1
|
Makinwa Y, Luo Y, Musich PR, Zou Y. Canonical and Noncanonical Functions of the BH3 Domain Protein Bid in Apoptosis, Oncogenesis, Cancer Therapeutics, and Aging. Cancers (Basel) 2024; 16:2199. [PMID: 38927905 PMCID: PMC11202167 DOI: 10.3390/cancers16122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Effective cancer therapy with limited adverse effects is a major challenge in the medical field. This is especially complicated by the development of acquired chemoresistance. Understanding the mechanisms that underlie these processes remains a major effort in cancer research. In this review, we focus on the dual role that Bid protein plays in apoptotic cell death via the mitochondrial pathway, in oncogenesis and in cancer therapeutics. The BH3 domain in Bid and the anti-apoptotic mitochondrial proteins (Bcl-2, Bcl-XL, mitochondrial ATR) it associates with at the outer mitochondrial membrane provides us with a viable target in cancer therapy. We will discuss the roles of Bid, mitochondrial ATR, and other anti-apoptotic proteins in intrinsic apoptosis, exploring how their interaction sustains cellular viability despite the initiation of upstream death signals. The unexpected upregulation of this Bid protein in cancer cells can also be instrumental in explaining the mechanisms behind acquired chemoresistance. The stable protein associations at the mitochondria between tBid and anti-apoptotic mitochondrial ATR play a crucial role in maintaining the viability of cancer cells, suggesting a novel mechanism to induce cancer cell apoptosis by freeing tBid from the ATR associations at mitochondria.
Collapse
Affiliation(s)
- Yetunde Makinwa
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Yibo Luo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Phillip R. Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| |
Collapse
|
2
|
Faghihkhorasani A, Dalvand A, Derafsh E, Tavakoli F, Younis NK, Yasamineh S, Gholizadeh O, Shokri P. The role of oncolytic virotherapy and viral oncogenes in the cancer stem cells: a review of virus in cancer stem cells. Cancer Cell Int 2023; 23:250. [PMID: 37880659 PMCID: PMC10599042 DOI: 10.1186/s12935-023-03099-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Cancer Stem Cells (CSCs) are the main "seeds" for the initiation, growth, metastasis, and recurrence of tumors. According to many studies, several viral infections, including the human papillomaviruses, hepatitis B virus, Epstein-Barr virus, and hepatitis C virus, promote the aggressiveness of cancer by encouraging the development of CSC features. Therefore, a better method for the targeted elimination of CSCs and knowledge of their regulatory mechanisms in human carcinogenesis may lead to the development of a future tool for the management and treatment of cancer. Oncolytic viruses (OVs), which include the herpes virus, adenovirus, vaccinia, and reovirus, are also a new class of cancer therapeutics that have favorable properties such as selective replication in tumor cells, delivery of numerous eukaryotic transgene payloads, induction of immunogenic cell death and promotion of antitumor immunity, as well as a tolerable safety profile that essentially differs from that of other cancer therapeutics. The effects of viral infection on the development of CSCs and the suppression of CSCs by OV therapy were examined in this paper. The purpose of this review is to investigate the dual role of viruses in CSCs (oncolytic virotherapy and viral oncogenes).
Collapse
Affiliation(s)
| | - Alaleh Dalvand
- Tehran Medical Branch, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ehsan Derafsh
- Department of Basic Medical Science, Windsor University School of Medicine, Brighton's Estate, Cayton, St. Kitts And Nevis
| | - Farnaz Tavakoli
- Nephrology and Transplantation Ward, Shariati Hospital Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Pooria Shokri
- Department of Medical Science, Faculty of Medical Science, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
3
|
Ma H, Tian T, Cui Z. Targeting ovarian cancer stem cells: a new way out. Stem Cell Res Ther 2023; 14:28. [PMID: 36788591 PMCID: PMC9926632 DOI: 10.1186/s13287-023-03244-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy due to tumor heterogeneity, the lack of reliable early diagnosis methods and the high incidence of chemoresistant recurrent disease. Although there are developments in chemotherapies and surgical techniques to improve the overall survival of OC patients, the 5-year survival of advanced OC patients is still low. To improve the prognosis of OC patients, it is important to search for novel therapeutic approaches. Cancer stem cells (CSCs) are a subpopulation of tumor cells that participate in tumor growth, metastasis and chemoresistance. It is important to study the role of CSCs in a highly heterogeneous disease such as OC, which may be significant to a better understanding of the oncogenetic and metastatic pathways of the disease and to develop novel strategies against its progression and platinum resistance. Here, we summarized the current findings about targeting methods against ovarian cancer stem cells, including related signaling pathways, markers and drugs, to better manage OC patients using CSC-based therapeutic strategies.
