1
|
Ezhilarasan D. Thyromimetics and MASLD: Unveiling the Novel Molecules Beyond Resmetirom. J Gastroenterol Hepatol 2025; 40:367-378. [PMID: 39817461 DOI: 10.1111/jgh.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/26/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Resmetirom, the first FDA-approved drug for nonalcoholic steatohepatitis (NASH) with fibrosis in obese patients, when combined with lifestyle modifications, improves NASH resolution and reduces fibrosis by at least one stage. Low thyroid hormone (T3) levels are linked to a higher risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Epidemiological studies have confirmed the positive correlation between hypothyroidism and MASLD. Unraveling the molecular mechanisms of T3 signaling pathways in MASLD will enhance the prospects of identifying effective and specific targets. Therefore, this review discusses the significant role of thyroid hormones in the homeostasis of fat metabolism and describes the possible molecular mechanisms of thyromimetics in the treatment of MASLD. METHODS A comprehensive search in PubMed and EMBASE was conducted using the keywords "thyromimetics and liver diseases," "thyroid hormone and liver diseases," "hypothyroidism and liver diseases," "T3, T4 and liver disease," and "resmetirom and liver disease." Relevant papers published before October 2024 were included. RESULTS T3 treatment enhances mitochondrial respiration, biogenesis, β-oxidation, and mitophagy, reducing liver lipid accumulation. However, T3 treatment causes cardiotoxicity through thyroid hormone receptor (THR)α agonistic activity. To address this, molecules with high THRβ agonistic but lower THRα activity have been developed. Besides resmetirom, other THRβ agonists like TG68, CS27109, MB07811, and KB-141 show promising results in experimental studies. These molecules upregulate THRβ target genes, activate genes for fatty acid β-oxidation in mitochondria and fatty acid breakdown in peroxisomes, downregulate the genes involved in de novo lipogenesis, reduce inflammation by downregulating NF-κB/JNK/STAT3 signaling pathways, and accelerate fibrosis resolution by downregulating the expressions of fibrosis marker genes in NASH liver tissue. CONCLUSION Future clinical studies should thoroughly investigate THRβ agonists, including TG68, CS27109, MB07811, and KB-141.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Gogola-Mruk J, Kumor I, Wojtaszek G, Kulig K, Ptak A. GW0742 as a Potential TRα and TRβ Antagonist Reduces the Viability and Metabolic Activity of an Adult Granulosa Tumour Cell Line and Simultaneously Upregulates TRβ Expression. Cancers (Basel) 2024; 16:4069. [PMID: 39682255 DOI: 10.3390/cancers16234069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Clinical studies have demonstrated a correlation between alterations in the expression level of TRα and TRβ receptors in ovarian cancer cells and overall survival. Celecoxib and GW0742, commonly known as a COX-2 inhibitor and a PPARβ/δ agonist, are novel thyroid hormone receptor antagonists that bind to TRβ or both TRα and TRβ. METHODS The study was conducted on a non-luteinized ovarian granulosa cell line (HGrC1) and two rare ovarian cancer cell lines (COV434 and KGN). The expression of TRα and TRβ at the gene and protein levels was examined by real-time PCR and Western blot, respectively. The impact of GW0742 and celecoxib on the cell viability of the HGrC1, COV434 and KGN lines was evaluated using the PrestoBlue™ Cell Viability Reagent. The metabolic activity of the cells was analysed using the Seahorse XFp Analyzer. RESULTS Initially, we observed that the gene and protein expression levels of TRα and TRβ were higher in COV434 and KGN cells than in HGrC1 cells. Subsequently, it was demonstrated that T3 enhances the viability of HGrC1, COV434 and KGN cells. Furthermore, autoregulatory feedback loops were not observed during TRα or TRβ signalling in ovarian cancer cells, in contrast to the findings in healthy granulosa cells. Finally, we demonstrated that GW0742 reduced the viability and metabolic activity of granulosa cell tumours (GCTs). Simultaneously, we observed that GW0742 upregulated the expression of TRβ in GCT. CONCLUSIONS These findings suggest that GW0742 may be a novel adjuvant therapy for GCTs expressing TRα and TRβ.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Izabela Kumor
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Gabriela Wojtaszek
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Karolina Kulig
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
3
|
Zhu X, Cheng SY. Thyroid Hormone Receptors as Tumor Suppressors in Cancer. Endocrinology 2024; 165:bqae115. [PMID: 39226152 PMCID: PMC11406550 DOI: 10.1210/endocr/bqae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
