1
|
Ghani MU, Shi J, Du Y, Zhong L, Cui H. A comprehensive review on the dynamics of protein kinase CK2 in cancer development and optimizing therapeutic strategies. Int J Biol Macromol 2024; 280:135814. [PMID: 39306165 DOI: 10.1016/j.ijbiomac.2024.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Protein kinase 2 (CK2) is an enzyme ubiquitously present and exhibits extensive kinase activity. It has been strongly linked to tumor progression through the abnormal phosphorylation of key proteins. Research has consistently demonstrated that CK2 is deregulated in various cancer types, with enhanced protein expression and nuclear distribution in tumor cells. CK2 plays a crucial role in a complex network that promotes cell infiltration, migration, proliferation, apoptosis, and cancer progression through multiple pathways, including PI3K/AKT, JAK2/STAT3, ATF4/CDKN1, and HSP90/Cdc37. In addition to its role in cancer growth, there is mounting evidence that CK2 may also affect the immunological dynamics of cancer by altering immune cell functions within the tumor microenvironment, thus facilitating tumor immune evasion. Recent research has increasingly focused on CK2, recognizing it as a therapeutic objective for oncological interventions. This review will critically examine the structure and signaling pathways of CK2, highlighting the significance of further research aimed at enhancing our understanding of the CK2 machinery. Finally, we conclude by refining therapeutic options, notably transitioning from non-pharmacological techniques to strategic CK2 inhibitor use. This development shortens the path to the desired outcome, establishing a pioneering standard in cancer therapy.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Junbo Shi
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yi Du
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
2
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Rodak O, Mrozowska M, Rusak A, Gomułkiewicz A, Piotrowska A, Olbromski M, Podhorska-Okołów M, Ugorski M, Dzięgiel P. Targeting SOX18 Transcription Factor Activity by Small-Molecule Inhibitor Sm4 in Non-Small Lung Cancer Cell Lines. Int J Mol Sci 2023; 24:11316. [PMID: 37511076 PMCID: PMC10379584 DOI: 10.3390/ijms241411316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The transcription factor SOX18 has been shown to play a crucial role in lung cancer progression and metastasis. In this study, we investigated the effect of Sm4, a SOX18 inhibitor, on cell cycle regulation in non-small cell lung cancer (NSCLC) cell lines LXF-289 and SK-MES-1, as well as normal human lung fibroblast cell line IMR-90. Our results demonstrated that Sm4 treatment induced cytotoxic effects on all three cell lines, with a greater effect observed in NSCLC adenocarcinoma cells. Sm4 treatment led to S-phase cell accumulation and upregulation of p21, a key regulator of the S-to-G2/M phase transition. While no significant changes in SOX7 or SOX17 protein expression were observed, Sm4 treatment resulted in a significant upregulation of SOX17 gene expression. Furthermore, our findings suggest a complex interplay between SOX18 and p21 in the context of lung cancer, with a positive correlation observed between SOX18 expression and p21 nuclear presence in clinical tissue samples obtained from lung cancer patients. These results suggest that Sm4 has the potential to disrupt the cell cycle and target cancer cell growth by modulating SOX18 activity and p21 expression. Further investigation is necessary to fully understand the relationship between SOX18 and p21 in lung cancer and to explore the therapeutic potential of SOX18 inhibition in lung cancer.
Collapse
Affiliation(s)
- Olga Rodak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
4
|
Garcia-Flores AE, Gross CM, Zemskov EA, Lu Q, Tieu K, Wang T, Black SM. Loss of SOX18/CLAUDIN5 disrupts the pulmonary endothelial barrier in ventilator-induced lung injury. Front Physiol 2022; 13:1066515. [PMID: 36620216 PMCID: PMC9813411 DOI: 10.3389/fphys.2022.1066515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mechanical strain contributes to ventilator-induced lung injury (VILI) through multi-factorial and complex mechanisms that remain unresolved. Prevailing evidence suggests that the loss of pulmonary endothelial tight junctions (TJs) plays a critical role. TJs are dynamically regulated by physiologic and hemodynamic forces to stabilize the endothelial barrier. The transcription factor sex-determining region Y-box (SOX)-18 is important in regulating blood vessel development and vascular permeability through its ability to regulate the transcription of Claudin-5, an endothelial TJ protein. Previously, we demonstrated that SOX18 expression is increased by shear stress in the pulmonary endothelium. Therefore, in this study, we investigated how mechanical strain mediated through cyclic stretch affects the SOX18/Claudin-5 regulatory axis. Our data demonstrate that SOX18 and Claudin-5 are downregulated in human lung microvascular endothelial cells (HLMVEC) exposed to cyclic stretch and the mouse lung exposed to high tidal mechanical ventilation. Overexpression of SOX18 reduced the loss of Claudin-5 expression in HLMVEC with cyclic stretch and preserved endothelial barrier function. Additionally, overexpression of Claudin-5 in HLMVEC ameliorated barrier dysfunction in HLMVEC exposed to cyclic stretch, although SOX18 expression was not enhanced. Finally, we found that the targeted overexpression of SOX18 in the pulmonary vasculature preserved Claudin-5 expression in the lungs of mice exposed to HTV. This, in turn reduced lung vascular leak, attenuated inflammatory lung injury, and preserved lung function. Together, these data suggest that enhancing SOX18 expression may prove a useful therapy to treat patients with ventilator-induced lung injury.
