1
|
Liang Y, Zhao J, Dai T, Li X, Chen L, He Z, Guo M, Zhao J, Xu L. A review of KLF4 and inflammatory disease: Current status and future perspective. Pharmacol Res 2024; 207:107345. [PMID: 39134187 DOI: 10.1016/j.phrs.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Inflammation is the response of the human body to injury, infection, or other abnormal states, which is involved in the development of many diseases. As a member of the Krüppel-like transcription factors (KLFs) family, KLF4 plays a crucial regulatory role in physiological and pathological processes due to its unique dual domain of transcriptional activation and inhibition. A growing body of evidence has demonstrated that KLF4 plays a pivotal role in the pathogenesis of various inflammatory disorders, including inflammatory bowel disease, osteoarthritis, renal inflammation, pneumonia, neuroinflammation, and so on. Consequently, KLF4 has emerged as a promising new therapeutic target for inflammatory diseases. This review systematically generalizes the molecular regulatory network, specific functions, and mechanisms of KLF4 to elucidate its complex roles in inflammatory diseases. An in-depth study on the biological function of KLF4 is anticipated to offer a novel research perspective and potential intervention strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Yidan Liang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiamin Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tengkun Dai
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xin Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Longqin Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
2
|
Broseghini E, Filippini DM, Fabbri L, Leonardi R, Abeshi A, Dal Molin D, Fermi M, Ferracin M, Fernandez IJ. Diagnostic and Prognostic Value of microRNAs in Patients with Laryngeal Cancer: A Systematic Review. Noncoding RNA 2023; 9:ncrna9010009. [PMID: 36827542 PMCID: PMC9966707 DOI: 10.3390/ncrna9010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is one of the most common malignant tumors of the head and neck region, with a poor survival rate (5-year overall survival 50-80%) as a consequence of an advanced-stage diagnosis and high recurrence rate. Tobacco smoking and alcohol abuse are the main risk factors of LSCC development. An early diagnosis of LSCC, a prompt detection of recurrence and a more precise monitoring of the efficacy of different treatment modalities are currently needed to reduce the mortality. Therefore, the identification of effective diagnostic and prognostic biomarkers for LSCC is crucial to guide disease management and improve clinical outcomes. In the past years, a dysregulated expression of small non-coding RNAs, including microRNAs (miRNAs), has been reported in many human cancers, including LSCC, and many miRNAs have been explored for their diagnostic and prognostic potential and proposed as biomarkers. We searched electronic databases for original papers that were focused on miRNAs and LSCC, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. According to the outcome, 566 articles were initially screened, of which 177 studies were selected and included in the analysis. In this systematic review, we provide an overview of the current literature on the function and the potential diagnostic and prognostic role of tissue and circulating miRNAs in LSCC.
Collapse
Affiliation(s)
- Elisabetta Broseghini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Daria Maria Filippini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Laura Fabbri
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Roberta Leonardi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Andi Abeshi
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Davide Dal Molin
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Matteo Fermi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Ignacio Javier Fernandez
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| |
Collapse
|
3
|
Vishnubalaji R, Shaath H, Al-Alwan M, Abdelalim EM, Alajez NM. Reciprocal interplays between MicroRNAs and pluripotency transcription factors in dictating stemness features in human cancers. Semin Cancer Biol 2022; 87:1-16. [PMID: 36354097 DOI: 10.1016/j.semcancer.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The interplay between microRNAs (miRNAs) and pluripotency transcription factors (TFs) orchestrates the acquisition of cancer stem cell (CSC) features during the course of malignant transformation, rendering them essential cancer cell dependencies and therapeutic vulnerabilities. In this review, we discuss emerging themes in tumor heterogeneity, including the clonal evolution and the CSC models and their implications in resistance to cancer therapies, and then provide thorough coverage on the roles played by key TFs in maintaining normal and malignant stem cell pluripotency and plasticity. In addition, we discuss the reciprocal interactions between miRNAs and MYC, OCT4, NANOG, SOX2, and KLF4 pluripotency TFs and their contributions to tumorigenesis. We provide our view on the potential to interfere with key miRNA-TF networks through the use of RNA-based therapeutics as single agents or in combination with other therapeutic strategies, to abrogate the CSC state and render tumor cells more responsive to standard and targeted therapies.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Essam M Abdelalim