Accumulated research has revealed the multifaceted roles of thyroid hormone receptors (TRs) as potent tumor suppressors across various cancer types. This review explores the intricate mechanisms underlying TR-mediated tumor suppression, drawing insights from preclinical mouse models and cancer biology. This review examines the tumor-suppressive functions of TRs, particularly TRβ, in various cancers using preclinical models, revealing their ability to inhibit tumor initiation, progression, and metastasis. Molecular mechanisms underlying TR-mediated tumor suppression are discussed, including interactions with oncogenic signaling pathways like PI3K-AKT, JAK-STAT, and transforming growth factor β. Additionally, this paper examines TRs' effect on cancer stem cell activity and differentiation, showcasing their modulation of key cellular processes associated with tumor progression and therapeutic resistance. Insights from preclinical studies underscore the therapeutic potential of targeting TRs to impede cancer stemness and promote cancer cell differentiation, paving the way for precision medicine in cancer treatment and emphasizing the potential of TR-targeted therapies as promising approaches for treating cancers and improving patient outcomes.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Wang J, Zhang Z, Liu H, Liu N, Hu Y, Guo W, Li X. Identification of 8 candidate microsatellite instability loci in colorectal cancer and validation of the ACVR2A mechanism in the tumor progression. Sci Rep 2024; 14:14145. [PMID: 38898042 PMCID: PMC11187151 DOI: 10.1038/s41598-024-62753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
This study probes the utility of biomarkers for microsatellite instability (MSI) detection and elucidates the molecular dynamics propelling colorectal cancer (CRC) progression. We synthesized a primer panel targeting 725 MSI loci, informed by The Cancer Genome Atlas (TCGA) and ancillary databases, to construct an amplicon library for next-generation sequencing (NGS). K-means clustering facilitated the distillation of 8 prime MSI loci, including activin A receptor type 2A (ACVR2A). Subsequently, we explored ACVR2A's influence on CRC advancement through in vivo tumor experiments and hematoxylin-eosin (HE) staining. Transwell assays gauged ACVR2A's role in CRC cell migration and invasion, while colony formation assays appraised cell proliferation. Western blotting illuminated the impact of ACVR2A suppression on CRC's PI3K/AKT/mTOR pathway protein expressions under hypoxia. Additionally, ACVR2A's influence on CRC-induced angiogenesis was quantified via angiogenesis assays. K-means clustering of NGS data pinpointed 32 MSI loci specific to tumor and DNA mismatch repair deficiency (dMMR) tissues. ACVR2A emerged as a pivotal biomarker, discerning MSI-H tissues with 90.97% sensitivity. A curated 8-loci set demonstrated 100% sensitivity and specificity for MSI-H detection in CRC. In vitro analyses corroborated ACVR2A's critical role, revealing its suppression of CRC proliferation, migration, and invasion. Moreover, ACVR2A inhibition under CRC-induced hypoxia markedly escalated MMP3, CyclinA, CyclinD1, and HIF1α protein expressions, alongside angiogenesis, by triggering the PI3K/AKT/mTOR cascade. The 8-loci ensemble stands as the optimal marker for MSI-H identification in CRC. ACVR2A, a central element within this group, deters CRC progression, while its suppression amplifies PI3K/AKT/mTOR signaling and angiogenesis under hypoxic stress.
Collapse
Affiliation(s)
- Jingyu Wang
- Molecular Oncology R&D Department, Guangzhou Wondfo Biotechnology Co.,LTD., Guangzhou, China
| | - Zhe Zhang
- Molecular Oncology R&D Department, Guangzhou Wondfo Biotechnology Co.,LTD., Guangzhou, China
| | - Hui Liu
- Molecular Oncology R&D Department, Guangzhou Wondfo Biotechnology Co.,LTD., Guangzhou, China
| | - Nian Liu
- Molecular Oncology R&D Department, Guangzhou Wondfo Biotechnology Co.,LTD., Guangzhou, China
| | - Yucheng Hu
- Molecular Oncology R&D Department, Guangzhou Wondfo Biotechnology Co.,LTD., Guangzhou, China
| | - Wenjuan Guo
- Molecular Oncology R&D Department, Guangzhou Wondfo Biotechnology Co.,LTD., Guangzhou, China.
| | - Xiangzhao Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Guo S, Ding R, Zhao Q, Wang X, Lv S, Ji XY. Recent Insights into the Roles of PEST-Containing Nuclear Protein. Mol Biotechnol 2024:10.1007/s12033-024-01188-5. [PMID: 38762838 DOI: 10.1007/s12033-024-01188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
PEST-containing nuclear protein (PCNP), a short-lived small nuclear protein with 178 amino acids, is a nuclear protein containing two PEST sequences. PCNP is highly expressed in several malignant tumors such as cervical cancer, rectal cancer, and lung cancer. It is also associated with cell cycle regulation and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Wnt signaling pathways during tumor growth. The present article discuss how PCNP regulates the PI3K/AKT/mTOR and Wnt signaling pathways and related proteins, and the ubiquitination of PCNP regulates tumor cell cycle as well as the progress of the application of PCNP in the pathophysiology and treatment of colon cancer, human ovarian cancer, thyroid cancer, lung adenocarcinoma and oral squamous cell carcinoma. The main relevant articles were retrieved from PubMed, with keywords such as PEST-containing nuclear protein (PCNP), cancer (tumor), and signaling pathways as inclusion/exclusion criteria. Relevant references has been included and cited in the manuscript.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qian Zhao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xu Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, 475004, Henan, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, 450064, Henan, China.