Collapse
Affiliation(s)
| | - Christine M. Gross
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine at Washington Hospital Center, Washington, DC, United States
| | - Evgeny A. Zemskov
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States
| | - Qing Lu
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States
| | - Ting Wang
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States
| | - Stephen M. Black
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States,Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States,*Correspondence: Stephen M. Black,
| |
Collapse
|
5
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
6
|
Li J, Wang Z, Tie C. High expression of ladinin-1 (LAD1) predicts adverse outcomes: a new candidate docetaxel resistance gene for prostatic cancer (PCa). Bioengineered 2021; 12:5749-5759. [PMID: 34516317 PMCID: PMC8806705 DOI: 10.1080/21655979.2021.1968647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Docetaxel resistance is one of the major obstacles that undermine the treatment outcome of PCa. Exploring molecular mechanisms associated with docetaxel resistance could provide insights into the formulation of novel strategies enhancing the efficacy of PCa treatment. Ladinin-1 (LAD1) is an anchoring filament protein in basement membranes, which contributes to the association of the epithelial cells with the underlying mesenchyme. LAD1 has been implicated in the progression of different cancers. However, its role in PCa remains to be investigated. In the present study, we found that LAD1 was highly expressed in docetaxel-resistant PCa cells, while its expression was significantly suppressed in tumor samples after docetaxel treatment. Moreover, the expression level of LAD1 in PCa tissues was significantly higher than that of normal tissue, and high expression level of LAD1 was significantly associated with adverse outcomes of PCa patients. Finally, high expression of LAD1 in PCa tissue was also correlated with the expression level of genes involving in tumor cell proliferation and invasive behaviors. Collectively, our data suggest that LAD1 may serve as a potential prognostic factor in PCa patients.
Collapse
Affiliation(s)
- Jianping Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Chong Tie
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| |
Collapse
|
7
|
Jiang T, Li Z, Zhao D, Hui B, Zheng Z. SOX18 enhances the proliferation and migration of airway smooth muscle cells induced by tumor necrosis factor-α via the regulation of Notch1 signaling. Int Immunopharmacol 2021; 96:107746. [PMID: 34004439 DOI: 10.1016/j.intimp.2021.107746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Childhood asthma is a frequent chronic disease of pediatric populations. The excessive proliferation and migration of airway smooth muscle cells contribute to airway remodeling during asthma pathogenesis. Sex-determining region on the Y chromosome-related high mobility group box 18 (SOX18) has been reported to be over-expressed in asthma. However, whether SOX18 plays a role in modulating the airway remodeling of asthma is not fully understood. The purposes of this work were to assess the potential role of SOX18 in modulating airway remodeling using tumor necrosis factor-α (TNF-α)-stimulated airway smooth muscle cells in vitro. Our results showed that SOX18 expression was increased following TNF-α stimulation in airway smooth muscle cells. The silencing of SOX18 markedly prohibited the proliferation and migration of airway smooth muscle cells induced by TNF-α, whilst the over-expression of SOX18 produced the opposite effects. Further investigation revealed that SOX18 promoted the expression of Notch1, and enhanced the activation of Notch1 signaling in airway smooth muscle cells stimulated by TNF-α. The inhibition of Notch1 markedly diminished SOX18-over-expression-evoked promotion effects on TNF-α-induced proliferation and migration of airway smooth muscle cells. In addition, the reactivation of Notch1 signaling markedly reversed the SOX18-silencing-induced suppressive effect on the TNF-α-induced proliferation and the migration of airway smooth muscle cells. In summary, the findings of this work demonstrate that SOX18 regulates the proliferation and migration of airway smooth muscle cells induced by TNF-α via the modulation of Notch1 signaling. This study indicates a potential role for SOX18 in promoting airway remodeling during asthma pathogenesis.
Collapse
Affiliation(s)
- Te Jiang
- Pediatrics, Northwest Women's and Children's Hospital, Xi'an 610113, China
| | - Zhankui Li
- Pediatrics, Northwest Women's and Children's Hospital, Xi'an 610113, China.