Collapse
Affiliation(s)
- Huiying Ma
- grid.412521.10000 0004 1769 1119Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tian Tian
- grid.412521.10000 0004 1769 1119Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhumei Cui
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
4
|
Suicide gene strategies applied in ovarian cancer studies. Cancer Gene Ther 2023:10.1038/s41417-023-00590-6. [PMID: 36717737 DOI: 10.1038/s41417-023-00590-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Ovarian cancer represents the most lethal gynecological malignancy among women in developed countries. Despite the recent innovations, the improvements in the 5-year survival rate have been insufficient and the management of this disease still remains a challenge. The fact that the majority of patients experience recurrent or resistant disease have substantiated the necessity of an innovative treatment. Among various strategies investigated, the recent strides made in gene delivery techniques have made gene therapy, including suicide gene strategies, a potential alternative for treating ovarian cancer. Various suicide gene candidates, which are capable of promoting cancer cell apoptosis directly after its entry or indirectly by prodrug administration, can be separated into three systems using enzyme-coding, toxin or pro-apoptotic genes. With this review, we aim to provide an overview of different suicide genes depending on therapeutic strategies, the vectors used to deliver these transgenes specifically to malignant cells, and the combined treatments of these genes with various therapeutic regimens.
Collapse
|
5
|
Chemerinski A, Liu C, Morelli SS, Babwah AV, Douglas NC. Mouse Cre drivers: tools for studying disorders of the human female neuroendocrine-reproductive axis†. Biol Reprod 2022; 106:835-853. [PMID: 35084017 PMCID: PMC9113446 DOI: 10.1093/biolre/ioac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Benign disorders of the human female reproductive system, such primary ovarian insufficiency and polycystic ovary syndrome are associated with infertility and recurrent miscarriage, as well as increased risk of adverse health outcomes, including cardiovascular disease and type 2 diabetes. For many of these conditions, the contributing molecular and cellular processes are poorly understood. The overarching similarities between mice and humans have rendered mouse models irreplaceable in understanding normal physiology and elucidating pathological processes that underlie disorders of the female reproductive system. The utilization of Cre-LoxP recombination technology, which allows for spatial and temporal control of gene expression, has identified the role of numerous genes in development of the female reproductive system and in processes, such as ovulation and endometrial decidualization, that are required for the establishment and maintenance of pregnancy in mammals. In this comprehensive review, we provide a detailed overview of Cre drivers with activity in the neuroendocrine-reproductive axis that have been used to study disruptions in key intracellular signaling pathways. We first summarize normal development of the hypothalamus, pituitary, ovary, and uterus, highlighting similarities and differences between mice and humans. We then describe human conditions resulting from abnormal development and/or function of the organ. Finally, we describe loss-of-function models for each Cre driver that elegantly recapitulate some key features of the human condition and are associated with impaired fertility. The examples we provide illustrate use of each Cre driver as a tool for elucidating genetic and molecular underpinnings of reproductive dysfunction.
Collapse
Affiliation(s)
- Anat Chemerinski
- Correspondence: Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB E561, Newark, NJ 07103, USA. Tel: 301-910-6800; Fax: 973-972-4574. E-mail:
| | | | - Sara S Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | | |
Collapse
|
6
|
Pan X, Huang L, Mo D, Liang Y, Huang Z, Zhu B, Fang M. SNP rs2240688 in CD133 gene on susceptibility and clinicopathological features of hepatocellular carcinoma. Transl Cancer Res 2020; 9:5940-5948. [PMID: 35117206 PMCID: PMC8799249 DOI: 10.21037/tcr-19-2690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/21/2020] [Indexed: 01/30/2023]
Abstract
Background CD133 is one of the important cancer stem cells (CSCs) markers of hepatocellular carcinoma (HCC). The aim of this study was to explore the relationship between CD133 single-nucleotide polymorphisms (SNPs) and risk factors associated with HCC susceptibility and clinicopathological features in HCC cases and healthy controls from the Guangxi region of southern China. Methods A case control study was conducted, including 565 HCC patients and 561 control subjects. The genotyping of rs2240688 was performed using the SNaPshot method. Unconditional logistic regression was used to correct for gender, age, and other confounding factors. Odds ratio (OR) and its 95% confidence interval (CI) were calculated to analyze the relationship between allele and genotype frequency and the risk of HCC. Results The distribution frequencies of CD133 alleles and genotypes in the HCC case group and the control group were statistically significant (P<0.05). The CA heterozygous (P=0.003, OR =1.463, 95% CI: 1.134–1.887) and CC homozygous genotypes (P=0.036, OR =1.910, 95% CI: 1.044–3.493), as well as C carrier status (P=0.004, OR =1.465, 95% CI: 1.136–1.889) and C alleles (P=0.004, OR =1.465, 95% CI: 1.136–1.889), were associated with an increased risk of HCC. Additionally, in the subgroup analysis of CD133 rs2240688 polymorphism and clinical characteristics, the results showed that the genotype distribution of CD133 rs2240688 was significantly different in genotype distribution of metastasis and alanine aminotransferase (ALT). Conclusions the expression of miRNA binding site rs2240688 of tumor stem cell marker gene CD133 in HCC may be a promising marker for the prediction of HCC, but larger studies are still needed.
