 DOI: 10.3892/or.2017.5557] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) plays a pivotal role in malignant tumor formation in the tumor microenvironment. To investigate the role of TNF-α in esophageal squamous cell carcinoma (ESCC), we assessed expression profiles of the downstream gene TNF-α-induced protein 2 (TNFAIP2), which e previously unknown in ESCC. TNFAIP2 mRNA and protein expression levels were examined by qRT-PCR and immunohistochemical analysis in 24 fresh and 55 paraffin‑embedded specimens, respectively. The results demonstrated that TNFAIP2 mRNA and protein levels were overexpressed in tumor cells, and TNFAIP2 overexpression was significantly associated with T stage (p=0.049), N stage (p=0.019) and the International Union Against Cancer (UICC) stage (p=0.028). In vitro, TNFAIP2 was highly expressed in TNFα-stimulated Eca109, Kyse150, Kyse510 and TE-10 cells. Lentivirus-mediated RNA interference of TNFAIP2 inhibited cell proliferation, colony formation, migration, invasion and the cell cycle. Moreover, LV-RNAi-mediated TNFAIP2 was found to regulate the Wnt/β-catenin by decreasing expression of some genes downstream from β-catenin (i.e., C-myc, cyclin D1, MMP-7 and Snail), and upregulating expression of E-cadherin and p-GSK-3β. Taken together, these results show that TNFAIP2 may be a potential tumorigenesis gene in ESCC. Our data indicate that TNFAIP2 overexpression may facilitate proliferation and metastasis via activation of the Wnt/β-catenin signaling pathway in ESCC.
Collapse
Affiliation(s)
- Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
7
|
Su Z, Yang H, Zhao M, Wang Y, Deng G, Chen R. MicroRNA-92a Promotes Cell Proliferation in Cervical Cancer via Inhibiting p21 Expression and Promoting Cell Cycle Progression. Oncol Res 2017; 25:137-145. [PMID: 28081742 PMCID: PMC7840834 DOI: 10.3727/096504016x14732772150262] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
MicroRNA-92a (miR-92a) generally plays a promoting role in human cancers, but the underlying mechanism in cervical cancer remains unclear. Here we studied the expression and clinical significance of miR-92a in cervical cancer, as well as the regulatory mechanism in the proliferation of cervical cancer cells. Our data indicated that miR-92a was significantly upregulated in cervical cancer tissues compared to their matched adjacent nontumor tissues (ANTs), and the increased miR-92a levels were significantly associated with a higher grade, lymph node metastasis, and advanced clinical stage in cervical cancer. In vitro study revealed that inhibition of miR-92a led to a significant reduction in the proliferation of HeLa cells via induction of cell cycle arrest at the G1 stage. In contrast, overexpression of miR-92a markedly promoted the proliferation of HeLa cells by promoting cell cycle progression. Further investigation revealed that miR-92a has a negative effect on protein levels, but not the mRNA levels, of p21 in HeLa cells, suggesting that p21 is a direct target of miR-92a. Overexpression of p21 eliminated the promoting effects of miR-92a on the proliferation and cell cycle progression of HeLa cells. However, knockdown of p21 reversed the suppressive effects of miR-92a downregulation on HeLa cell proliferation and cell cycle progression. Moreover, p21 was significantly downregulated in cervical cancer tissues compared to ANTs, suggesting that the increased expression of miR-92a may contribute to the decreased expression of p21, which further promotes cervical cancer growth. In conclusion, our study demonstrates that miR-92a promotes the proliferation of cervical cancer cells via inhibiting p21 expression and promoting cell cycle progression, highlighting the clinical significance of miR-92a in cervical cancer.
Collapse
Affiliation(s)
- Zhiying Su
- Department of Gynecology, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| | - Hua Yang
- Department of Obstetrics and Gynecology VIP, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| | - Min Zhao
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Xiamen UniversityXiamen, FujianP.R. China
| | - Yanlong Wang
- Department of Gynecology, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| | - Guoyi Deng
- Department of Gynecology, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| | - Ruixin Chen
- Department of Gynecology, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| |
Collapse
|