| | - Di Zhao
- Pediatrics, Northwest Women's and Children's Hospital, Xi'an 610113, China
| | - Bengang Hui
- Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Zhiyuan Zheng
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
8
|
Chen Q, Fu L, Hu J, Guo G, Xie A. Silencing of PSMC2 inhibits development and metastasis of prostate cancer through regulating proliferation, apoptosis and migration. Cancer Cell Int 2021; 21:235. [PMID: 33902600 PMCID: PMC8077794 DOI: 10.1186/s12935-021-01934-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer is the most common malignant tumor of male genitourinary system, molecular mechanism of which is still not clear. PSMC2 (proteasome 26S subunit ATPase 2) is a key member of the 19S regulatory subunit of 26S proteasome, whose relationship with prostate cancer is rarely studied. Methods Here, expression of PSMC2 in tumor tissues or cells of prostate cancer was detected by qPCR, western blotting and immunohistochemical analysis. The effects of PSMC2 knockdown on cell proliferation, colony formation, cell migration, cell cycle and apoptosis were assessed by Celigo cell counting assay, colony formation assay, wound-healing assay, Transwell assay and flow cytometry, respectively. The influence of PSMC2 knockdown on tumor growth in vivo was evaluated by mice xenograft models. Results The results demonstrated that PSMC2 was upregulated in tumor tissues of prostate cancer and its high expression was significantly associated with advanced Gleason grade and higher Gleason score. Knockdown of PSMC2 could inhibited cell proliferation, colony formation and cell migration of prostate cancer cells, while promoting cell apoptosis and cell cycle arrest. The suppression of tumor growth in vivo by PSMC2 knockdown was also showed by using mice xenograft models. Moreover, the regulation of prostate cancer by PSMC2 may be mediated by Akt/Cyclin D1/CDK6 signaling pathway. Conclusions Therefore, our studies suggested that PSMC2 may act as a tumor promotor in the development and progression of prostate cancer, and could be considered as a novel therapeutic target for prostate cancer treatment.
Collapse
Affiliation(s)
- Qingke Chen
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingmin Fu
- Jiangxi Health Vocational College, Nanchang, China
| | - Jieping Hu
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guanghua Guo
- Department of Burns, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - An Xie
- Institute of Urology, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
The role of SOX family transcription factors in gastric cancer. Int J Biol Macromol 2021; 180:608-624. [PMID: 33662423 DOI: 10.1016/j.ijbiomac.2021.02.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC) is a leading cause of death worldwide. GC is the third-most common cause of cancer-related death after lung and colorectal cancer. It is also the fifth-most commonly diagnosed cancer. Accumulating evidence has revealed the role of signaling networks in GC progression. Identification of these molecular pathways can provide new insight into therapeutic approaches for GC. Several molecular factors involved in GC can play both onco-suppressor and oncogene roles. Sex-determining region Y (Sry)-box-containing (SOX) family members are transcription factors with a well-known role in cancer. SOX proteins can bind to DNA to regulate cellular pathways via a highly conserved domain known as high mobility group (HMG). In the present review, the roles of SOX proteins in the progression and/or inhibition of GC are discussed. The dual role of SOX proteins as tumor-promoting and tumor-suppressing factors is highlighted. SOX members can affect upstream mediators (microRNAs, long non-coding RNAs and NF-κB) and down-stream mediators (FAK, HIF-1α, CDX2 and PTEN) in GC. The possible role of anti-tumor compounds to target SOX pathway members in GC therapy is described. Moreover, SOX proteins may be used as diagnostic or prognostic biomarkers in GC.
Collapse
|
10
|
Geng Q, Deng H, Fu J, Cui F. SOX18 exerts tumor-suppressive functions in papillary thyroid carcinoma through inhibition of Wnt/β-catenin signaling. Exp Cell Res 2020; 396:112249. [PMID: 32858034 DOI: 10.1016/j.yexcr.2020.112249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 01/16/2023]
Abstract