| |
Collapse
|
6
|
Rehman G, Kashyap J, Srivastav AK, Rizvi S, Kumar U, Tyagi RK. Truncated variants of thyroid hormone receptor beta display disease-inflicting malfunctioning at cellular level. Exp Cell Res 2024; 437:114017. [PMID: 38555013 DOI: 10.1016/j.yexcr.2024.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Thyroid hormone receptor β (THRβ) is a member of the nuclear receptor superfamily of ligand-modulated transcription factors. Upon ligand binding, THRβ sequentially recruits the components of transcriptional machinery to modulate target gene expression. In addition to regulating diverse physiological processes, THRβ plays a crucial role in hypothalamus-pituitary-thyroid axis feedback regulation. Anomalies in THRβ gene/protein structure are associated with onset of diverse disease states. In this study, we investigated disease-inflicting truncated variants of THRβ using in-silico analysis and cell-based assays. We examined the THRβ truncated variants on multiple test parameters, including subcellular localization, ligand-receptor interactions, transcriptional functions, interaction with heterodimeric partner RXR, and receptor-chromatin interactions. Moreover, molecular dynamic simulation approaches predicted that shortened THRβ-LBD due to point mutations contributes proportionally to the loss of structural integrity and receptor stability. Deviant subcellular localization and compromised transcriptional function were apparent with these truncated variants. Present study shows that 'mitotic bookmarking' property of some THRβ variants is also affected. The study highlights that structural and conformational attributes of THRβ are necessary for normal receptor functioning, and any deviations may contribute to the underlying cause of the inflicted diseases. We anticipate that insights derived herein may contribute to improved mechanistic understanding to assess disease predisposition.
Collapse
Affiliation(s)
- Ghausiya Rehman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit Kumar Srivastav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sheeba Rizvi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India; Nutrition Biology Department, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Asbaghi O, Shimi G, Davoodi SH, Pourvali K, Eslamian G, Zand H. Thyroid Hormones Imbalances and Risk of Colorectal Cancer: a Meta-analysis. J Gastrointest Cancer 2024; 55:105-117. [PMID: 37898961 DOI: 10.1007/s12029-023-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE No conclusive information is available about the association between hypothyroidism or hyperthyroidism and risk of colorectal cancer (CRC). We therefore aimed to summarize the findings of observational studies on the relation between hypothyroidism or hyperthyroidism and risk of CRC. METHODS A literature search was conducted using relevant keywords in online databases for appropriate publications through July 2023. Random effects model was used to calculate combined effect sizes (ESs) and 95% confidence intervals (CIs) to investigate relationship between hypothyroidism or hyperthyroidism and CRC risk. RESULTS Totally, we included 13 studies in the current systematic review and meta-analysis, with a total sample size of 33,557,450 individuals and 25,363 cases of CRC. Pooling 13 effect sizes revealed no significant association between hypothyroidism and risk of CRC (combined effect size: 1.13, 95% CI 0.87-1.48, P = 0.343). There was also no significant association between hyperthyroidism and risk of CRC (combined effect size: 1.09, 95% CI 0.75-1.57, P = 0.638). Additionally, there were significant associations between hypothyroidism and risk of CRC in the Far Eastern studies, between hyperthyroidism and risk of CRC in the Middle East, along with small sample size studies. CONCLUSIONS This meta-analysis did not reveal any association between hypothyroidism or hyperthyroidism and risk of CRC. TRIAL REGISTRATION PROSPERO CRD42022331089.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Sayed Hossein Davoodi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran.