Collapse
Affiliation(s)
- Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Lingsha Huang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Dan Mo
- Department of Surgery, Maternal and Child Health Hospital of the Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yihua Liang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Zhaodong Huang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Bo Zhu
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| |
Collapse
|
7
|
Understanding and addressing barriers to successful adenovirus-based virotherapy for ovarian cancer. Cancer Gene Ther 2020; 28:375-389. [PMID: 32951021 DOI: 10.1038/s41417-020-00227-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
Ovarian cancer is the leading cause of death among women with gynecological cancer, with an overall 5-year survival rate below 50% due to a lack of specific symptoms, late stage at time of diagnosis and a high rate of recurrence after standard therapy. A better understanding of heterogeneity, genetic mutations, biological behavior and immunosuppression in the tumor microenvironment have allowed the development of more effective therapies based on anti-angiogenic treatments, PARP and immune checkpoint inhibitors, adoptive cell therapies and oncolytic vectors. Oncolytic adenoviruses are commonly used platforms in cancer gene therapy that selectively replicate in tumor cells and at the same time are able to stimulate the immune system. In addition, they can be genetically modified to enhance their potency and overcome physical and immunological barriers. In this review we highlight the challenges of adenovirus-based oncolytic therapies targeting ovarian cancer and outline recent advances to improve their potential in combination with immunotherapies.
Collapse
|
8
|
Yu L, Gao L. Human Pathway-Based Disease Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1240-1249. [PMID: 29990107 DOI: 10.1109/tcbb.2017.2774802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Constructing disease-disease similarity network is important in elucidating the associations between the origin and molecular mechanism of diseases, and in researching disease function and medical research. In this paper, we use a high-quality protein interaction network and a collection of pathway databases to construct a Human Pathway-based Disease Network (HPDN) to explore the relationship between diseases and their intrinsic interactions. We find that the similarity of two diseases has a strong correlation with the number of their shared functional pathways and the interaction between their related gene sets. Comparing HPDN with disease networks based on genes and symptoms respectively, we find the three networks have high overlap rates. Additionally, HPDN can predict new disease-disease correlations, which are supported by Comparative Toxicogenomics Database (CTD) benchmark and large-scale biomedical literature database. The comprehensive, high-quality relations between diseases based on pathways can further be applied to study important matters in systems medicine, for instance, drug repurposing. Based on a dense subgraph in our network, we find two drugs, prednisone and folic acid, may have new indications, which will provide potential directions for the treatments of complex diseases.
Collapse
|
9
|
Yang F, Zheng Z, Xue X, Zheng L, Qin J, Li H, Zhou Y, Fang G. Targeted eradication of gastric cancer stem cells by CD44 targeting USP22 small interfering RNA-loaded nanoliposomes. Future Oncol 2018; 15:281-295. [PMID: 30543303 DOI: 10.2217/fon-2018-0295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM USP22, a member of ubiquitin-specific proteases (USPs), is a well-defined protein that promotes poor prognosis, invasion and metastasis, and also participates in the maintenance of cancer stem cells. USP22 siRNA-loaded nanoliposomes conjugated with CD44 antibodies (USP22-NLs-CD44) were constructed to enhance the therapeutic effect of USP22 siRNA against gastric cancer stem cells. MATERIALS & METHODS The targeting and therapeutic efficacies of USP22-NLs-CD44 against gastric cancer stem cells were evaluated. RESULTS & CONCLUSION USP22-NLs-CD44 was demonstrated to be able to effectively deliver USP22 siRNA to CD44+ gastric cancer stem cells, achieving superior therapeutic effects against CD44+ gastric cancer stem cells than nontargeted nanoliposomes. USP22-NLs-CD44 may provide a novel approach to eradicate gastric cancer stem cells in the near future.