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
4
|
Dai F, Xie Z, Yang Q, Zhong Z, Zhong C, Qiu Y. MicroRNA-375 inhibits laryngeal squamous cell carcinoma progression via targeting CST1. Braz J Otorhinolaryngol 2022; 88 Suppl 4:S108-S116. [PMID: 35953439 DOI: 10.1016/j.bjorl.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study aims to explore the effect and mechanism of miR-375 in Laryngeal Squamous Cell Carcinoma (LSCC) cell progression. METHODS LSCC cells (LSC-1 and TU177) were transfected with miR-375-mimic, miR-375-inhibitor or miR-375-mimic+oe-CST1. The expression of miR-375, CST1, MMP-2, and MMP-9 was measured. The effect of miR-375-mimic, miR-375-inhibitor or miR-375-mimic+oe-CST1 on cell biological functions, including cell proliferation, migration, invasion, and apoptosis, was also assessed. The potential relationship between CST1 and miR-375 was predicted by Jefferson software and validated by dual luciferase reporter gene assay. RESULTS Downregulated miR-375 expression was found in LSCC cells. Overexpression of miR-375 inhibited the viability and migration and promoted apoptosis of LSCC cells. Jefferson database and dual luciferase reporter gene assay confirmed that miR-375 directly targeted CST1. Overexpression of CST1 could reverse the anti-cancer effect of miR-375 overexpression in LSCC cells. CONCLUSION Collected evidence showed that miR-375/CST1 axis was implicated in LSCC progression. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Feng Dai
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China.
| | - Zuojun Xie
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| | - Qiming Yang
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| | - Zhuanglong Zhong
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| | - Chun Zhong
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| | - Yongliang Qiu
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| |
Collapse
|
5
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
6
|
Zhou M, Wang Y, Zhang C, Qi M, Yao M, Sun L, Xu X. MicroRNA-195-5p suppresses the proliferation, migration, invasion and epithelial-mesenchymal transition of laryngeal cancer cells in vitro by targeting E2F3. Exp Ther Med 2021; 22:1078. [PMID: 34447471 PMCID: PMC8355640 DOI: 10.3892/etm.2021.10512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has indicated that microRNAs (miRNAs/miRs) play an important role in the occurrence and development of various types of cancer. The aim of the present study was to investigate the role and underlying molecular mechanisms of miR-195-5p in laryngeal cancer cell proliferation, migration and invasion. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure the expression levels of miR-195-5p in laryngeal carcinoma cell lines. The expression levels of miR-195-5p and E2F transcription factor 3 (E2F3) were modified by transfection with miR-195-5p mimics and pcDNA3.1-E2F3. A luciferase reporter assay was used to verify the association between miR-195a-5p and E2F3. Cell Counting Kit-8, cell wound healing and Transwell invasion assays were used to detect the biological functions of laryngeal cancer cells. The expression of epithelial-mesenchymal transition (EMT)-associated genes was evaluated by western blotting and RT-qPCR. The results revealed that the expression of miR-195-5p was decreased in laryngeal cancer cell lines. The overexpression of miR-195-5p inhibited the proliferation, migration, invasion and EMT of laryngeal cancer cells. Dual-luciferase reporter assays revealed that miR-195-5p could directly target E2F3 and that there was a negative association between them. E2F3 overexpression significantly attenuated the inhibitory effects of the overexpression of miR-195-5p on the proliferation, migration, invasion and EMT of laryngeal cancer cells. Collectively, the findings of the present study demonstrated that the overexpression of miR-195-5p significantly inhibited the progression of laryngeal cancer cells, and these effects may be mediated via the downregulation of the expression of E2F3.
