1
|
Chen C, Sun Y, Wang Z, Huang Z, Zou Y, Yang F, Hu J, Cheng H, Shen C, Wang S. Pinellia genus: A systematic review of active ingredients, pharmacological effects and action mechanism, toxicological evaluation, and multi-omics application. Gene 2023; 870:147426. [PMID: 37044184 DOI: 10.1016/j.gene.2023.147426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The dried tuber of Pinellia ternata (Thunb.) Breit, Pinelliae Rhizoma (PR, also named 'Banxia' in Chinese), is widely used in traditional medicine. This review aims to provide detail summary of active ingredients, pharmacological effects, toxic ingredients, detoxification strategies, and omic researches, etc. Pharmacological ingredients from PR are mainly classified into six categories: alkaloids, amino acids, polysaccharides, phenylpropanoids, essential oils, and glucocerebrosides. Diversity of chemical composition determines the broad-spectrum efficacy and gives a foundation for the comprehensive utilization of P. ternata germplasm resources. The pharmacological compounds are involved in inhibition of cancer cells by targeting various pathways, including activation of immune system, inhibition of proliferation and cycle, induction of apoptosis, and inhibition of angiogenesis. The pharmacological components of PR act on nervous system by targeting neurotransmitters, activating immune system, decreasing apoptosis, and increasing redox system. Lectins, one major class of the toxic ingredients extracted from raw PR, possess significant toxic effects on human cells. Inflammatory factors, cytochrome P450 proteins (CYP) family enzymes, mammalian target of rapamycin (mTOR) signaling factors, transforming growth factor-β (TGF-β) signaling factors, and nervous system, are considered to be the target sites of lectins. Recently, omic analysis is widely applied in Pinellia genus studies. Plastome genome-based molecular markers are deeply used for identifying and resolving phylogeny of Pinellia genus plants. Various omic works revealed and functional identified a series of environmental stress responsive factors and active component biosynthesis-related genes. Our review summarizes the recent progress in active and toxic ingredient evaluation, pharmacological effects, detoxification strategies, and functional gene identification and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunting Sun
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311121, China.
| | - Zhijing Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huijuan Cheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
2
|
Jin K, Wang Y, Sun C, Zuo Q, Zhang Y, Chen G, Li B. DHCR24 (24-Dehydrocholesterol Reductase) Associated in Modulating Steroid Biosynthesis Pathway Regulates the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spermatogonia stem cells (SSCs) have become one of the hotspots in modern life science research in the 21st century because of the broad application prospects in medicine, biology and animal breeding. Studies have shown that steroid biosynthesis signaling pathway is involved in the
multiple cell differentiation process, but the formation of SSCs is not clear. DHCR24 proved in our outcome that it play an important part in steroid biosynthesis. Without the absent of DHCR24, CYP7A1 and PTCH2 are not keeping the expression of downstream genes. It’s the downregulation
of the steroid biosynthesis pathway which lead to the decrement. What’s more, the steroid biosynthesis pathway could make it easy for the differentiation of embryonic stem cells (ESCs) is proved by qRT-PCR, immunofluorescence and flow cytometry analysis. All things considered. The above
mentioned outcomes has lead to a model in which DHCR24 plays an important part in regulating ESCs differentiation by curing the activities of steroid hormones synthesis.
Collapse
Affiliation(s)
- Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | - Yiling Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | - Changhua Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| |
Collapse
|
3
|
Wang Y, Lu C, Huang H, Yao S, Xu C, Ye Y, Gui S, Li G. A lipid-soluble extract of Pinellia pedatisecta Schott orchestrates intratumoral dendritic cell-driven immune activation through SOCS1 signaling in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:112837. [PMID: 32276009 DOI: 10.1016/j.jep.2020.112837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/14/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia pedatisecta Schott extract (PE) is generated from Pinellia pedatisecta Schott, a traditional Chinese medicinal plant. PE suppresses cervical tumor growth and exhibits effects on dendritic cells (DCs) that lead to modulation of antitumor CD4+ and CD8+ responses. AIMS To explore the underlying mechanisms by which PE modulates tumor-associated dendritic cell (TADC) activation and function. METHODS DCs and TADCs were generated from murine bone marrow and exposed to PE solutions at different doses, as well as to repeated doses separated at different time intervals. Quantitative PCR, Western blot analysis, flow cytometry, and gene silencing were used to analyze the modulatory effects of PE on the SOCS1/JAK2/STAT pathways. Furthermore, we separated human cervical tumor-infiltrated DCs (TIDCs) and conducted an ex-vivo stimulation model to observe the effect of PE. For phenotypic analysis of cultured DCs and ex vivo human specimens, we used flow cytometry to detect the molecular markers associated with cell function. RESULTS In cultured TADCs and human cervical TIDCs, maturation- and functional markers (MHCII, CD80, CD83, CD86, and IL-12) were downregulated, whereas SOCS1 was upregulated. PE enhanced the expression of CD80, CD86, and IL-12 in cervical TIDCs, which induced increased expression of CD107a, GZMB, and perforin in CTLs, and furthermore induced apoptosis in a larger number of tumor cells. In cultured TADCs, PE downregulated SOCS1 expression and activated the phosphorylation of JAK2, STAT1, STAT4, and STAT5 in both dose- and time-dependent manners. The effects of PE upregulating MHCII, CD80, CD86, IL-12 on TADCs were blocked after SOCS1 silencing. CONCLUSIONS In this study, PE restored the impaired function of cervical TIDCs, thereby eliciting further antitumor CTL responses. The effects of PE on TADCs were mediated through inhibition of SOCS1 and activation of downstream JAK2-STAT1/STAT4/STAT5 pathways. PE may be a potent and effective immunomodulatory drug for antitumor treatment via the blockade of SOCS1 signaling in DCs.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Chong Lu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Haixia Huang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Congjian Xu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suiqi Gui
