1
|
Lv Y, Xu L. Tamoxifen Regulates Epithelial–Mesenchymal Transition in Endometrial Cancer <i>via</i> the CANP10/NRP1 Signaling Pathway. Biol Pharm Bull 2022; 45:1818-1824. [DOI: 10.1248/bpb.b22-00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
| | - Lei Xu
- Yantai Yuhuangding Hospital
| |
Collapse
|
2
|
Qin Y, Liang R, Lu P, Lai L, Zhu X. Depicting the Implication of miR-378a in Cancers. Technol Cancer Res Treat 2022; 21:15330338221134385. [PMID: 36285472 PMCID: PMC9608056 DOI: 10.1177/15330338221134385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-378a (miR-378a), including miR-378a-3p and miR-378a-5p, are encoded in PPARGC1B gene. miR-378a is essential for tumorigenesis and is an independent prognostic biomarker for various malignant tumors. Aberrant expression of miR-378a affects several physiological and pathological processes, including proliferation, apoptosis, tumorigenesis, cancer invasion, metastasis, and therapeutic resistance. Interestingly, miR-378a has a dual functional role in either promoting or inhibiting tumorigenesis, independent of the cancer type. In this review, we comprehensively summarized the role and regulatory mechanisms of miR-378a in cancer development, hoping to provide a direction for its potential use in cancer therapy.
Collapse
Affiliation(s)
- Yuelan Qin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Renba Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lin Lai
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China,Affiliated Wuming Hospital of Guangxi Medical University, Nanning, People's Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, People's Republic of China,Xiaodong Zhu, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 22 Shuang Yong Road, Nanning 530021, People's Republic of China.
| |
Collapse
|
3
|
Montazer M, Taghehchian N, Mojarrad M, Moghbeli M. Role of microRNAs in regulation of WNT signaling pathway in urothelial and prostate cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Urothelial cancer (UC) and prostate cancer (PCa) are the most common cancers among men with a high ratio of mortality in advanced-stages. The higher risk of these malignancies among men can be associated with higher carcinogens exposure. Molecular pathology of UC and PCa is related to the specific mutations and aberrations in some signaling pathways. WNT signaling is a highly regulated pathway that has a pivotal role during urothelial and prostate development and homeostasis. This pathway also plays a vital role in adult stem cell niches to maintain a balance between stemness and differentiation. Deregulation of the WNT pathway is frequently correlated with tumor progression and metastasis in urothelial and prostate tumors. Therefore, regulatory factors of WNT pathways are being investigated as diagnostic or prognostic markers and novel therapeutic targets during urothelial and prostate tumorigenesis. MicroRNAs (miRNAs) have a pivotal role in WNT signaling regulation in which there are interactions between miRNAs and WNT signaling pathway during tumor progression. Since, the miRNAs are sensitive, specific, and noninvasive, they can be introduced as efficient biomarkers of tumor progression.
Main body
In present review, we have summarized all of the miRNAs that have been involved in regulation of WNT signaling pathway in urothelial and prostate cancers.
Conclusions
It was observed that miRNAs were mainly involved in regulation of WNT signaling in bladder cancer cells through targeting the WNT ligands and cytoplasmic WNT components such as WNT5A, WNT7A, CTNNB1, GSK3β, and AXIN. Whereas, miRNAs were mainly involved in regulation of WNT signaling in prostate tumor cells via targeting the cytoplasmic WNT components and WNT related transcription factors such as CTNNB1, GSK3β, AXIN, TCF7, and LEF1. MiRNAs mainly functioned as tumor suppressors in bladder and prostate cancers through the WNT signaling inhibition. This review paves the way of introducing a noninvasive diagnostic panel of WNT related miRNAs in urothelial and prostate tumors.