Collapse
Affiliation(s)
- Min Zhou
- Department of Otolaryngology Head and Neck Surgery, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Wang
- Department of Operating Room, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Changming Zhang
- Department of Otolaryngology Head and Neck Surgery, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Meihao Qi
- Department of Otolaryngology Head and Neck Surgery, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Min Yao
- Department of Otolaryngology Head and Neck Surgery, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lizhi Sun
- Department of Otolaryngology Head and Neck Surgery, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xining Xu
- Department of Otolaryngology, The 940th Hospital of The Joint Logistic Support Force of PLA, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
7
|
Yang X, Chen C, Li L, Xiao T, Zou YD, Zheng D. Current research advances in microRNA-mediated regulation of Krüppel-like factor 4 in cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:948. [PMID: 34350263 PMCID: PMC8263881 DOI: 10.21037/atm-21-2347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022]
Abstract
Objective The purpose of this study was to investigate the miRNAs and related mechanisms that regulates KLF4 in different cancers. Furthermore, we summarized the potential targets of miRNAs regulating the KLF4 pathway in cancer research. Background MiRNAs are single-stranded, endogenous non-coding small RNAs, some of which are related to human cancers. miRNAs carry out post-transcriptional gene regulation through translation inhibition and degradation of target messenger RNAs (mRNAs) via complementarily pairing with their 3' untranslated regions. KLF4 is an important transcription factor with complex involvement in cancer. Increasing evidence shows that miRNAs are dysregulated in cancer and can regulate cancer-related signaling pathways, thereby affecting tumor progression. Methods Systematic scientific literature searches were undertaken on PubMed using the following terms: "miRNAs and KLF4", "KLF4 and cancer", "miRNAs and cancer", and "miRNAs, KLF4 and cancer". Relevant papers were retrieved and further results were found by reviewing related papers and the references of the retrieved papers. We then conducted a narrative overview of the literature to summarize the results of the papers. Conclusions The role of KLF4 in cancer varies in a context-dependent manner. KLF4-regulating miRNAs in different tumors include miR-124, miR-9-5p, miR-10b, miR-18a, miR-25-3p, miR-10b, miR-92a, miR-103, miR-155, miR-135b-5p, miR-32-5p, miR-148-3p, miR-152-3p, miR-10b, miR-25, miR-3120-5p, miR-7, miR-1233-3p, miR-10b, miR-145, miR-139-5p, miR-16, miR-152, miR-375, and miR-145.
Collapse
Affiliation(s)
- Xi Yang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Cheng Chen
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Li Li
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tian Xiao
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yong-Dong Zou
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Duo Zheng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
FADS1 promotes the progression of laryngeal squamous cell carcinoma through activating AKT/mTOR signaling. Cell Death Dis 2020; 11:272. [PMID: 32332698 PMCID: PMC7181692 DOI: 10.1038/s41419-020-2457-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Metabolic abnormality is the major feature of laryngeal squamous cell carcinoma (LSCC), however, the underlying mechanism remain largely elusive. Fatty acid desaturase 1 (FADS1), as the key rate-limiting enzyme of polyunsaturated fatty acids (PUFAs), catalyzes dihomo-gamma-linolenic acid (DGLA) to arachidonic acid (AA). In this study, we reported that the expression of FADS1 was upregulated in LSCC, high FADS1 expression was closely associated with the advanced clinical features and poor prognosis of the recurrent LSCC patients after chemotherapy. Liquid chromatograph-mass spectrometry (LC-MS) analysis revealed that FADS1 overexpression induced greater conversion of DGLA to AA, suggesting an increased activity of FADS1. Similarly, the level of prostaglandin E2 (PGE2), a downstream metabolite of AA, was also elevated in cancerous laryngeal tissues. Functional assays showed that FADS1 knockdown suppressed the proliferation, migration and invasion of LSCC cells, while FADS1 overexpression had the opposite effects. Bioinformatic analysis based on microarray data found that FADS1 could activate AKT/mTOR signaling. This hypothesis was further validated by both in vivo and in vitro assays. Hence, our data has supported the viewpoint that FADS1 is a potential promoter in LSCC progression, and has laid the foundation for further functional research on the PUFA dietary supplementation interventions targeting FADS1/AKT/mTOR pathway for LSCC prevention and treatment.