Sex-determining region on the Y chromosome-related high mobility group box 18 (SOX18) has emerged as a key tumor-related protein in a wide range of human tumors. Yet, the involvement of SOX18 in papillary thyroid carcinoma has not been determined. This study aimed to explore the expression and biological function of SOX18 in papillary thyroid carcinoma. There was a significant decrease in SOX18 expression in papillary thyroid carcinoma tissues compared with that in normal tissues. Low expression of SOX18 was also detected in papillary thyroid carcinoma cell lines and upregulation of SOX18 effectively repressed the proliferative, colony-forming and invasive abilities of papillary thyroid carcinoma cells in vitro. In contrast, knockdown of SOX18 in papillary thyroid carcinoma cells was associated with a significant increase in cell proliferation and invasion. Further studies revealed that SOX18 upregulation was associated with the reduced nuclear accumulation of β-catenin and the downregulation of Wnt/β-catenin signaling in thyroid carcinoma cells. Moreover, inhibition of Wnt/β-catenin signaling markedly attenuated SOX18 knockdown-evoked oncogenic effects in papillary thyroid carcinoma cells. In addition, SOX18 overexpression remarkably retarded the tumor growth of papillary thyroid carcinoma cell-derived xenograft tumors in nude mice. Taken together, these results demonstrate that SOX18 suppresses the proliferation and invasion of papillary thyroid carcinoma by inhibiting Wnt/β-catenin signaling. Our study reveals a tumor-suppressive role of SOX18 in papillary thyroid carcinoma and suggests that SOX18 is an attractive candidate target for treatment of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Qianqian Geng
- Nuclear Medicine Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Huixing Deng
- Nuclear Medicine Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jiao Fu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Feibo Cui
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
11
|
Liu D, Zhang H, Cui M, Chen C, Feng Y. Hsa-miR-425-5p promotes tumor growth and metastasis by activating the CTNND1-mediated β-catenin pathway and EMT in colorectal cancer. Cell Cycle 2020; 19:1917-1927. [PMID: 32594834 PMCID: PMC7469528 DOI: 10.1080/15384101.2020.1783058] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the roles of miR-425-5p and its underlying mechanism in CRC remain unknown. Here, RT-qPCR confirmed that miR-425-5p expression was increased by miR-425-5p mimic in SW480 cells and decreased by miR-425-5p inhibitor in LOVO cells. CCK-8, flow cytometry, wound healing and transwell assays revealed that the increased miR-425-5p promoted cell viability, cell cycle entry, migration and invasion in CRC. Besides, miR-425-5p overexpression induced epithelial-mesenchymal transition (EMT) with upregulation of Fibronectin, N-cadherin, Vimentin, and downregulation of E-cadherin. Moreover, miR-425-5p overexpression induced c-myc, Cyclin D1 and MMP7 levels, and promoted β-catenin translocation to the nucleus. Knockdown of miR-425-5p exerted opposite effects. Luciferase reporter assay indicated that miR-425-5p directly targeted CTNND1. Overexpression of miR-425-5p repressed CTNND1 expression at mRNA and protein levels. Silencing of CTNND1 had the inhibitory effect of miR-425-5p inhibitor on cell proliferation, migration, invasion, EMT, and the activation of β-catenin signaling pathway. Furthermore, miR-425-5p promoted tumor growth and metastasis in vivo. In conclusion, miR-425-5p may promote tumorigenesis and metastasis through activating CTNND1-mediated β-catenin pathway, which may provide therapeutic targets for human CRC.
Collapse
Affiliation(s)
- Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Mingming Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chunsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yong Feng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
12
|
Wang L, Zhang Q, Wu P, Xiang W, Xie D, Wang N, Deng M, Cao K, Zeng H, Xu Z, Xiaoming Liu, He L, Long Z, Tan J, Wang J, Liu B, Liu J. SLC12A5 interacts and enhances SOX18 activity to promote bladder urothelial carcinoma progression via upregulating MMP7. Cancer Sci 2020; 111:2349-2360. [PMID: 32449280 PMCID: PMC7385366 DOI: 10.1111/cas.14502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Solute carrier family 12 member 5 (SLC12A5) has an oncogenic role in bladder urothelial carcinoma. The present study aimed to characterize the molecular mechanisms of SLC12A5 in bladder urothelial carcinoma pathogenesis. Functional assays identified that in bladder urothelial carcinoma SLC12A5 interacts with and stabilizes SOX18, and then upregulates matrix metalloproteinase 7 (MMP7). In vivo and in vitro assays were performed to confirm the effect of SLC12A5’s interaction with SOX18 on MMP7‐mediated bladder urothelial carcinoma progression. SLC12A5 was upregulated in human bladder tumors, and correlated with the poor survival of patients with bladder urothelial carcinoma tumor invasion and metastasis, promoted by SLC12A5 overexpression. We demonstrated that SLC12A5 interacted with SOX18, and then upregulated MMP7, thus enhancing tumor progression. Importantly, SLC12A5 expression correlated positively with SOX18 and MMP7 expression in bladder urothelial carcinoma. Furthermore, SLC12A5 expression was suppressed by miR‐133a‐3p. Ectopic expression of SLC12A5 partly abolished miR‐133a‐3p‐mediated suppression of cell migration. SLC12A5‐SOX18 complex‐mediated upregulation on MMP7 was important in bladder urothelial carcinoma progression. The miR‐133a‐3p/SLC12A5/SOX18/MMP7 signaling axis was critical for progression, and provided an effective therapeutic approach against bladder urothelial carcinoma.