| |
Collapse
|
8
|
Du Q, Zheng Z, Wang Y, Yang L, Zhou Z. Genetically predicted thyroid function and risk of colorectal cancer: a bidirectional Mendelian randomization study. J Cancer Res Clin Oncol 2023; 149:14015-14024. [PMID: 37543542 DOI: 10.1007/s00432-023-05233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Observational studies have reported an association between thyroid function and colorectal cancer (CRC), with conflicting results. Elucidating the causal relationship between thyroid function and CRC facilitates the development of new preventive strategies to reduce CRC incidence. METHOD We applied a two-sample Mendelian randomization (MR) method to evaluate the causal relationship between five thyroid-related indexes, including hyperthyroidism, hypothyroidism, thyroid stimulating hormone (TSH), free thyroxine (FT4) and basal metabolic rate (BMR), and CRC. Genome-wide association study statistics for thyroid-related phenotypes were obtained from the ThyroidOmics consortium, and summary statistics for genetic associations with CRC were obtained from the FinnGen consortium. We set a series of criteria to screen single nucleotide polymorphisms (SNPs) as instrumental variables and then performed bidirectional MR analysis, stratified analysis and extensive sensitivity analysis. Multiplicative random-effects inverse variance weighted was the primary analysis method, supplemented by weighted median and MR-Egger. RESULT We identified 12 SNPs for hyperthyroidism, 10 SNPs for hypothyroidism, 41 SNPs for TSH, 18 SNPs for FT4, and 556 SNPs for BMR. Genetically predicted hyperthyroidism, hypothyroidism, TSH, and FT4 were not associated with CRC risk (all P > 0.05). Sensitivity analysis revealed no heterogeneity or pleiotropy. Genetically predicted BMR was significantly associated with increased CRC risk after removing outlier (OR = 1.30, P = 0.0029). Stratified analysis showed that BMR was significantly associated with colon cancer (OR = 1.33, P = 0.0074) but not rectal cancer. In the reverse analysis, there was no evidence of an effect of CRC on thyroid function (all P > 0.05). CONCLUSION Our bidirectional MR analysis provides new insights into the relationship between thyroid function and CRC. CRC prevention may benefit from enhanced screening of high BMR populations.
Collapse
Affiliation(s)
- Qiang Du
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Zhaoyang Zheng
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yong Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Lie Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Biotherapy and Cancer Center, Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zongguang Zhou
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
9
|
Gillis NE, Cozzens LM, Wilson ER, Smith NM, Tomczak JA, Bolf EL, Carr FE. TRβ Agonism Induces Tumor Suppression and Enhances Drug Efficacy in Anaplastic Thyroid Cancer in Female Mice. Endocrinology 2023; 164:bqad135. [PMID: 37702560 PMCID: PMC10506733 DOI: 10.1210/endocr/bqad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Thyroid hormone receptor beta (TRβ) is a recognized tumor suppressor in numerous solid cancers. The molecular signaling of TRβ has been elucidated in several cancer types through re-expression models. Remarkably, the potential impact of selective activation of endogenous TRβ on tumor progression remains largely unexplored. We used cell-based and in vivo assays to evaluate the effects of the TRβ agonist sobetirome (GC-1) on a particularly aggressive and dedifferentiated cancer, anaplastic thyroid cancer (ATC). Here we report that GC-1 reduced the tumorigenic phenotype, decreased cancer stem-like cell populations, and induced redifferentiation of the ATC cell lines with different mutational backgrounds. Of note, this selective activation of TRβ amplified the effects of therapeutic agents in blunting the aggressive cell phenotype and stem cell growth. In xenograft assays, GC-1 alone inhibited tumor growth and was as effective as the kinase inhibitor, sorafenib. These results indicate that selective activation of TRβ not only induces a tumor suppression program de novo but enhances the effectiveness of anticancer agents, revealing potential novel combination therapies for ATC and other aggressive solid tumors.
Collapse
Affiliation(s)
- Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Lauren M Cozzens
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Emily R Wilson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Noah M Smith
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Insights on the Association between Thyroid Diseases and Colorectal Cancer. J Clin Med 2023; 12:jcm12062234. [PMID: 36983233 PMCID: PMC10056144 DOI: 10.3390/jcm12062234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Benign and malignant thyroid diseases (TDs) have been associated with the occurrence of extrathyroidal malignancies (EMs), including colorectal cancers (CRCs). Such associations have generated a major interest, as their characterization may provide useful clues regarding diseases’ etiology and/or progression, with the possible identification of shared congenital and environmental elements. On the other hand, elucidation of the underlying molecular mechanism(s) could lead to an improved and tailored clinical management of these patients and stimulate an increased surveillance of TD patients at higher threat of developing EMs. Here, we will examine the epidemiological, clinical, and molecular findings connecting TD and CRC, with the aim to identify possible molecular mechanism(s) responsible for such diseases’ relationship.