Collapse
|
9
|
Kilic A, Barlak N, Sanli F, Aytatli A, Capik O, Karatas OF. Mode of action of carboplatin via activating p53/miR‐145 axis in head and neck cancers. Laryngoscope 2019; 130:2818-2824. [DOI: 10.1002/lary.28492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
|
10
|
Liu Y, Ye F. Construction and integrated analysis of crosstalking ceRNAs networks in laryngeal squamous cell carcinoma. PeerJ 2019; 7:e7380. [PMID: 31367490 PMCID: PMC6657684 DOI: 10.7717/peerj.7380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumours of the head and neck. Recent evidence has demonstrated that lncRNAs play important roles in tumour progression and could be used as biomarkers for early diagnosis, prognosis, and potential therapeutic targets. The "competitive endogenous RNA (ceRNA)" hypothesis states that lncRNAs competitively bind to miRNAs through their intramolecular miRNA reaction elements (MREs) to construct a wide range of ceRNA regulatory networks. This study aims to predict the role of ceRNA network in LSCC, for advancing the understanding of underlying mechanisms of tumorigenesis. Material and Methods In this study, the functions of lncRNAs as ceRNAs in LSCC and their prognostic significance were investigated via comprehensive integrated expression profiles data of lncRNAs, mRNAs, and miRNAs obtained from The Cancer Genome Atlas (TCGA). Protein-protein interaction, gene ontology, pathway, and Kaplan-Meier curves analysis were used to profile the expression and function of altered RNAs in LSCC. Results As a result, 889 lncRNAs, 55 miRNAs and 1946 mRNAs were found to be differentially expressed in LSCC. These altered mRNAs were mainly involved in extracellular matrix organization, calcium signaling, and metabolic pathways. To study the regulatory function of lncRNAs, an lncRNA-mediated ceRNA network was constructed. This ceRNA network included 61 lncRNAs, seven miRNAs and seven target mRNAs. Of these RNAs, lncRNAs (TSPEAR-AS, CASK-AS1, MIR137HG, PART1, LSAMP-AS1), miRNA (has-mir-210) and mRNAs (HOXC13, STC2, DIO1, FOXD4L1) had a significant effect on the prognosis of LSCC. Conclusion The results of this study broaden the understanding of the mechanisms by which lncRNAs are involved in tumorigenesis. Furthermore, five lncRNAs (TSPEAR-AS, CASK-AS1, MIR137HG, PART1, LSAMP-AS1) were identified as potential prognostic biomarkers and therapeutic targets for LSCC. These results provide a basis for further experimental and clinical research.
Collapse
Affiliation(s)
- Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Fan Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
11
|
Dong X, Wang F, Xue Y, Lin Z, Song W, Yang N, Li Q. MicroRNA‑9‑5p downregulates Klf4 and influences the progression of hepatocellular carcinoma via the AKT signaling pathway. Int J Mol Med 2019; 43:1417-1429. [PMID: 30664155 PMCID: PMC6365078 DOI: 10.3892/ijmm.2019.4062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Krüppel-like factor 4 (Klf4) is a transcriptional factor involved in the progression of hepatocellular carcinoma (HCC). However, the underlying regulatory mechanisms associated with the Klf4 gene as a tumor suppressor in HCC remain unclear. microRNAs (miRNAs or miRs) are a series of small non-coding RNAs that serve a vital role in regulating gene expression via their influence on protein translation and the associated degradation of mRNA. The mRNA expression levels of the miRNA, miR-9-5p, and Klf4 were measured using reverse transcription-quantitative polymerase chain reaction. The protein expression levels of Klf4, protein kinase B (AKT), phosphorylated (p-)AKT, mechanistic target of rapamycin (mTOR), p-mTOR, B cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) were determined by western blot analysis. Dual luciferase reporter assay was used to confirm a direct interaction between miR-9-5p and the 3′-untranslated region (3′-UTR) sequence of Klf4. Cell counting kit-8 assay, wound healing assay, Transwell migration assay and flow cytometric analysis were performed to evaluate the proliferative, migratory and apoptotic capabilities of the HCC cells. In the present study, miR-9-5p was revealed to be overexpressed in HCC as a novel upstream gene of Klf4. miR-9-5p expression was inversely associated with Klf4 expression in clinical samples. Additionally, Kaplan-Meier analysis revealed a markedly poor prognosis of HCC in the miR-9-5p high-expression group. Bioinformatics analysis revealed that miR-9-5p bound directly to the 3′-UTR of Klf4, which reduced the expression levels of Klf4. The miR-9-5p/Klf4 axis promoted HCC proliferation and migration, and inhibited HCC apoptosis. Furthermore, miR-9-5p upregulated the Bcl-2/Bax protein ratio and activated AKT/mTOR signaling. Taken together, these data demonstrated that the miR-9-5p/Klf4 axis was able to promote HCC progression, which may occur via regulation of the AKT signaling pathway, highlighting a potential novel target in HCC treatment.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ying Xue
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Zhipeng Lin
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Weifeng Song
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ning Yang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200082, P.R. China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
12
|