Collapse
Affiliation(s)
- Feng Yang
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 700 Moyubei Road, Shanghai 201805, PR China
| | - Zhi Zheng
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 700 Moyubei Road, Shanghai 201805, PR China
| | - Xuchao Xue
- Department of General Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Luming Zheng
- Department of General Surgery, General Hospital of Jinan Military Area, 25 Shifan Road, Jinan 250031, PR China
| | - Jianmin Qin
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 700 Moyubei Road, Shanghai 201805, PR China
| | - Haijia Li
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 700 Moyubei Road, Shanghai 201805, PR China
| | - Yuhong Zhou
- Department of General Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Guoen Fang
- Department of General Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| |
Collapse
|
10
|
Nimmakayala RK, Batra SK, Ponnusamy MP. Unraveling the journey of cancer stem cells from origin to metastasis. Biochim Biophys Acta Rev Cancer 2018; 1871:50-63. [PMID: 30419314 DOI: 10.1016/j.bbcan.2018.10.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Cancer biology research over recent decades has given ample evidence for the existence of self-renewing and drug-resistant populations within heterogeneous tumors, widely recognized as cancer stem cells (CSCs). However, a lack of clear understanding about the origin, existence, maintenance, and metastatic roles of CSCs limit efforts towards the development of CSC-targeted therapy. In this review, we describe novel avenues of current CSC biology. In addition to cell fusion and horizontal gene transfer, CSCs are originated by mutations in somatic or differentiated cancer cells, resulting in de-differentiation and reprogramming. Recent studies also provided evidence for the existence of distinct or heterogeneous CSC populations within a single heterogeneous tumor. Our analysis of the literature also opens the doors for a novel hypothesis that CSC populations with specific phenotypes, metabolic profiles, and clonogenic potential metastasize to specific organs.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
11
|
Yang F, Zheng Z, Zheng L, Qin J, Li H, Xue X, Gao J, Fang G. SATB1 siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies target and eliminate gastric cancer-initiating cells. Onco Targets Ther 2018; 11:6811-6825. [PMID: 30349314 PMCID: PMC6188175 DOI: 10.2147/ott.s182437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Gastric cancer, the cancer initiated from the stomach, is ranked as the third most
frequent reason of cancer death worldwide. Gastric cancer-initiating cells (CICs) are
one of the crucial causes for the metastasis and recurrence of gastric cancer, and CD44
is considered to be one marker for gastric CICs. Special AT-rich sequence binding
protein 1 (SATB1) is a protein that promotes cancer progression, metastasis, and
invasion and also participates in the maintenance of CICs. In this study, we
investigated the therapeutic effect of SATB1 siRNA against gastric CICs and we
constructed SATB1 siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies
(CD44-SATB1-ILs) to enhance the therapeutic effect of SATB1 siRNA against gastric
CICs. Methods We investigated the therapeutic effect of the SATB1 suppression by SATB1 siRNA on
CD44+ gastric CICs. CD44-SATB1-ILs were developed by the
lyophilization/hydration approach. The targeting and cytotoxic effect of CD44-SATB1-ILs
toward gastric CICs were evaluated in vitro. Results In this study, for the first time, we confirmed that SATB1 suppression by SATB1 siRNA
preferentially eliminated CD44+ gastric CICs. The results showed that
CD44-SATB1-ILs could efficiently and specifically promote the SATB1 siRNA delivery to
CD44+ gastric CICs, achieving superior therapeutic effects against
CD44+ gastric CICs than non-targeted liposomes. Conclusion As far as we know, our report is the first research that indicated the promotion of
siRNA delivery via nanoparticles to gastric CICs and achievement of superior therapeutic
effect against gastric CICs by utilization of CD44 antibody. Therefore, CD44-SATB1-ILs
represent an up-and-coming approach for eliminating gastric CICs and also a promising
treatment for therapy of gastric cancer.