Collapse
|
11
|
Asghar MY, Knuutinen T, Holm E, Nordström T, Nguyen VD, Zhou Y, Törnquist K. Suppression of Calcium Entry Modulates the Expression of TRβ1 and Runx2 in Thyroid Cancer Cells, Two Transcription Factors That Regulate Invasion, Proliferation and Thyroid-Specific Protein Levels. Cancers (Basel) 2022; 14:cancers14235838. [PMID: 36497320 PMCID: PMC9740761 DOI: 10.3390/cancers14235838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The thyroid hormone receptor beta 1 (TRβ1) is downregulated in several human cancer cell types, which has been associated with development of an aggressive tumor phenotype and the upregulation of Runt-related transcription factor 2 (Runx2). In this study, we show that the expression of TRβ1 protein is downregulated in human thyroid cancer tissues and cell lines compared with the normal thyroid tissues and primary cell line, whilst Runx2 is upregulated under the same conditions. In contrast, the expression of TRβ1 is upregulated, whereas Runx2 is downregulated, in STIM1, Orai1 and TRPC1 knockdown cells, compared to mock transfected cells. To study the functional significance of Runx2 in follicular thyroid cancer ML-1 cells, we downregulated it by siRNA. This increased store-operated calcium entry (SOCE), but decreased cell proliferation and invasion. Moreover, restoring TRβ1 expression in ML-1 cells decreased SOCE, basal and sphingosine 1-phosphate (S1P)-evoked invasion, the expression of the promigratory S1P3 receptor and pERK1/2, and at the same time increased the expression of the thyroid specific proteins thyroglobulin, thyroperoxidase, and thyroid transcription factor-1. In conclusion, we show that TRβ1 is downregulated in thyroid cancer cells and that restoration of its expression can reverse the cancer cell phenotype towards a normal thyroid cell phenotype.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
- Correspondence: (M.Y.A.); (K.T.)
| | - Taru Knuutinen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Emilia Holm
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
- Correspondence: (M.Y.A.); (K.T.)
| |
Collapse
|
12
|
Shimi G, Pourvali K, Ghorbani A, Nooshin S, Zare Karizi S, Iranirad R, Zand H. Alterations of DNA methylation and expression of genes related to thyroid hormone metabolism in colon epithelium of obese patients. BMC Med Genomics 2022; 15:229. [PMID: 36320063 PMCID: PMC9628115 DOI: 10.1186/s12920-022-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Colorectal cancer is common among obese individuals. The purpose of the current study was to determine changes in DNA methylation status and mRNA expression of thyroid hormone receptor beta (THRB), as a tumor suppressor, and thyroid hormone inactivating enzyme, type 3 deiodinase (DIO3) genes, in human epithelial colon tissues of healthy obese individuals.
Methods Colon biopsies were analyzed by methylation sensitive-high resolution melting (MS-HRM) to investigate promoter methylation of DIO3 and THRB, and by quantitative real-time polymerase chain reaction to assay expression of DIO3 and THRB mRNA on eighteen obese and twenty-one normal-weight healthy men.
Results There was no significant difference in mean methylation levels at the THRB promoter region between the two groups. Nevertheless, obesity decreased THRB expression levels, significantly (P < 0.05; fold change: 0.19). Furthermore, obesity attenuated DNA methylation (P < 0.001) and enhanced mRNA expression of DIO3 (P < 0.05; fold change: 3). Conclusions Our findings suggest that obesity may alter expression of THRB and DIO3 genes through epigenetic mechanism. Alterations of THRB and DIO3 expressions may predispose colon epithelium of obese patients to neoplastic transformation.
Collapse
Affiliation(s)
- Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Sajad Nooshin
- MSc Molecular Genetics, Islamic Azad University, Pishva-Varamin, Iran
| | - Shohreh Zare Karizi
- Department of Genetics, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | - Reza Iranirad
- Sasan Alborz Biomedical Research Center, Masoud Gastroenterology and Hepatology Clinic, Tehran, 14117-13135, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran.
| |
Collapse
|
13
|
Pourvali K, Shimi G, Ghorbani A, Shakery A, Shirazi FH, Zand H. Selective thyroid hormone receptor beta agonist, GC-1, is capable to reduce growth of colorectal tumor in syngeneic mouse models. J Recept Signal Transduct Res 2022; 42:495-502. [PMID: 35473566 DOI: 10.1080/10799893.2022.2032748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The effect of thyroid hormone (TH) on cancers was proposed more than 100 years ago; however, conclusions are conflicting. THs are precisely regulated at tissue and cellular levels. It seems that this regulation is altered in cancers. Thyroid hormone receptor beta (TRβ) has anti-proliferative and tumor-suppressive effects in many cancer cells. Therefore, we decided to investigate thyroid hormone receptor beta (THRB) expression and activation by the selective agonist, GC-1, on tumor growth in a syngeneic mouse model of colorectal cancer (CRC) and colon cell lines. METHODS In vitro cell viability assay using MTT analysis, cell cycle analysis by PI staining, and FACS analysis were performed. In vivo tumor growth measurements were carried out by caliper and [18F] Fluoro-2-deoxy-2-D-glucose (FDG) - PET imaging. Gene expressions were determined using quantitative-PCR. RESULTS Some concentrations of GC-1 had a marked negative effect on the cell viability of colorectal cell lines. Cell cycle analysis showed that the anti-proliferative effect of GC-1 may not result from cell cycle arrest or apoptosis. Tumor growth analysis in mice harboring colorectal tumor showed that GC-1 treatment for 8 d profoundly inhibited tumor growth and 18FDG uptake. THRB expression was decreased in mice tumor; however, it was upregulated following GC-1 administration. CONCLUSIONS Our results showed that specific activation of TRβ by GC-1 had negative effect on tumor growth and restored its gene expression in tumors of CRC mice model.
