1
|
Chen H, Gao S, Wang P, Xie M, Zhang H, Fan Y, Nie E, Lan Q. SRBD1 Regulates the Cell Cycle, Apoptosis, and M2 Macrophage Polarization via the RPL11-MDM2-p53 Pathway in Glioma. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39258423 DOI: 10.1002/tox.24396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Low expression of certain ribosomal proteins leads to the inactivation of p53, which is mediated mainly by RPL5 or RPL11 (ribosomal protein L11). It is also unknown what mechanisms drive aberrant ribosomal proteins expression in tumor. SRBD1 (S1 RNA-binding domain 1), as a highly conserved RNA-binding protein, is lowly expressed in glioma tissues and correlated with glioma prognosis. In this study, we observed that SRBD1 was closely related to p53 signaling. The upregulation of SRBD1 elevated p53 levels, thereby activating the p53 signaling pathway. As an RNA bind protein, SRBD1 could bind to the 5'-UTR of target genes and regulate RNA translation. We further conducted RNA immunoprecipitation using anti-SRDB1 antibody and noticed 29 hub RNA, including RPL11. RPL11 could inhibit MDM2-mediated p53 ubiquitination. SRBD1 upregulation promoted RPL11 binding to MDM2 via elevating RPL11 protein levels, which in turn activated the p53 signaling. Disrupting the p53 signaling blocked SRBD1-induced glioma suppression. In mouse xenograft model, SRBD1 ectopic expression was effective in reducing the total M2 tumor-associated macrophages (TAMs) density and suppressed glioma tumor growth. In summary, these data show that SRBD1 has a critical role in inhibition of glioma tumor growth and M2 macrophage polarization, and targeting RPL11-MDM2-p53 signaling may be an effective strategy to improve therapy and survival for glioma patients.
Collapse
Affiliation(s)
- Hongfu Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Shuping Gao
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Peng Wang
- Department of Neurosurgery, Rizhao Central Hospital, Rizhao, Shandong, People's Republic of China
| | - Manyi Xie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Hui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yuechao Fan
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Er Nie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Wang J, Xi YF, Zhao Q, Guo JH, Zhang Z, Zhang MB, Chang J, Wu YQ, Su W. CDKN2A promoter methylation enhances self-renewal of glioblastoma stem cells and confers resistance to carmustine. Mol Biol Rep 2024; 51:385. [PMID: 38438773 PMCID: PMC10912136 DOI: 10.1007/s11033-024-09247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Glioblastoma, a highly aggressive form of brain cancer, poses significant challenges due to its resistance to therapy and high recurrence rates. This study aimed to investigate the expression and functional implications of CDKN2A, a key tumor suppressor gene, in glioblastoma cells, building upon the existing background of knowledge in this field. METHOD Quantitative reverse transcription PCR (qRT-PCR) analysis was performed to evaluate CDKN2A expression in U87 glioblastoma cells compared to normal human astrocytes (NHA). CDKN2A expression levels were manipulated using small interfering RNA (siRNA) and CDKN2A overexpression vector. Cell viability assays and carmustine sensitivity tests were conducted to assess the impact of CDKN2A modulation on glioblastoma cell viability and drug response. Sphere formation assays and western blot analysis were performed to investigate the role of CDKN2A in glioblastoma stem cell (GSC) self-renewal and pluripotency marker expression. Additionally, methylation-specific PCR (MSP) assays and demethylation treatment were employed to elucidate the mechanism of CDKN2A downregulation in U87 cells. RESULT CDKN2A expression was significantly reduced in glioblastoma cells compared to NHA. CDKN2A overexpression resulted in decreased cell viability and enhanced sensitivity to carmustine treatment. CDKN2A inhibition promoted self-renewal capacity and increased pluripotency marker expression in U87 cells. CDKN2A upregulation led to elevated protein levels of p16INK4a, p14ARF, P53, and P21, which are involved in cell cycle regulation. CDKN2A downregulation in U87 cells was associated with high promoter methylation, which was reversed by treatment with a demethylating agent. CONCLUSION Our findings demonstrate that CDKN2A downregulation in glioblastoma cells is associated with decreased cell viability, enhanced drug resistance, increased self-renewal capacity, and altered expression of pluripotency markers. The observed CDKN2A expression changes are mediated by promoter methylation. These results highlight the potential role of CDKN2A as a therapeutic target and prognostic marker in glioblastoma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Yan-Feng Xi
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Qi Zhao
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Jiang-Hong Guo
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Zhen Zhang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Mao-Bai Zhang