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Guiling Li
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
4
|
Mao R, He Z. Pinellia ternata (Thunb.) Breit: A review of its germplasm resources, genetic diversity and active components. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113252. [PMID: 32798614 DOI: 10.1016/j.jep.2020.113252] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/15/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal plant Pinellia ternata has been widely used in China, Korea, and Japan and has been demonstrated to be highly effective for treating cough, vomiting, infection, and inflammatory diseases. Modern pharmacological investigations have demonstrated its multiple activities, such as antitussive, expectorant, antiemetic, antitumor, antibacterial, and sedative-hypnotic activities. AIM OF THE REVIEW This review aims to summarize the information about the biological traits, genetic diversity, active components, and continuous cropping obstacle of P. ternata in order to improve its use. MATERIALS AND METHODS In this review, the relevant literature was gathered by using Pinellia ternata, genetic diversity, active components, and continuous cropping obstacle as the keywords from Google Scholar, PubMed, Springer Link, the Wiley online library, SciFinder, SCOPUS, Baidu Scholar, China national knowledge infrastructure (CNKI), and WANFANF DATA (up to April 2020). RESULTS P. ternata is the most widely used herb in the Pinellia genus to treat several diseases. The genetic diversity of P. ternata has been extensively studied, and its high genetic diversity level in China has been demonstrated. Modern pharmacological research has indicated that amino acids, alkaloids, and polysaccharides are the main active components supporting P. ternata's medicinal effects. However, an efficient method for determining its active components is still unavailable. The method used to evaluate Pinelliae Rhizoma (PR) quality standards should be further optimized. The continuous cropping obstacle has a significant effect on the quantity and quality of P. ternata. The underlying mechanism of the continuous cropping obstacle needs to be further explored. CONCLUSIONS P. ternata has emerged as a valuable source of traditional medicine. Some uses of P. ternata in medicine have been validated by pharmacological investigations. However, a more efficient analytical method should be established to evaluate the quality of PR based on multiple quality markers. Furthermore, high-performance liquid chromatography (HPLC) and DNA barcoding should be introduced to identify the authenticity of PR. In addition, the genes involved in the metabolic synthesis pathways of the main active components, population genetic relationships, the quality control of processed PR, and the continuous cropping obstacle need to be further elucidated. We hope this review will allow for better utilization of this valuable herb.
Collapse
Affiliation(s)
- Renjun Mao
- College of Life Sciences & Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, 716000, Shaanxi, China.
| | - Zhigui He
- School of Leisure and Health, Guilin Tourism University, Guilin, 541006, Guangxi, China.
| |
Collapse
|
5
|
Wang Y, Huang H, Yao S, Li G, Xu C, Ye Y, Gui S. A lipid-soluble extract of Pinellia pedatisecta Schott enhances antitumor T cell responses by restoring tumor-associated dendritic cell activation and maturation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111980. [PMID: 31146000 DOI: 10.1016/j.jep.2019.111980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia pedatisecta Schott (PPS)is a traditional Chinese medicine functioning as reducing swelling and drying dampness. Pinellia pedatisecta Schott extract (PE) has been confirmed to suppress cervical tumor growth and modulate the antitumor CD4+T helper immunity towards Th1. AIMS To explore the roles of PE in modulating tumor-associated dendritic cell (TADC) activation and function. METHODS For in vivo studies, HPV+TC-1 mouse tumor models were conducted and treated with PE for 3 weeks (10 mg/kg/d or 20 mg/kg/day). The immune profiles of spleen, tumor-draining lymph nodes (TDLNs), tumor and serum were analyzed by flow cytometry and multiplexed bead-based immunoassay. For in vitro studies, TADCs were generated by tumor-conditioned medium and treated with PE solution. The maturation and function of TADCs were evaluated by flow cytometry, ELISA, mixed lymphocyte reaction (MLR) and cytotoxic T lymphocyte (CTL) assay. Furthermore, the effect of PE on SOCS1 pathway was examined by western blotting and real time PCR. RESULTS PE upregulated the expression of major histocompatibility complex class II (MHCII) and costimulatory molecules CD80 and CD86 on TADCs and promoted IL-12 secretion from TADCs. In addition, PE-treated TADCs promoted the proliferation of CD4+ and CD8+ T cells and induced the differentiation of IFN-γ+CD4+ and GZMB+CD8+ T cells. PE-treated TADCs also elicited a more powerful antigen-specific cytotoxic T lymphocyte (CTL) response. Furthermore, PE treatment in vivo enhanced the proliferation, activated the functional ability (increased Ki67, CD137, GZMB or IFN-γ, TNF-α expression) and reversed the exhaustion (impaired CD95 or PD-1 expression) of antitumor T cells. Mechanistically, PE inhibited SOCS1-restrained JAK2 activation in TADCs. CONCLUSIONS PE efficiently restored the immature status of TADCs and enhanced their function as antigen-presenting cells to further elicit antitumor Th1 and CTL responses, suggesting that PE may be a potential immunomodulatory drug for cancer treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Haixia Huang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guiling Li
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China.