Collapse
Affiliation(s)
- Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Shakery
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Hosseini Shirazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Wang R, Wang C, Meng XJ, Wei L. miR-125-5p inhibits thyroid cancer growth and metastasis by suppressing the ERK/PI3K/AKT signal pathway. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00175-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Davidson CD, Gillis NE, Carr FE. Thyroid Hormone Receptor Beta as Tumor Suppressor: Untapped Potential in Treatment and Diagnostics in Solid Tumors. Cancers (Basel) 2021; 13:4254. [PMID: 34503062 PMCID: PMC8428233 DOI: 10.3390/cancers13174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
There is compelling evidence that the nuclear receptor TRβ, a member of the thyroid hormone receptor (TR) family, is a tumor suppressor in thyroid, breast, and other solid tumors. Cell-based and animal studies reveal that the liganded TRβ induces apoptosis, reduces an aggressive phenotype, decreases stem cell populations, and slows tumor growth through modulation of a complex interplay of transcriptional networks. TRβ-driven tumor suppressive transcriptomic signatures include repression of known drivers of proliferation such as PI3K/Akt pathway, activation of novel signaling such as JAK1/STAT1, and metabolic reprogramming in both thyroid and breast cancers. The presence of TRβ is also correlated with a positive prognosis and response to therapeutics in BRCA+ and triple-negative breast cancers, respectively. Ligand activation of TRβ enhances sensitivity to chemotherapeutics. TRβ co-regulators and bromodomain-containing chromatin remodeling proteins are emergent therapeutic targets. This review considers TRβ as a potential biomolecular diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Cole D. Davidson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Noelle E. Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Frances E. Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| |
Collapse
|
16
|
Massaro C, Safadeh E, Sgueglia G, Stunnenberg HG, Altucci L, Dell’Aversana C. MicroRNA-Assisted Hormone Cell Signaling in Colorectal Cancer Resistance. Cells 2020; 10:cells10010039. [PMID: 33396628 PMCID: PMC7823834 DOI: 10.3390/cells10010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Crescenzo Massaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Elham Safadeh
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| | - Carmela Dell’Aversana
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| |
Collapse
|
17
|
Li X, Liu H, Wang J, Qin J, Bai Z, Chi B, Yan W, Chen X. Curcumol induces cell cycle arrest and apoptosis by inhibiting IGF-1R/PI3K/Akt signaling pathway in human nasopharyngeal carcinoma CNE-2 cells. Phytother Res 2018; 32:2214-2225. [PMID: 30069933 DOI: 10.1002/ptr.6158] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Abstract
Curcumol has been proved to possess antitumor effects in vivo and in vitro in several cancers. Previously, we have found that curcumol induced apoptosis in CNE-2 cells, but its underlying mechanism has not yet been studied well. Recently, our team clarified that curcumol inhibited colorectal cancer cells' growth partially through insulin-like growth factor 1 receptor (IGF-1R) pathway. Given the key importance of IGF-1R pathway in tumorigenesis, we want to explore whether curcumol effects on nasopharyngeal carcinoma (NPC) cells relates to IGF-1R and its downstream pathway inactivation. In this study, we found that curcumol inhibited IGF-1R and p-Akt expression in a dose- and time-dependent way. In addition, it also regulated their downstream GSK-3β's activity in CNE-2 cells, which further triggering alterations in the expression of cycle- and apoptosis-related molecules, and then leading to G0/G1-phase arrest and apoptosis. Moreover, curcumol's effect on CNE-2 cells was partly eliminated by IGF-1R's agonist IGF-1. In conclusion, our findings indicated that the inhibitory effect of curcumol on proliferation of NPC cells is related to the inhibition of IGF-1R and its downstream PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Haowei Liu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Juan Wang
- College of Pharmacy, Guilin Medical University, Guilin, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Jianli Qin
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Zhun Bai
- Intensive Care Unit, Zhuzhou Central Hospital, Zhuzhou, China
| | - Bixia Chi
- Digestive System Department, The Frist People's Hospital of Yueyang, Yueyang, China
| | - Wei Yan
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
18
|
Thyroid hormone receptor beta-1 expression in early breast cancer: a validation study. Breast Cancer Res Treat 2018; 171:709-717. [DOI: 10.1007/s10549-018-4844-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
|
19
|
Integrin α9 Suppresses Hepatocellular Carcinoma Metastasis by Rho GTPase Signaling. J Immunol Res 2018; 2018:4602570. [PMID: 29951557 PMCID: PMC5989280 DOI: 10.1155/2018/4602570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Integrin subunit alpha 9 (ITGA9) mediates cell-cell and cell-matrix adhesion, cell migration, and invasion through binding different kinds of extracellular matrix (ECM) components. However, its potential role and underlying molecular mechanisms remain unclear in hepatocellular carcinoma (HCC). Here, we found that ITGA9 expression was obviously decreased in patients with HCC, which was negatively correlated with HCC growth and metastasis. ITGA9 overexpression significantly inhibited cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Our data demonstrated that the inhibitory effect of ITGA9 on HCC cell motility was associated with reduced phosphorylation of focal adhesion kinase (FAK) and c-Src tyrosine kinase (Src), disrupted focal adhesion reorganization, and decreased Rac1 and RhoA activity. Our data suggest ITGA9, as a suppressor of HCC, prevents tumor cell migration and invasiveness through FAK/Src-Rac1/RhoA signaling.