Cen WN, Pang JS, Huang JC, Hou JY, Bao WG, He RQ, Ma J, Peng ZG, Hu XH, Ma FC. The expression and biological information analysis of miR-375-3p in head and neck squamous cell carcinoma based on 1825 samples from GEO, TCGA, and peer-reviewed publications. Pathol Res Pract 2018; 214:1835-1847. [PMID: 30243807 DOI: 10.1016/j.prp.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/26/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The specific expression level and clinical significance of miR-375-3p in HNSCC had not been fully stated, as well as the overall biological function and molecular mechanisms. Therefore, we purpose to carry out a comprehensive meta-analysis to further explore the clinical significance and potential function mechanism of miR-375-3p in HNSCC. METHODS HNSCC-related data was gained from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and peer-reviewed journals. A meta-analysis was carried out to comprehensively explore the relationship between miR-375-3p expression level and clinicopathological features of HNSCC. And summary receiver operating characteristic (SROC) curve analysis was applied for evaluating disease diagnosis value of miR-375-3p. In addition, a biological pathway analysis was also performed to assess the possible molecular mechanism of miR-375-3p in HNSCC. RESULTS A total of 24 available records and references were added into analysis. The overall pooled meta-analysis outcome revealed a relatively lower expression level of miR-375-3p in HNSCC specimens than that in non-cancerous controls (P < 0.001). And SROC curve analysis showed that the pooled area under the SROC curve (AUC) was 0.90 (95%CI: 0.88-0.93). In addition, biological pathway analysis indicated that LAMC1, EDIL3, FN1, VEGFA, IGF2BP2, and IGF2BP3 maybe the latent target genes of miR-375-3p, which were greatly enriched in the pathways of beta3 integrin cell surface interactions and the binding of RNA via the insulin-like growth factor-2 mRNA-binding protein (IGF2BPs/IMPs/VICKZs). CONCLUSION MiR-375-3p expression clearly decreased in HNSCC samples compared with non-cancerous controls. Meanwhile, miR-375-3p may serve as a tumor suppressor via regulating tumor-related genes LAMC1, EDIL3, FN1, VEGFA, IGF2BP2, and IGF2BP3 in HNSCC.
Collapse
Affiliation(s)
- Wei-Ning Cen
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jin-Shu Pang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jia-Cheng Huang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jia-Yin Hou
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Wen-Guang Bao
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
13
|
Sun T, Li CT, Xiong L, Ning Z, Leung F, Peng S, Lu WW. miR-375-3p negatively regulates osteogenesis by targeting and decreasing the expression levels of LRP5 and β-catenin. PLoS One 2017; 12:e0171281. [PMID: 28158288 PMCID: PMC5291413 DOI: 10.1371/journal.pone.0171281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
Wnt signaling pathways are essential for bone formation. Previous studies showed that Wnt signaling pathways were regulated by miR-375. Thus, we aim to explore whether miR-375 could affect osteogenesis. In the present study, we investigated the roles of miR-375 and its downstream targets. Firstly, we revealed that miR-375-3p negatively modulated osteogenesis by suppressing positive regulators of osteogenesis and promoting negative regulators of osteogenesis. In addition, the results of TUNEL cell apoptosis assay showed that miR-375-3p induced MC3T3-E1 cell apoptosis. Secondly, miR-375-3p targeted low-density lipoprotein receptor-related protein 5 (LRP5), a co-receptor of the Wnt signaling pathways, and β-catenin as determined by luciferase activity assay, and it decreased the expression levels of LRP5 and β-catenin. Thirdly, the decline of protein levels of β-catenin was determined by immunocytochemistry and immunofluorescence. Finally, silence of LRP5 in osteoblast precursor cells resulted in diminished cell viability and cell proliferation as detected by WST-1-based colorimetric assay. Additionally, all the parameters including the relative bone volume from μCT measurement suggested that LRP5 knockout in mice resulted in a looser and worse-connected trabeculae. The mRNA levels of important negative modulators relating to osteogenesis increased after the functions of LRP5 were blocked in mice. Last but not least, the expression levels of LRP5 increased during the osteogenesis of MC3T3-E1, while the levels of β-catenin decreased in bone tissues from osteoporotic patients with vertebral compression fractures. In conclusion, we revealed miR-375-3p negatively regulated osteogenesis by targeting LRP5 and β-catenin. In addition, loss of functions of LRP5 damaged bone formation in vivo. Clinically, miR-375-3p and its targets might be used as diagnostic biomarkers for osteoporosis and might be also as novel therapeutic agents in osteoporosis treatment. The relevant products of miR-375-3p might be developed into molecular drugs in the future. These molecules could be used in translational medicine.
Collapse
Affiliation(s)
- Tianhao Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, Shenzhen, China
| | - Chen-Tian Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lifeng Xiong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ziyu Ning
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Frankie Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, Shenzhen, China
| | - William W. Lu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|