Collapse
Affiliation(s)
- Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pei Wu
- Department of Operation Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dan Xie
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Minhua Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Zhenzhou Xu
- Department of Urology, Hunan Cancer Hospital, Changsha, China
| | - Xiaoming Liu
- Department of Digestive, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Lin H, Wu T, Peng L, Su W, Wang Y, Li X, Liu Q, Zhong C, Huang J, Wei B. Lnc-MAP6-1:3 knockdown inhibits osteosarcoma progression by modulating Bax/Bcl-2 and Wnt/β-catenin pathways. Int J Med Sci 2020; 17:2248-2256. [PMID: 32922188 PMCID: PMC7484643 DOI: 10.7150/ijms.47405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of malignant bone tumor that affects children and adolescents. Still, the cellular and molecular mechanisms driving the development of this disease remain poorly understood. In this study, numerous dysregulated lncRNAs were identified by RNA-seq. As a result, we were able to find a novel lncRNA Lnc-MAP6-1:3 which is highly expressed in osteosarcoma. Using a set of approaches including gene knockdown, RT-PCR, oncogenic function assay and western blotting, we observed that knockdown of Lnc-MAP6-1:3 expression suppressed cell proliferation and colony formation, and promoted apoptosis in vitro. For the first time, we have identified that Lnc-MAP6-1:3 potentially influence the malignant behavior of osteosarcoma via Bax/Bcl-2 and Wnt/β-catenin signaling pathways. Henceforth, Lnc-MAP6-1:3 may provide a new molecular route of research and therapeutic applications for the diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hao Lin
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Tingrui Wu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Lijiao Peng
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Wenmei Su
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Yingxin Wang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xiao Li
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Qianzheng Liu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Chanli Zhong
- Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Jing Huang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Bo Wei
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| |
Collapse
|
14
|
Huaqi Y, Caipeng Q, Qiang W, Yiqing D, Xiang D, Xu T, Xiaowei Z, Qing L, Shijun L, Tao X. Transcription Factor SOX18 Promotes Clear Cell Renal Cell Carcinoma Progression and Alleviates Cabozantinib-Mediated Inhibitory Effects. Mol Cancer Ther 2019; 18:2433-2445. [PMID: 31527225 DOI: 10.1158/1535-7163.mct-19-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/12/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Yin Huaqi
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China
| | - Qin Caipeng
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China
| | - Wang Qiang
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China
| | - Du Yiqing
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China
| | - Dai Xiang
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China
| | - Tang Xu
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China
| | - Zhang Xiaowei
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China
| | - Li Qing
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China
| | - Liu Shijun
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China
| | - Xu Tao
- Department of Urology, Peking University People's Hospital, Peking University Second School of Clinical Medicine, Beijing, China.
| |
Collapse
|
15
|
Higashijima Y, Kanki Y. Molecular mechanistic insights: The emerging role of SOXF transcription factors in tumorigenesis and development. Semin Cancer Biol 2019; 67:39-48. [PMID: 31536760 DOI: 10.1016/j.semcancer.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/31/2019] [Accepted: 09/15/2019] [Indexed: 01/22/2023]
Abstract
Over the last decade, the development and progress of next-generation sequencers incorporated with classical biochemical analyses have drastically produced novel insights into transcription factors, including Sry-like high-mobility group box (SOX) factors. In addition to their primary functions in binding to and activating specific downstream genes, transcription factors also participate in the dedifferentiation or direct reprogramming of somatic cells to undifferentiated cells or specific lineage cells. Since the discovery of SOX factors, members of the SOXF (SOX7, SOX17, and SOX18) family have been identified to play broad roles, especially with regard to cardiovascular development. More recently, SOXF factors have been recognized as crucial players in determining the cell fate and in the regulation of cancer cells. Here, we provide an overview of research on the mechanism by which SOXF factors regulate development and cancer, and discuss their potential as new targets for cancer drugs while offering insight into novel mechanistic transcriptional regulation during cell lineage commitment.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
16
|
Sun Y, Lei B, Huang Q. SOX18 Affects Cell Viability, Migration, Invasiveness, and Apoptosis in Hepatocellular Carcinoma (HCC) Cells by Participating in Epithelial-to-Mesenchymal Transition (EMT) Progression and Adenosine Monophosphate Activated Protein Kinase (AMPK)/Mammalian Target of Rapamycin (mTOR). Med Sci Monit 2019; 25:6244-6254. [PMID: 31427562 PMCID: PMC6713035 DOI: 10.12659/msm.915729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies around the world. It has been verified that the expression of SOX18 is correlated to poor clinical prognosis in patients with ovarian cancer, non-small cell lung cancer, or breast invasive ductal carcinoma. However, the expression pattern and biological function of SOX18 in HCC tissues remains unclear. In this study, we set out to investigate the associated biological function and potential molecular mechanism of the SOX18 gene in HCC cells. Material/Methods The mRNA and protein expression levels of experimental related genes were detected by real-time polymerase chain reaction and western blotting assay, respectively. The MTT method was used to assess cell viability, and cell apoptosis analysis was performed by means of FACScan flow cytometry. Wound-healing assay and Transwell analysis were performed to evaluate the ability of cell migration and invasiveness, respectively. Results SOX18 was highly expressed in various HCC cell lines. In addition, SOX18 promoted cell viability, migration, and invasion and simultaneously induce cell apoptosis. SOX18 promoted epithelial-to-mesenchymal transition (EMT) progression, and SOX18 downregulation activated the autophagy signaling pathway AMPK/mTOR in HCC cells. Conclusions SOX18 downregulation in HCC cells suppressed cell viability and metastasis, induced cell apoptosis and hindered the occurrence and progression of tumor cells by participating in the EMT process and regulating the autophagy signaling pathway AMPK/mTOR.