Collapse
|
4
|
Wang KX, Du GH, Qin XM, Gao L. Compound Kushen Injection intervenes metabolic reprogramming and epithelial-mesenchymal transition of HCC via regulating β-catenin/c-Myc signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153781. [PMID: 34649212 DOI: 10.1016/j.phymed.2021.153781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers worldwide. The invasion and metastasis characteristics of HCC dramatically affect the prognosis and survival of HCC patients. Compound Kushen Injection (CKI) is a GMP produced, proverbially applied traditional Chinese medicine formula in China to treat cancer-associated pains, and used as an adjunctive therapy for HCC. Until so far, whether CKI could suppress the metastasis of HCC through regulation of epithelial-mesenchymal transition or metabolic reprogramming is still ambiguous. PURPOSE In this study, the anti-metastasis effects of CKI were clarified and its pharmacological mechanisms were systematically explored. METHODS Cell invasion and cell adhesion assay were performed in SMMC-7721 cells to assess the anti-metastasis role of CKI, and the histopathological evaluation and biochemical detection were utilized in DEN-induced HCC rats to verify the anti-HCC effect of CKI. Serum and liver samples were analyzed with 1H NMR metabolomics approach to screen the differential metabolites and further target quantification the content of key metabolites. Finally, western blotting and immunofluorescence assay were applied to verify the crucial signaling pathway involved in metabolites. RESULTS CKI markedly repressed the invasion and adhesion in SMMC-7721 cells and significantly improved the liver function of DEN-induced HCC rats. CKI significantly regulated the expression of epithelial-mesenchymal transition (EMT) markers (Vimentin and E-cadherin). Metabolomics results showed that CKI regulated the metabolic reprogramming of HCC by inhibiting the key metabolites (citrate and lactate) and enzymes (HK and PK) in glycolysis process. Importantly, we found that c-Myc mediates the inhibitory effect of CKI on glycolysis. We further demonstrated that CKI inhibits c-Myc expression through modulating Wnt/β-catenin pathway in SMMC-7721 cells and DEN-induced HCC rats. Furthermore, through activating Wnt/β-catenin pathway with LiCl, the inhibitory effects of CKI on HCC were diminished. CONCLUSION Together, this study reveals that CKI intervenes metabolic reprogramming and epithelial-mesenchymal transition of HCC via regulating β-catenin/c-Myc signaling pathway. Our research provides a new understanding of the mechanism of CKI against invasion and metastasis of HCC from the perspective of metabolic reprogramming.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
5
|
Zhao C, Yuan G, Jiang Y, Xu J, Ye L, Zhan W, Wang J. Capn4 contributes to tumor invasion and metastasis in gastric cancer via activation of the Wnt/β-catenin/MMP9 signalling pathways. Exp Cell Res 2020; 395:112220. [PMID: 32777225 DOI: 10.1016/j.yexcr.2020.112220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Capn4, a small regulatory subunit of the calpain proteolytic system, functions as a potential tumor promoter in several cancers. However, the biological functions and molecular mechanisms of Capn4 in gastric cancer (GC) remain poorly understood. In the current study, we found that upregulation of Capn4 was detected frequently in GC tissues, and was associated with significantly worse survival among the GC patients. Multivariate analyses revealed that abundance of Capn4 was an independent predictive marker for the poor prognosis of GC. Further, Capn4 knockdown notably suppressed GC invasion and metastasis in vitro. Consistently, a xenograft assay showed that silencing of Capn4 in GC cells suppressed their dissemination to lung tissue in vivo. Moreover, our results indicated that Capn4 promotes gastric cancer metastasis by increasing MMP9 expression, and demonstrated that MMP9 is crucial for the pro-metastasis role of Capn4 in GC cells. Further investigation revealed that Capn4 regulated MMP9 expression via activation of Wnt/β-catenin signaling pathway. Mechanistically, we found that Capn4 can decreased β-catenin ubiquitination to enhance the protein stability of β-catenin in GC cells. Collectively, Capn4 has a central role in gastric cancer metastasis, which could be a potential diagnostic and therapeutic target for GC.
Collapse
Affiliation(s)
- Chuanwen Zhao
- Department of General Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Guohui Yuan
- Department of Hepatopancreatobiliary Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Yuemei Jiang
- Department of prosthodontics, The Affiliated Stomatological Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jianfeng Xu
- Department of Hepatopancreatobiliary Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Lin Ye
- Department of General Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Wenhui Zhan
- Department of Maxillofacial Surgery, The Affiliated Stomatological Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Junfu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
6
|
Calpain Small Subunit 1 Protein in the Prognosis of Cancer Survivors and Its Clinicopathological Correlation. BIOMED RESEARCH INTERNATIONAL 2020; 2019:8053706. [PMID: 32083121 PMCID: PMC7012277 DOI: 10.1155/2019/8053706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/07/2019] [Indexed: 12/03/2022]
Abstract
Background/Aims. Calpain small subunit 1 (Capn4) is implicated in tumorigenesis and plays a key role in multiple tumors. This study aimed to fully illustrate the prognostic value of Capn4 protein in cancer patients.