Collapse
|
20
|
Peng X, Zhang Y, Sun Y, Wang L, Song W, Li Q, Zhao R. Overexpressing modified human TRβ1 suppresses the proliferation of breast cancer MDA-MB-468 cells. Oncol Lett 2018; 16:785-792. [PMID: 29963146 PMCID: PMC6019938 DOI: 10.3892/ol.2018.8764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
A number of studies have indicated that thyroid hormone receptor β1 (TRβ1) functions as a tumor suppressor. TRs mediate transcriptional responses through a highly conserved DNA-binding domain (DBD). A novel rat TRβ isoform (rTRβΔ) was previously identified, in which a novel exon, N (108 bp), is located between exons 3 and 4 within the DBD; this exon represents the only difference between rTRβΔ and rTRβ1. In vitro, rTRβΔ exhibits a stronger tumor-suppressive capacity than rTRβ1, and further analysis revealed a high level of conservation between the rat and human DBD sequences. In the present study, an artificially modified human TRβ1 (m-hTRβ1) was constructed via the introduction of the 108-bp sequence into the corresponding position of the wild-type human TRβ1 (wt-hTRβ1) DBD. An electrophoretic mobility shift assay and transfection experiments confirmed that m-hTRβ1 is functional. Overexpression of m-hTRβ1 inhibits the proliferation of MDA-MB-468 cells in the presence of triiodothyronine by promoting apoptosis, which may be associated with the upregulation of Caspase-3 and Bak gene expression and the activation of the Caspase-3 protein. In addition, the pro-apoptotic effect of m-hTRβ1 was stronger, compared with wt-hTRβ1. These results indicated that m-hTRβ1 may act as a tumor suppressor in MDA-MB-468 cells. These data provided a novel insight into gene therapy for breast cancer.
Collapse
Affiliation(s)
- Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China.,Department of Clinical Laboratory, Key Discipline of Clinical Laboratory Medicine of Shandong, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yangyang Zhang
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China.,Department of Clinical Laboratory, Key Discipline of Clinical Laboratory Medicine of Shandong, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yanli Sun
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China.,Department of Clinical Laboratory, Key Discipline of Clinical Laboratory Medicine of Shandong, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Lujuan Wang
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China.,Department of Clinical Laboratory, Key Discipline of Clinical Laboratory Medicine of Shandong, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Song
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China.,Department of Clinical Laboratory, Key Discipline of Clinical Laboratory Medicine of Shandong, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Qian Li
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China.,Department of Clinical Laboratory, Key Discipline of Clinical Laboratory Medicine of Shandong, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China.,Department of Clinical Laboratory, Key Discipline of Clinical Laboratory Medicine of Shandong, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
21
|
Peng X, Zhou Y, Sun Y, Song W, Meng X, Zhao C, Zhao R. Overexpression of modified human TRβ1 suppresses the growth of hepatocarcinoma SK-hep1 cells in vitro and in xenograft models. Mol Cell Biochem 2018; 449:207-218. [PMID: 29679278 PMCID: PMC6223806 DOI: 10.1007/s11010-018-3357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Association studies suggest that TRβ1 functions as a tumor suppressor. Thyroid hormone receptors (TRs) mediate transcriptional responses through a highly conserved DNA-binding domain (DBD). We previously constructed an artificially modified human TRβ1 (m-TRβ1) via the introduction of a 108-bp exon sequence into the corresponding position of the wild-type human TRβ1 (TRβ1) DBD. Studies confirmed that m-TRβ1 was functional and could inhibit the proliferation of breast cancer MDA-MB-468 cells in vitro. To understand the role of m-TRβ1 in liver tumor development, we adopted a gain-of-function approach by stably expressing TRβ (m-TRβ1 and TRβ1) genes in a human hepatocarcinoma cell line, SK-hep1 (without endogenous TRβ), and then evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. In the presence of 3,5,3-l-triiodothyronine (T3), the expression of TRβ in SK-hep1 cells inhibited cancer cell proliferation and impeded tumor cell migration through the up-regulation of 4-1BB, Caspase-3, and Bak gene expression; down-regulation of Bcl-2 gene expression; and activation of the Caspase-3 protein. TRβ expression in SK-hep1 led to less tumor growth in xenograft models. Additionally, the anti-tumor effect of m-TRβ1 was stronger than that of TRβ1. These data indicate that m-TRβ1 can act as a tumor suppressor in hepatocarcinoma and its role was significantly better than that of TRβ1.