Collapse
Affiliation(s)
- Yanni Sun
- Department of Hepatology, Yantai City Hospital for Infectious Diseases, Yantai, Shandong, China (mainland)
| | - Bo Lei
- Department of Hepatology, Yantai City Hospital for Infectious Diseases, Yantai, Shandong, China (mainland)
| | - Qingxian Huang
- Department of Hepatobiliary Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China (mainland)
| |
Collapse
|
17
|
Kumar P, Mistri TK. Transcription factors in SOX family: Potent regulators for cancer initiation and development in the human body. Semin Cancer Biol 2019; 67:105-113. [PMID: 31288067 DOI: 10.1016/j.semcancer.2019.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) have a key role in controlling the gene regulatory network that sustains explicit cell states in humans. However, an uncontrolled regulation of these genes potentially results in a wide range of diseases, including cancer. Genes of the SOX family are indeed crucial as deregulation of SOX family TFs can potentially lead to changes in cell fate as well as irregular cell growth. SOX TFs are a conserved group of transcriptional regulators that mediate DNA binding through a highly conserved high-mobility group (HMG) domain. Accumulating evidence demonstrates that cell fate and differentiation in major developmental processes are controlled by SOX TFs. Besides; numerous reports indicate that both up- and down-regulation of SOX TFs may induce cancer progression. In this review, we discuss the involvement of key TFs of SOX family in human cancers.
Collapse
Affiliation(s)
- Prasann Kumar
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Agronomy, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tapan Kumar Mistri
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Chemistry, Lovely Professional University, Jalandhar, Punjab, 144411, India.
| |
Collapse
|
18
|
Down-regulation of SOX18 inhibits laryngeal carcinoma cell proliferation, migration, and invasion through JAK2/STAT3 signaling. Biosci Rep 2019; 39:BSR20182480. [PMID: 31189744 PMCID: PMC6609596 DOI: 10.1042/bsr20182480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022] Open
Abstract
Laryngeal carcinoma is one of the most common malignant tumors of the head, neck, and respiratory tract. The aim of the present study is to explore the biological function of SRY-related HMG-box 18 (SOX18) in laryngeal carcinoma cells and study the molecular mechanism involved. Initial findings indicate that the expression of SOX18 was increased in laryngeal carcinoma cell lines and tissues. The effect of SOX18 on laryngeal carcinoma cell proliferation, cell cycle, apoptosis, invasion, and migration was also identified. The results indicated that down-regulation of SOX18 significantly inhibited cell proliferation, migration, and invasion, and induced cell-cycle arrest in G0/G1 phase and apoptosis of laryngeal carcinoma cells. However, overexpression of SOX18 promoted cell proliferation, invasion, and migration, and inhibited cell apoptosis. The expression of cyclin D1, active-caspase-3, N-cadherin, MTA1, MMP-2, and MMP-7 was also regulated by the overexpression of siSOX18 or SOX18. In addition, it was found that SOX18 could also accelerate the phosphorylation of JAK2/STAT3 signaling in laryngeal carcinoma cells. Furthermore, our study indicated that SOX18 could stimulate cell proliferation, migration, and invasion of laryngeal carcinoma cells via regulation of JAK2/STAT3 signaling, which could provide a new strategy for laryngeal carcinoma diagnosis and molecular therapies.
Collapse
|
19
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
20
|
Liang T, Ye X, Liu Y, Qiu X, Li Z, Tian B, Yan D. FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of β-catenin. Exp Mol Med 2018; 50:1-12. [PMID: 30532005 PMCID: PMC6288130 DOI: 10.1038/s12276-018-0184-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
FAM46B is a member of the family with sequence similarity 46. Little is known about the expression and functional role(s) of FAM46B in prostate cancer (PC). In this study, the expression of FAM46B expression in The Cancer Genome Atlas, GSE55945, and an independent hospital database was measured by bioinformatics and real-time PCR analysis. After PC cells were transfected with siRNA or a recombinant vector in the absence or presence of a β-catenin signaling inhibitor (XAV-939), the expression levels of FAM46B, C-myc, Cyclin D1, and β-catenin were measured by western blot and real-time PCR. Cell cycle progression and cell proliferation were measured by flow cytometry and the CCK-8 assay. The effects of FAM46B on tumor growth and protein expression in nude mice with PC tumor xenografts were also measured. Our results showed that FAM46B was downregulated but that β-catenin was upregulated in patients with PC. FAM46B silencing promoted cell proliferation and cell cycle progression in PC, which were abrogated by XAV-939. Moreover, FAM46B overexpression inhibited PC cell cycle progression and cell proliferation in vitro and tumor growth in vivo. FAM46B silencing promoted β-catenin protein expression through the inhibition of β-catenin ubiquitination. Our data clearly show that FAM46B inhibits cell proliferation and cell cycle progression in PC through ubiquitination of β-catenin. A little-studied protein may help in early diagnosis and treatment of prostate cancer (PC), one of the most common cancers in men. Because early-stage PC causes few symptoms, many patients are not diagnosed until later stages, when treatment options are limited. New methods for early diagnosis and treatment are actively sought. Proteins in the FAM46 family are known to be involved in many types of cancer. Dongliang Yan at Shanghai Sixth People’s Hospital East and co-workers investigated what role one protein in this family, FAM46B, might play in PC. Analysis of tumor samples showed that FAM46B levels were much lower in PC than in healthy tissues. These changes were linked to another tumor-associated protein, β-catenin. In further tests in mice, artificially increasing FAM46B levels decreased tumor size. These results could improve treatments for PC.