Collapse
|
7
|
Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opin Drug Discov 2020; 15:471-486. [DOI: 10.1080/17460441.2020.1722638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Levente Endre Dókus
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
8
|
Sun M, Ma X, Tu C, Wang X, Qu J, Wang S, Xiao S. MicroRNA-378 regulates epithelial-mesenchymal transition and metastasis of melanoma by inhibiting FOXN3 expression through the Wnt/β-catenin pathway. Cell Biol Int 2019; 43:1113-1124. [PMID: 29972255 DOI: 10.1002/cbin.11027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) participate in the development and progression of melanoma. However, while dysregulation of microRNA-378 (miR-378) has been seen in various cancer types, its clinical importance and function in melanoma are poorly elucidated. In this work, miR-378 expression in melanoma and in adjacent non-cancerous tissue was evaluated with a quantitative real-time polymerase chain reaction. A series of assays (wound healing, Transwell, and nude mouse subcutaneous tumor model) were used to investigate the implications of abnormal miR-378 regulation on melanoma cell migration and invasion in vitro, and on tumorigenicity in vivo. Prediction and conformation of the miR-378 target gene was undertaken using bioinformatic analysis and luciferase reporter system. Expression of miR-378 was often increased in melanoma, and shown to potentiate its migration, invasion, and tumorigenicity. miR-378 acted, at least partially, through inhibition of the potential target FOXN3 and via Wnt/β-catenin pathway activation. The findings indicate that miR-378 triggers melanoma development and progression. This miRNA could be a novel diagnostic and prognostic biological marker and provide utility for targeted treatment of melanoma.
Collapse
Affiliation(s)
- Mengyao Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Xiaona Ma
- Department of Dermatology, Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Chen Tu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Xiaopeng Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Jianqiang Qu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Shuang Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| |
Collapse
|
9
|
Capn4 expression is modulated by microRNA-520b and exerts an oncogenic role in prostate cancer cells by promoting Wnt/β-catenin signaling. Biomed Pharmacother 2018; 108:467-475. [DOI: 10.1016/j.biopha.2018.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
|
10
|
Calpain system protein expression and activity in ovarian cancer. J Cancer Res Clin Oncol 2018; 145:345-361. [PMID: 30448882 PMCID: PMC6373250 DOI: 10.1007/s00432-018-2794-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023]
Abstract
Purpose Expression of members of the calpain system are associated with clinical outcome of patients with, amongst others, breast and ovarian cancers, with calpain-2 expression in ovarian cancer being implicated in chemo-resistance and survival. This study aimed, using a large patient cohort and in vitro models, to verify its importance and further investigate the role in ovarian cancer chemoresponse. Methods Calpain-1, calpain-2, calpain-4 and calpastatin expression were evaluated in primary ovarian carcinomas (n = 575) by immunohistochemistry. Protein expression was assessed, via western blotting, in five ovarian cancer cell lines with various sensitivities towards cisplatin/carboplatin. In vitro calpain activity was inhibited by calpeptin treatment to assess changes in platinum sensitivity by proliferation assay, with expression of genes associated with epithelial–mesenchymal transition being examined by RT2 Profiler™ PCR Array. Results The current study confirmed previous data that high calpain-2 expression is associated with poor overall survival (P = 0.026) and that calpain-1 was not associated with overall survival or progression-free survival. Low expression of calpastatin (P = 0.010) and calpain-4 (P = 0.003) were also associated with adverse survival. Such prognostic associations do not seem to be linked with altered tumour sensitivity towards platinum-based chemotherapy. Interestingly, low calpain-1 expression was more frequent in patients with confined tumours (stage 1) (χ2 = 11.310, df = 1, P = 0.001). Calpain and calpastatin expression varied among ovarian cancer cell lines yet their expression levels were similar between chemo-sensitive cells and resistant counterparts. Moreover, calpeptin treatment did not alter cellular response to platinum-based chemotherapy or epithelial–mesenchymal transition-related gene expression. Conclusions The conventional calpains and calpastatin have been confirmed to play an important role in ovarian cancer; however, the precise mechanisms whereby they exert effects remain to be elucidated. Electronic supplementary material The online version of this article (10.1007/s00432-018-2794-2) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Zhao YL, Li JB, Li YJ, Li SJ, Zhou SH, Xia H. Capn4 promotes