Collapse
Affiliation(s)
- Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yuntao Zhou
- Central Hospital of Zibo, Zibo, 255020, Shandong, China
| | - Yanli Sun
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wei Song
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Chunling Zhao
- Key Laboratory of Biological Medicine in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China.
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
22
|
Shen J, Zeng L, Pan L, Yuan S, Wu M, Kong X. Tetramethylpyrazine regulates breast cancer cell viability, migration, invasion and apoptosis by affecting the activity of Akt and caspase-3. Oncol Lett 2018. [PMID: 29541225 DOI: 10.3892/ol.2018.7851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tetramethylpyrazine (TMP), an effective component of the traditional Chinese medicine Chuanxiong Hort, has been proven to exhibit a beneficial effect in a number of types of malignant epithelial cancer. However, the mode of action of TMP on breast cancer cells remains unknown. The aim of the present study was to investigate the regulatory effect of TMP on breast cancer cells and its underlying molecular mechanism of action. Different concentrations of TMP were used to treat breast cancer cells, and subsequently, the effects on the viability, apoptosis, and migration and invasion abilities were determined. In addition, the expression and activity levels of the protein kinase B (Akt) signaling pathway and caspase-3 were explored via reverse transcription-quantitative polymerase chain reaction and western blot analysis. The results of the present study revealed that TMP significantly inhibited the viability, migration and invasion rates, and increased the apoptosis of MDA-MB-231 cells in a dose-dependent manner. The minimum effective dose was ~1,600 µM. Additional mechanistic studies demonstrated that 1,600 and 3,200 µM TMP significantly decreased the gene expression and activity of Akt and increased the activity of caspase-3. This mechanism may be responsible for the inhibition of viability, migration and invasion, and activation of apoptosis in breast cancer cells. The results of the present study suggested that TMP may be used in chemotherapy against breast cancer.
Collapse
Affiliation(s)
- Jianliang Shen
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Linwen Zeng
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Liangming Pan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Shaofeng Yuan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Ming Wu
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Xiongdong Kong
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| |
Collapse
|
23
|
Zhang Y, Dai X, Yang S, Zhang C, Han M, Huang HF, Fan J. Maternal low thyroxin levels are associated with adverse pregnancy outcomes in a Chinese population. PLoS One 2017; 12:e0178100. [PMID: 28542464 PMCID: PMC5441606 DOI: 10.1371/journal.pone.0178100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/06/2017] [Indexed: 12/21/2022] Open
Abstract
Although thyroid dysfunction in early pregnancy may have adverse effects on pregnancy outcomes, few studies have examined the relationship between maternal low free thyroxin (FT4) levels in both first and third trimesters of pregnancy and the incidence of adverse pregnancy outcomes. We hypothesized that low FT4 levels in either first or third trimesters of pregnancy may have different effects on pregnancy outcomes. The study included 6,031 mothers who provided both first and third pregnancy serum samples for analyses of thyroid function. Adverse pregnancy outcomes, such as gestational diabetes mellitus (GDM), pregnancy-induced hypertension and preeclampsia, were diagnosed using the oral glucose tolerance test, blood pressure and urine protein test. Serum metabolites like adenosine and its analogues were identified using hydrophilic interaction liquid chromatography (HILIC)-tandem mass spectrometry (MS/MS). The incidence of hypothyroidism in pregnant women tended to increase with age and pre-pregnancy body mass index (BMI). The incidence of GDM was negatively correlated with maternal FT4 levels during early pregnancy while the incidence of preeclampsia was negatively correlated with maternal FT4 levels during late pregnancy. The incidence of pregnancy-induced hypertension was not significantly correlated with maternal FT4 levels. The women who had isolated maternal hypothyroxemia (IMH) in the third trimester of pregnancy had an increased risk of developing preeclampsia. Some metabolites like adenosine and its analogues in the serum were significantly changed in pregnant mothers with IMH. In conclusion, low FT4 levels during pregnancy are a risk factor for GDM and preeclampsia. Adenosine and its analogues may be important bridges between IMH and preeclampsia.
Collapse
Affiliation(s)
- Yong Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobei Dai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuai Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mi Han
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxia Fan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|