Collapse
Affiliation(s)
- Feng Yang
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 201805, People's Republic of China,
| | - Zhi Zheng
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 201805, People's Republic of China,
| | - Luming Zheng
- Department of General Surgery, General Hospital of Jinan Military Area, Jinan 250031, People's Republic of China
| | - Jianmin Qin
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 201805, People's Republic of China,
| | - Haijia Li
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 201805, People's Republic of China,
| | - Xuchao Xue
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| | - Jie Gao
- Department of Pharmaceutical Science, College of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Guoen Fang
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| |
Collapse
|
12
|
Ultrasound microbubbles mediated miR-let-7b delivery into CD133 + ovarian cancer stem cells. Biosci Rep 2018; 38:BSR20180922. [PMID: 30126854 PMCID: PMC6165842 DOI: 10.1042/bsr20180922] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/19/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer stem cells (OCSCs) are considered the reason for ovarian cancer’s emergence and recurrence. Ultrasound-targetted microbubble destruction (UTMD), a non-vial, safe, and promising delivery method for miRNA, is reported to transfect cancer stem cells (CSCs). In the present study, we investigated to transfect miR-let-7b into OCSCs using UTMD. The CD133+ OCSCs, accounted for only 0.1% of ovarian cancer cell line A2780, were separated by flow cytometry, and the CSC characteristics of CD133+ OCSCs have been proved by spheroid formation and self-renewal assay. The miR-let-7b transfection efficiency using UTMD was significantly higher than other groups except lipofectamine group through flow cytometry. The cell viability of all groups decreased after transfection, and the late apoptosis rate of CD133+ OCSCs after miR-let7b transfection induced by UTMD was 2.62%, while that of non-treated cells was 0.02% (P<0.05). Furthermore, the Western blot results demonstrated that the stem cells surface marker of CD133 expression has decreased. Therefore, our results indicated that UTMD-mediated miRNA delivery could be a promising platform for CSC therapy.
Collapse
|
13
|
Áyen Á, Jiménez Martínez Y, Marchal JA, Boulaiz H. Recent Progress in Gene Therapy for Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19071930. [PMID: 29966369 PMCID: PMC6073662 DOI: 10.3390/ijms19071930] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in developed countries. This is due to the lack of specific symptoms that hinder early diagnosis and to the high relapse rate after treatment with radical surgery and chemotherapy. Hence, novel therapeutic modalities to improve clinical outcomes in ovarian malignancy are needed. Progress in gene therapy has allowed the development of several strategies against ovarian cancer. Most are focused on the design of improved vectors to enhance gene delivery on the one hand, and, on the other hand, on the development of new therapeutic tools based on the restoration or destruction of a deregulated gene, the use of suicide genes, genetic immunopotentiation, the inhibition of tumour angiogenesis, the alteration of pharmacological resistance, and oncolytic virotherapy. In the present manuscript, we review the recent advances made in gene therapy for ovarian cancer, highlighting the latest clinical trials experience, the current challenges and future perspectives.
Collapse
Affiliation(s)
- Ángela Áyen
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
| | - Yaiza Jiménez Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| |
Collapse
|
14
|
Hoare J, Campbell N, Carapuça E. Oncolytic virus immunotherapies in ovarian cancer: moving beyond adenoviruses. Porto Biomed J 2018; 3:e7. [PMID: 31595233 PMCID: PMC6726300 DOI: 10.1016/j.pbj.0000000000000007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the 5th most common cancer in UK women with a high relapse rate. The overall survival for ovarian cancer has remained low for decades prompting a real need for new therapies. Recurrent ovarian cancer remains confined in the peritoneal cavity in >80% of the patients, providing an opportunity for locoregional administration of novel therapeutics, including gene and viral therapy approaches. Immunotherapy is an expanding field, and includes oncolytic viruses as well as monoclonal antibodies, immune checkpoint inhibitors, and therapeutic vaccines. Oncolytic viruses cause direct cancer cell cytolysis and immunogenic cell death and subsequent release of tumor antigens that will prime for a potent tumor-specific immunity. This effect may be further enhanced when the viruses are engineered to express, or coadministered with, immunostimulatory molecules. Currently, the most commonly used and well-characterized vectors utilized for virotherapy purposes are adenoviruses. They have been shown to work synergistically with traditional chemotherapy and radiotherapy and have met with success in clinical trials. However, pre-existing immunity and poor in vivo models limit our ability to fully investigate the potential of oncolytic adenovirus as effective immunotherapies which in turn fosters the need to develop alternative viral vectors. In this review we cover recent advances in adenovirus-based oncolytic therapies targeting ovarian cancer and recent advances in mapping immune responses to oncolytic virus therapies in ovarian cancer.
Collapse
Affiliation(s)
- Joseph Hoare
- Centre for Molecular Oncology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Nicola Campbell
- Centre for Molecular Oncology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Elisabete Carapuça
- Centre for Molecular Oncology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| |
Collapse
|