esophageal squamous cell carcinoma metastasis by regulating ZEB1 through the Wnt/β-catenin signaling pathway. Thorac Cancer 2018; 10:24-32. [PMID: 30444080 PMCID: PMC6312849 DOI: 10.1111/1759-7714.12893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Capn4 and ZEB1 play important roles in the metastasis of several types of cancer. However, the roles and relationship of Capn4 and ZEB1 in esophageal squamous cell carcinoma (ESCC) remain unclear. METHODS ESCC tumor tissues and corresponding normal esophageal epithelial tissues were obtained from 86 patients undergoing resection surgery at the Department of General Surgery, First Affiliated Hospital of Chinese PLA General Hospital from 2012 to 2017. Cell migration and invasion were examined via quantitative real-time PCR and Western blot assay. RESULTS Our results indicate that both Capn4 and ZEB1 are significantly upregulated in ESCC tissues compared to corresponding adjacent tissues, and a positive correlation between expression and associated malignant characteristics was found. Silencing of Capn4 expression markedly inhibited ESCC invasion and metastasis in vitro and in vivo, and was accompanied by decreased ZEB1 expression. Furthermore, the anti-metastasis role of Capn4 silencing was reversed by ZEB1 overexpression, whereas knockdown of ZEB1 decreased ESCC metastasis driven by the upregulation of Capn4. Mechanistically, Capn4 regulated ZEB1 expression via activation of the Wnt/β-catenin signaling pathway in ESCC cells. CONCLUSION Overall, our results show that enhanced Capn4 expression activates the Wnt/β-catenin signaling pathway, resulting in increased ZEB1 expression and the promotion of ESCC cell metastasis.
Collapse
Affiliation(s)
- Yun-Long Zhao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Jing-Bo Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Ying-Jie Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Shao-Jun Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Shao-Hua Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Hui Xia
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Chen J, Wu Y, Zhang L, Fang X, Hu X. Evidence for calpains in cancer metastasis. J Cell Physiol 2018; 234:8233-8240. [PMID: 30370545 DOI: 10.1002/jcp.27649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Metastatic dissemination represents the final stage of tumor progression as well as the principal cause of cancer-associated deaths. Calpains are a conserved family of calcium-dependent cysteine proteinases with ubiquitous or tissue-specific expression. Accumulating evidence indicates a central role for calpains in tumor migration and invasion via participating in several key processes, including focal adhesion dynamics, cytoskeletal remodeling, epithelial-to-mesenchymal transition, and apoptosis. Activated after the increased intracellular calcium concentration ( [ Ca 2 + ] i ) induced by membrane channels and extracellular or intracellular stimuli, calpains induce the limited cleavage or functional modulation of various substrates that serve as metastatic mediators. This review covers established literature to summarize the mechanisms and underlying signaling pathways of calpains in cancer metastasis, making calpains attractive targets for aggressive tumor therapies.
Collapse
Affiliation(s)
- Jiaxin Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lumin Zhang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
14
|
Mn12Ac inhibits the migration, invasion and epithelial-mesenchymal transition of lung cancer cells by downregulating the Wnt/β-catenin and PI3K/AKT signaling pathways. Oncol Lett 2018; 16:3943-3948. [PMID: 30128012 PMCID: PMC6096228 DOI: 10.3892/ol.2018.9136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/13/2018] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of global cancer-associated mortality, therefore it is important to reveal the molecular mechanisms of lung cancer progression and to develop novel therapeutic targets. The results of the present study identified that manganese-12 acetate (Mn12Ac) was able to significantly inhibit the migration and invasion of A549 cells. Western blotting demonstrated that treatment with Mn12Ac was able to upregulate E-cadherin, and downregulate N-cadherin and vimentin. It was also identified by a quantitative polymerase chain reaction analysis that Mn12Ac was able to reduce the mRNA expression levels of EMT-associated transcription factors Snail, Slug, Twist-related protein 1 and zinc finger E-box-binding homeobox 1. It was also demonstrated that Mn12Ac was able to reduce the expression levels of Wnt and β-catenin proteins, and suppress the phosphorylation of phosphoinositide 3-kinase (PI3K) and AKT in A549 cells. Notably, it was revealed that Mn12Ac was able to decrease the mRNA and protein expression levels of programmed death ligand-1. Taken together, the results suggested that Mn12Ac is able to inhibit cell migration, invasion and EMT in lung cancer cells by regulating the Wnt/β-catenin and PI3K/AKT signaling pathways.