- Department of Neurosurgery, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Jiang Chang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Yue-Qin Wu
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Wen Su
- Department of Medical Laboratory, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
3
|
Yun D, Wang X, Wang W, Ren X, Li J, Wang X, Liang J, Liu J, Fan J, Ren X, Zhang H, Shang G, Sun J, Chen L, Li T, Zhang C, Yu S, Yang X. A Novel Prognostic Signature Based on Glioma Essential Ferroptosis-Related Genes Predicts Clinical Outcomes and Indicates Treatment in Glioma. Front Oncol 2022; 12:897702. [PMID: 35756689 PMCID: PMC9232254 DOI: 10.3389/fonc.2022.897702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background Ferroptosis is a form of programmed cell death (PCD) that has been implicated in cancer progression, although the specific mechanism is not known. Here, we used the latest DepMap release CRISPR data to identify the essential ferroptosis-related genes (FRGs) in glioma and their role in patient outcomes. Methods RNA-seq and clinical information on glioma cases were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA). FRGs were obtained from the FerrDb database. CRISPR-screened essential genes (CSEGs) in glioma cell lines were downloaded from the DepMap portal. A series of bioinformatic and machine learning approaches were combined to establish FRG signatures to predict overall survival (OS) in glioma patients. In addition, pathways analysis was used to identify the functional roles of FRGs. Somatic mutation, immune cell infiltration, and immune checkpoint gene expression were analyzed within the risk subgroups. Finally, compounds for reversing high-risk gene signatures were predicted using the GDSC and L1000 datasets. Results Seven FRGs (ISCU, NFS1, MTOR, EIF2S1, HSPA5, AURKA, RPL8) were included in the model and the model was found to have good prognostic value (p < 0.001) in both training and validation groups. The risk score was found to be an independent prognostic factor and the model had good efficacy. Subgroup analysis using clinical parameters demonstrated the general applicability of the model. The nomogram indicated that the model could effectively predict 12-, 36-, and 60-months OS and progression-free interval (PFI). The results showed the presence of more aggressive phenotypes (lower numbers of IDH mutations, higher numbers of EGFR and PTEN mutations, greater infiltration of immune suppressive cells, and higher expression of immune checkpoint inhibitors) in the high-risk group. The signaling pathways enriched closely related to the cell cycle and DNA damage repair. Drug predictions showed that patients with higher risk scores may benefit from treatment with RTK pathway inhibitors, including compounds that inhibit RTKs directly or indirectly by targeting downstream PI3K or MAPK pathways. Conclusion In summary, the proposed cancer essential FRG signature predicts survival and treatment response in glioma.
Collapse
Affiliation(s)
- Debo Yun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.,Department of Neurosurgery, Nanchong Central Hospital, Nanchong, China
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Wenbo Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiao Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xisen Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jianshen Liang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jie Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jingzhang Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Lei Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Chen Zhang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.,Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| |
Collapse
|
4
|
Izquierdo-Torres E, Hernández-Oliveras A, Lozano-Arriaga D, Zarain-Herzberg Á. Obesity, the other pandemic: linking diet and carcinogenesis by epigenetic mechanisms. J Nutr Biochem 2022; 108:109092. [PMID: 35718098 DOI: 10.1016/j.jnutbio.2022.109092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Both obesity and cancer are complex medical conditions that are considered public health problems. The influence of obesity on the predisposition to develop various types of cancer has been observed in a wide variety of studies. Due to their importance as public health problems, and the close relationship between both conditions, it is important to be able to understand and associate them mechanistically. In this review article, we intend to go a little further, by finding relationships between lifestyle, which can lead a person to develop obesity, and how it influences at the cellular and molecular level, affecting gene expression to favor signaling pathways or transcriptional programs involved in cancer. We describe how products of metabolism and intermediate metabolism can affect chromatin structure, participating in the regulation (or dysregulation) of gene expression, and we show an analysis of genes that are responsive to diets high in sugar and fat, and how their epigenetic landscape is altered.