Collapse
Affiliation(s)
- Tao Liang
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Xuxiao Ye
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Yuanyuan Liu
- Department of Urology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, China
| | - Xinkai Qiu
- Department of Urology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, China
| | - Zuowei Li
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Binqiang Tian
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Dongliang Yan
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China.
| |
Collapse
|
21
|
Miao Z, Deng X, Shuai P, Zeng J. Upregulation of SOX18 in colorectal cancer cells promotes proliferation and correlates with colorectal cancer risk. Onco Targets Ther 2018; 11:8481-8490. [PMID: 30555240 PMCID: PMC6278702 DOI: 10.2147/ott.s178916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Since colorectal cancer (CRC) is one of the most common malignant tumors worldwide, we aimed to identify the role of sex determining region Y (SRY)-box 18 (SOX18) in CRC. Methods RT-PCR and immunohistochemistry were employed to detect the expression of SOX18 in CRC samples. We then identified the effect of SOX18 on cell proliferation, cell cycle, and apoptosis by cell counting kit-8 (CCK-8), flow cytometry, and annexin V/PI staining, respectively. The effect of silencing SOX18 expression in CRC development was evaluated by using a xenograft mouse model. Results First, we found that SOX18 was overexpressed in CRC tissues and cell lines and that SOX18 levels in CRC tissues were positively associated with advanced clinical stages, vascular invasion, and lymph node metastasis. Furthermore, patients with higher expression of SOX18 had a lower survival rate. Overexpression of SOX18 significantly promoted cell proliferation, promoted S cell cycle progression, and inhibited cell apoptosis. Conversely, downregulation of SOX18 clearly weakened cell proliferation, induced G0/G1 cell cycle phase arrest, and gave rise to cell apoptosis. The results showed that shSOX18 significantly inhibited tumor growth and weight. Ki67 expression was also decreased by SOX18 silencing treatment. Conclusion Our study indicates that SOX18 may have a carcinogenic effect on CRC, which might provide novel insights into CRC prevention and treatment.
Collapse
Affiliation(s)
- Zuohua Miao
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiao Deng
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ping Shuai
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jing Zeng
- Department of Scientific Research and Industry, Gannan Medical University, Ganzhou 341000, China,
| |
Collapse
|
22
|
FOXF2 inhibits proliferation, migration, and invasion of Hela cells by regulating Wnt signaling pathway. Biosci Rep 2018; 38:BSR20180747. [PMID: 30249755 PMCID: PMC6200704 DOI: 10.1042/bsr20180747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/02/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022] Open
Abstract
This article was aimed to study the FOXF2 effects on cervical cancer. Tumor tissues and adjacent tissues of 41 cervical cancer patients were collected. Human endometrial epithelial cells (hEEC) and Hela cells were cultured. FOXF2 expression vector and its empty vector were transfected into Hela cells, and named as pcDNA 3.1-FOXF2 group and Vector group, respectively. Hela cells without any treatment were set as Blank group. qRT-PCR was used to detect mRNA expression. Nude mouse xenograft assay was performed to test Hela cells proliferation ability in vivo. FOXF2 and β-catenin positive cell numbers were detected by immunohistochemistry. Protein expression was analyzed by Western blot. Cells migration and invasion were conducted by Transwell. Tumor tissues and Hela cells FOXF2 expression were lower than that in adjacent tissues and hEEC (P<0.01). Low FOXF2 expression predicted poor outcomes of cervical cancer patients. Compared with Blank group and Vector group, Hela cells of pcDNA 3.1-FOXF2 group were with higher FOXF2 expression, lower OD495 value, migrated and invaded cells, higher E-cadherin expression, lower Vimentin and Snail expression, smaller tumor volume in nude mice, lower c-Myc, CyclinDl, MMP9, Lgr5, and nuclear β-catenin expression (all P<0.01). FOXF2 inhibits Hela cells proliferation, migration, and invasion through regulating Wnt signaling pathway.