Collapse
|
15
|
Capn4 promotes colorectal cancer cell proliferation by increasing MAPK7 through activation of the Wnt/β-Catenin pathway. Exp Cell Res 2018; 363:235-242. [DOI: 10.1016/j.yexcr.2018.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/23/2022]
|
16
|
Li J, Xu J, Yan X, Jin K, Li W, Zhang R. Suppression of Capn4 by microRNA-1271 impedes the proliferation and invasion of colorectal cancer cells. Biomed Pharmacother 2018; 99:162-168. [PMID: 29331762 DOI: 10.1016/j.biopha.2017.12.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/14/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has suggested that calpain small subunit 1 (Capn4) plays an important role in the development and progression of malignant tumors. However, little is known about the role of Capn4 in colorectal cancer (CRC). In this study, we aimed to investigate the potential role of Capn4 in CRC and the regulation of Capn4 by microRNAs (miRNAs). Here, we found that Capn4 expression was highly up-regulated in CRC cell lines. Knockdown of Capn4 by siRNA significantly inhibited the proliferation and invasion of CRC cell lines. Furthermore, knockdown of Capn4 suppressed Wnt signaling in CRC cells. Interestingly, Capn4 was found to be a target gene of miR-1271, a tumor suppressive miRNA. The results showed that miR-1271 negatively regulated Capn4 expression in CRC cells. An inverse correlation between miR-1271 and Capn4 was also shown in CRC clinical tissues. Moreover, the overexpression of miR-1271 suppressed the proliferation, invasion and Wnt signaling of CRC cells. Importantly, we found that the restoration of Capn4 expression significantly reversed the antitumor effects of miR-1271 in CRC cells. Overall, these results suggest that miR-1271 inhibits the proliferation and invasion of CRC cells by down-regulating Capn4. Our study suggests that Capn4 and miR-1271 may serve as potential therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Jibin Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Xiaofei Yan
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Keer Jin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Wenya Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China.
| |
Collapse
|
17
|
Hu H, Wang G, Li C. miR-124 suppresses proliferation and invasion of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway by targeting Capn4. Onco Targets Ther 2017; 10:2711-2720. [PMID: 28579809 PMCID: PMC5449109 DOI: 10.2147/ott.s135563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Recent studies have demonstrated that microRNA 124 (miR-124) acts as a tumor suppressor in nasopharyngeal carcinoma (NPC); however, the exact molecular mechanism by which miR-124 exerts tumor suppression has not been well elucidated. Materials and methods We performed quantitative real-time PCR (qRT-PCR) to measure the expression of metastasis associated lung adenocarcinoma transcript 1, miR-124, and calpain small subunit 1 (Capn4) mRNAs in NPC cell lines. We also performed western blot analysis to detect the levels of Capn4. Furthermore, we performed MTT assay and transwell invasion assay to determine the proliferation and invasion ability of two NPC cell lines, namely, HONE1 and CNE2 cells, respectively. The verification of targets of miR-124 was performed using prediction softwares and luciferase reporter analysis. Results According to our results, the expression of Capn4 was found to be elevated, whereas the expression of miR-124 was lowered in NPC cell lines compared with normal nasopharyngeal cells. When we preformed overexpression of miR-124, it suppressed the proliferation and invasion of NPC cells. Moreover, miR-124 suppressed the expression of Capn4 by targeting Capn4 in HONE1 and CNE2 cells. When we preformed overexpression of Capn4, it reversed the inhibitory effect of miR-124 on the proliferation and invasion of NPC cells. Furthermore, miR-124–Capn4 axis decreased the levels of β-catenin, cyclin D1, and c-Myc, the components of the Wnt/β-catenin signaling pathway. Conclusion The suppression of proliferation and invasion of NPC cells by miR-124 were achieved by the regulation of Wnt/β-catenin signaling pathway by targeting Capn4. The results of this study revealed a novel miR-124–Capn4 regulatory axis in NPC cell lines, providing a better understanding of the pathogenesis of NPC and a promising therapeutic target for patients with NPC.
Collapse
Affiliation(s)
- Haili Hu
- Department of Otorhinolaryngology, Huaihe Hospital of Henan University
| | - Guanghui Wang
- Department of Otorhinolaryngology, Huaihe Hospital of Henan University
| | - Congying Li
- Department of Otorhinolaryngology, School of Medicine, Kaifeng University, Kaifeng, People's Republic of China
| |
Collapse
|