Collapse
Affiliation(s)
- Eduardo Izquierdo-Torres
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Andrés Hernández-Oliveras
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Dalia Lozano-Arriaga
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
5
|
Shankar E, Pandey M, Verma S, Abbas A, Candamo M, Kanwal R, Shukla S, MacLennan GT, Gupta S. Role of class I histone deacetylases in the regulation of maspin expression in prostate cancer. Mol Carcinog 2020; 59:955-966. [PMID: 32391971 DOI: 10.1002/mc.23214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
Maspin repression is frequently observed in prostate cancer; however, the molecular mechanism(s) causing the loss is not completely understood. Here, we demonstrate that inhibition of class I histone deacetylases (HDACs) mediates re-expression of maspin which plays an essential role in suppressing proliferation and migration capability in prostate cancer cells. Human prostate cancer LNCaP and DU145 cells treated with HDAC inhibitors, sodium butyrate, and trichostatin A, resulted in maspin re-expression. Interestingly, an exploration into the molecular mechanisms demonstrates that maspin repression in prostate tumor and human prostate cancer cell lines occurs via epigenetic silencing through an increase in HDAC activity/expression, independent of promoter DNA hypermethylation. Furthermore, transcriptional activation of maspin was accompanied with the suppression of HDAC1 and HDAC8 with significant p53 enrichment at the maspin promoter associated with an increase in histone H3/H4 acetylation. Our results provide evidence of maspin induction as a critical epigenetic event altered by class I HDACs in the restoration of balance to delay proliferation and migration ability of prostate cancer cells.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mitali Pandey
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ata Abbas
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mario Candamo
- College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Rajnee Kanwal
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio.,Department of Nutrition, Case Western Reserve University, Cleveland, Ohio.,Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
6
|
Banias L, Jung I, Gurzu S. Subcellular expression of maspin – from normal tissue to tumor cells. World J Meta-Anal 2019; 7:142-155. [DOI: 10.13105/wjma.v7.i4.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Maspin or SerpinB5, a member of the serine protease inhibitor family, was shown to function as a tumor suppressor, especially in carcinomas. It seems to inhibit invasion, tumor cells motility and angiogenesis, and promotes apoptosis. Maspin can also induce epigenetic changes such as cytosine methylation, de-acetylation, chromatin condensation, and histone modulation. In this review, a comprehensive synthesis of the literature was done to present maspin function from normal tissues to pathologic conditions. Data was sourced from MEDLINE and PubMed. Study eligibility criteria included: Published in English, between 1994 and 2019, specific to humans, and with full-text availability. Most of the 118 studies included in the present review focused on maspin immunostaining and mRNA levels. It was shown that maspin function is organ-related and depends on its subcellular localization. In malignant tumors, it might be downregulated or negative (e.g., carcinoma of prostate, stomach, and breast) or upregulated (e.g., colorectal and pancreatic tumors). Its subcellular localization (nuclear vs cytoplasm), which can be proved using immunohistochemical methods, was shown to influence both tumor behavior and response to chemotherapy. Although the number of maspin-related papers increased, the exact role of this protein remains unknown, and its interpretation should be done with extremely high caution.
Collapse
Affiliation(s)
- Laura Banias
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology of Tirgu-Mures, Tirgu Mures 540139, Romania
- Department of Pathology, Clinical County Emergency Hospital, Tirgu Mures 540139, Romania
| | - Ioan Jung
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology of Tirgu-Mures, Tirgu Mures 540139, Romania
| | - Simona Gurzu
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology of Tirgu-Mures, Tirgu Mures 540139, Romania
- Department of Pathology, Clinical County Emergency Hospital, Tirgu Mures 540139, Romania
| |
Collapse
|
7
|
Schötterl S, Hübner M, Armento A, Veninga V, Wirsik NM, Bernatz S, Lentzen H, Mittelbronn M, Naumann U. Viscumins functionally modulate cell motility-associated gene expression. Int J Oncol 2017; 50:684-696. [DOI: 10.3892/ijo.2017.3838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
|