| | - Congjian Xu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suiqi Gui
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| |
Collapse
|
6
|
Huang H, Zhang M, Yao S, Zhang M, Peng J. Immune modulation of a lipid-soluble extract of Pinellia pedatisecta Schott in the tumor microenvironment of an HPV + tumor-burdened mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:103-115. [PMID: 29783020 DOI: 10.1016/j.jep.2018.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia pedatisecta Schott extract (PE), a traditional Chinese medicine, has been used to reduce swelling, dry dampness and suppress cervical tumors. AIMS To evaluate the roles of PE in the regulation of anti-tumor effects and the cellular immune response in the tumor microenvironment. METHODS The immune microenvironment of HPV+TC-1 tumors was examined by immunohistochemistry, real-time PCR and flow cytometry. RESULTS Our study demonstrated that PE in vitro could significantly increase the percentage of apoptosis and necrosis in HPV+TC-1 cells and block the cell cycle phase. In vivo treatment with PE eradicated established subcutaneous HPV+TC-1 tumors in wild-type C57BL/6 mice by infiltrating CD8+ T cells and CD4+ T cells and by directly suppressing tumor growth and resistance to avascular necrosis. The key factors in the canonical Wnt signaling pathway in the experimental group (PE+mDC+naive CD4+T cells) were challenged, and the levels of beta-catenin, C-myc, cyclin D1 and PPAR1 were significantly enhanced at the 5th day. In particular, the subset proportion of Th1 cells (characterized by IFNγ production and the transcription factor Tbet) increased significantly, and both Th2 cells (characterized by IL-4 production and the transcription factor GATA3) and Th17 cells (characterized by IL-17 production and the transcription factor RoRγt) decreased profoundly. CONCLUSIONS These findings linked the anti-tumor properties of PE with the immune microenvironment to present a reliable basis for the future practical application of PE in cervical cancer as a novel and pharmacologically safe immunotherapy strategy.
Collapse
Affiliation(s)
- Haixia Huang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032
| | - Mingxing Zhang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, P.R. China
| | - Meng Zhang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032
| | - Jing Peng
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032
| |
Collapse
|
7
|
Gao C, Zhou Y, Li H, Cong X, Jiang Z, Wang X, Cao R, Tian W. Antitumor effects of baicalin on ovarian cancer cells through induction of cell apoptosis and inhibition of cell migration in vitro. Mol Med Rep 2017; 16:8729-8734. [PMID: 29039573 PMCID: PMC5779949 DOI: 10.3892/mmr.2017.7757] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Baicalin, an active flavone isolated from Scutellaria baicalensis Georgi, has been demonstrated to induce various beneficial biochemical effects such as anti‑inflammatory, anti‑viral, and antitumor effects. However, the antitumor mechanism of baicalin is not well understood. In the present study, baicalin was demonstrated to inhibit the viability and migration of a widely used ovarian cancer cell line, A2780, in a dose‑dependent manner. MTT assays revealed that cell viability significantly decreased in ovarian cancer cells treated with baicalin compared with untreated cells, without effect on normal ovarian cells. Flow cytometric analysis indicated that baicalin suppressed cell proliferation by inducing apoptosis. The underlying mechanisms involved were indicated to be downregulation of the anti‑apoptotic protein B‑cell lymphoma 2 apoptosis regulator and activation of caspase‑3 and ‑9. In addition, wound healing and transwell assays revealed that cell migratory potential and expression of matrix metallopeptidase (MMP)‑2 and MMP‑9 were significantly inhibited when cells were exposed to baicalin, compared with untreated cells. The present study therefore suggested that baicalin has the potential to be used in novel anti‑cancer therapeutic formulations for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chen Gao
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Yinglu Zhou
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Huatao Li
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Xia Cong
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Zhongling Jiang
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Xin Wang
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Rongfeng Cao
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Wenru Tian
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| |
Collapse
|