Collapse
|
23
|
Fristiohady A, Milovanovic D, Krieger S, Huttary N, Nguyen CH, Basilio J, Jäger W, De Martin R, Krupitza G. 12(S)-HETE induces lymph endothelial cell retraction in vitro by upregulation of SOX18. Int J Oncol 2018; 53:307-316. [PMID: 29749465 DOI: 10.3892/ijo.2018.4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/06/2018] [Indexed: 11/06/2022] Open
Abstract
Metastasising breast cancer cells communicate with adjacent lymph endothelia, intravasate and disseminate through lymphatic routes, colonise lymph nodes and finally metastasize to distant organs. Thus, understanding and blocking intravasation may attenuate the metastatic cascade at an early step. As a trigger factor, which causes the retraction of lymph endothelial cells (LECs) and opens entry ports for tumour cell intravasation, MDA-MB231 breast cancer cells secrete the pro-metastatic arachidonic acid metabolite, 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid [12(S)-HETE]. In the current study, treatment of LECs with 12(S)-HETE upregulated the expression of the transcription factors SRY-related HMG-box 18 (SOX18) and prospero homeobox protein 1 (PROX1), which determine endothelial development. Thus, whether they have a role in LEC retraction was determined using a validated intravasation assay, small interfering RNA mediated knockdown of gene expression, and mRNA and protein expression analyses. Specific inhibition of SOX18 or PROX1 significantly attenuated in vitro intravasation of MDA-MB231 spheroids through the LEC barrier and 12(S)-HETE-triggered signals were transduced by the high and low affinity receptors, 12(S)-HETE receptor and leukotriene B4 receptor 2. In addition, the current findings indicate that there is crosstalk between SOX18 and nuclear factor κ-light-chain-enhancer of activated B cells, which was demonstrated to contribute to MDA-MB231/lymph endothelial intravasation. The present data demonstrate that the endothelial-specific and lymph endothelial-specific transcription factors SOX18 and PROX1 contribute to LEC retraction.
Collapse
Affiliation(s)
- Adryan Fristiohady
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Daniela Milovanovic
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sigurd Krieger
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Nicole Huttary
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Chi Huu Nguyen
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Jose Basilio
- Department of Vascular Biology and Thrombosis Research, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Rainer De Martin
- Department of Vascular Biology and Thrombosis Research, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
24
|
MiR-182 promotes prostate cancer progression through activating Wnt/β-catenin signal pathway. Biomed Pharmacother 2018; 99:334-339. [DOI: 10.1016/j.biopha.2018.01.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
|
25
|
Zhu D, Yang D, Li X, Feng F. Heterogeneous expression and biological function of SOX18 in osteosaroma. J Cell Biochem 2018; 119:4184-4192. [DOI: 10.1002/jcb.26635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Danjie Zhu
- Department of OrthopedicsZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Di Yang
- Department of OrthopedicsZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xiaolin Li
- Department of OrthopedicsZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Fabo Feng
- Department of OrthopedicsZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
26
|
Będkowska GE, Gacuta E, Zajkowska M, Głażewska EK, Osada J, Szmitkowski M, Chrostek L, Dąbrowska M, Ławicki S. Plasma levels of MMP-7 and TIMP-1 in laboratory diagnostics and differentiation of selected histological types of epithelial ovarian cancers. J Ovarian Res 2017; 10:39. [PMID: 28662671 PMCID: PMC5492921 DOI: 10.1186/s13048-017-0338-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MMP-7 and TIMP-1 may play a role in the pathogenesis of cancer disease. In this study we investigated plasma levels of selected metalloproteinase and its tissue inhibitor in comparison to plasma levels of the commonly accepted tumor markers (CA 125 and HE4) in selected histological types of epithelial ovarian cancer patients as compared to control groups: patients with a benign ovarian tumor and healthy subjects. Plasma levels of MMP-7 and TIMP-1 were determined using ELISA, CA 125 and HE4 - by CMIA methods. RESULTS Plasma levels of all biomarkers studied were significantly higher in ovarian cancer patients as compared to both control groups. MMP-7 demonstrated comparable to HE4 or CA125 values of diagnostic sensitivity (SE: 61%; 68%; 58%, respectively), specificity (SP: 95%; 95%; 98%, respectively), positive (PPV: 93%; 96%; 98%, respectively) and negative predictive values (NPV: 61%; 66%; 60%, respectively) in the groups tested. The combined use of the aforementioned biomarkers resulted in a further increase in diagnostic criteria and AUC, especially in the early stages of the disease. CONCLUSIONS These findings suggest the usefulness of combining MMP-7 with CA 125 and HE4 in the diagnosis of epithelial ovarian cancer as a new tumor marker panel.
Collapse
Affiliation(s)
- Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University Bialystok, Waszyngtona 15A, 15-269, Bialystok, Poland.
| | - Ewa Gacuta
- Department of Perinatology, Medical University Bialystok, Bialystok, Poland
| | - Monika Zajkowska
- Department of Biochemical Diagnostics, Medical University Bialystok, Bialystok, Poland
| | | | - Joanna Osada
- Department of Haematological Diagnostics, Medical University Bialystok, Waszyngtona 15A, 15-269, Bialystok, Poland
| | - Maciej Szmitkowski
- Department of Biochemical Diagnostics, Medical University Bialystok, Bialystok, Poland
| | - Lech Chrostek
- Department of Biochemical Diagnostics, Medical University Bialystok, Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University Bialystok, Waszyngtona 15A, 15-269, Bialystok, Poland
| | - Sławomir Ławicki
- Department of Biochemical Diagnostics, Medical University Bialystok, Bialystok, Poland
| |
Collapse
|