1
|
Dolan M, Shi Y, Mastri M, Long MD, McKenery A, Hill JW, Vaghi C, Benzekry S, Barbi J, Ebos JM. A senescence-mimicking (senomimetic) VEGFR TKI side-effect primes tumor immune responses via IFN/STING signaling. Mol Cancer Ther 2024; 23:745113. [PMID: 38690835 PMCID: PMC11527799 DOI: 10.1158/1535-7163.mct-24-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) that block the vascular endothelial growth factor receptors (VEGFRs) disrupt tumor angiogenesis but also have many unexpected side-effects that impact tumor cells directly. This includes the induction of molecular markers associated with senescence, a form of cellular aging that typically involves growth arrest. We have shown that VEGFR TKIs can hijack these aging programs by transiently inducting senescence-markers (SMs) in tumor cells to activate senescence-associated secretory programs that fuel drug resistance. Here we show that these same senescence-mimicking ('senomimetic') VEGFR TKI effects drive an enhanced immunogenic signaling that, in turn, can alter tumor response to immunotherapy. Using a live-cell sorting method to detect beta-galactosidase, a commonly used SM, we found that subpopulations of SM-expressing (SM+) tumor cells have heightened interferon (IFN) signaling and increased expression of IFN-stimulated genes (ISGs). These ISG increases were under the control of the STimulator of INterferon Gene (STING) signaling pathway, which we found could be directly activated by several VEGFR TKIs. TKI-induced SM+ cells could stimulate or suppress CD8 T-cell activation depending on host:tumor cell contact while tumors grown from SM+ cells were more sensitive to PD-L1 inhibition in vivo, suggesting that offsetting immune-suppressive functions of SM+ cells can improve TKI efficacy overall. Our findings may explain why some (but not all) VEGFR TKIs improve outcomes when combined with immunotherapy and suggest that exploiting senomimetic drug side-effects may help identify TKIs that uniquely 'prime' tumors for enhanced sensitivity to PD-L1 targeted agents.
Collapse
Affiliation(s)
- Melissa Dolan
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Yuhao Shi
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - Mark D. Long
- Department of Bioinformatics and Statistics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Amber McKenery
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - James W. Hill
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, New York, 14263. USA
| | - Cristina Vaghi
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Sebastien Benzekry
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - John M.L. Ebos
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Lead Contact
| |
Collapse
|
2
|
Liu J, Zheng R, Zhang Y, Jia S, He Y, Liu J. The Cross Talk between Cellular Senescence and Melanoma: From Molecular Pathogenesis to Target Therapies. Cancers (Basel) 2023; 15:cancers15092640. [PMID: 37174106 PMCID: PMC10177054 DOI: 10.3390/cancers15092640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is a malignant skin tumor that originates from melanocytes. The pathogenesis of melanoma involves a complex interaction that occurs between environmental factors, ultraviolet (UV)-light damage, and genetic alterations. UV light is the primary driver of the skin aging process and development of melanoma, which can induce reactive oxygen species (ROS) production and the presence of DNA damage in the cells, and results in cell senescence. As cellular senescence plays an important role in the relationship that exists between the skin aging process and the development of melanoma, the present study provides insight into the literature concerning the topic at present and discusses the relationship between skin aging and melanoma, including the mechanisms of cellular senescence that drive melanoma progression, the microenvironment in relation to skin aging and melanoma factors, and the therapeutics concerning melanoma. This review focuses on defining the role of cellular senescence in the process of melanoma carcinogenesis and discusses the targeting of senescent cells through therapeutic approaches, highlighting the areas that require more extensive research in the field.
Collapse
Affiliation(s)
- Jiahua Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Characterization of Vemurafenib-Resistant Melanoma Cell Lines Reveals Novel Hallmarks of Targeted Therapy Resistance. Int J Mol Sci 2022; 23:ijms23179910. [PMID: 36077308 PMCID: PMC9455970 DOI: 10.3390/ijms23179910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Regardless of the significant improvements in treatment of melanoma, the majority of patients develop resistance whose mechanisms are still not completely understood. Hence, we generated and characterized two melanoma-derived cell lines, primary WM793B and metastatic A375M, with acquired resistance to the RAF inhibitor vemurafenib. The morphology of the resistant primary WM793B melanoma cells showed EMT-like features and exhibited a hybrid phenotype with both epithelial and mesenchymal characteristics. Surprisingly, the vemurafenib-resistant melanoma cells showed a decreased migration ability but also displayed a tendency to collective migration. Signaling pathway analysis revealed the reactivation of MAPK and the activation of the PI3K/AKT pathway depending on the vemurafenib-resistant cell line. The acquired resistance to vemurafenib caused resistance to chemotherapy in primary WM793B melanoma cells. Furthermore, the cell-cycle analysis and altered levels of cell-cycle regulators revealed that resistant cells likely transiently enter into cell cycle arrest at the G0/G1 phase and gain slow-cycling cell features. A decreased level of NME1 and NME2 metastasis suppressor proteins were found in WM793B-resistant primary melanoma, which is possibly the result of vemurafenib-acquired resistance and is one of the causes of increased PI3K/AKT signaling. Further studies are needed to reveal the vemurafenib-dependent negative regulators of NME proteins, their role in PI3K/AKT signaling, and their influence on vemurafenib-resistant melanoma cell characteristics.
Collapse
|
4
|
Madorsky Rowdo FP, Barón A, Gallagher SJ, Hersey P, Emran AA, Von Euw EM, Barrio MM, Mordoh J. Epigenetic inhibitors eliminate senescent melanoma BRAFV600E cells that survive long‑term BRAF inhibition. Int J Oncol 2020; 56:1429-1441. [PMID: 32236593 PMCID: PMC7170042 DOI: 10.3892/ijo.2020.5031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
It is estimated that ~50% of patients with melanoma harbour B‑Raf (BRAF)V600 driver mutations, with the most common of these being BRAFV600E, which leads to the activation of mitogen‑activated protein kinase proliferative and survival pathways. BRAF inhibitors are used extensively to treat BRAF‑mutated metastatic melanoma; however, acquired resistance occurs in the majority of patients. The effects of long‑term treatment with PLX4032 (BRAFV600 inhibitor) were studied in vitro on sensitive V600E BRAF‑mutated melanoma cell lines. After several weeks of treatment with PLX4032, the majority of the melanoma cells died; however, a proportion of cells remained viable and quiescent, presenting senescent cancer stem cell‑like characteristics. This surviving population was termed SUR cells, as discontinuing treatment allowed the population to regrow while retaining equal drug sensitivity to that of parental cells. RNA sequencing analysis revealed that SUR cells exhibit changes in the expression of 1,415 genes (P<0.05) compared with parental cells. Changes in the expression levels of a number of epigenetic regulators were also observed. These changes and the reversible nature of the senescence state were consistent with epigenetic regulation; thus, it was investigated as to whether the senescent state could be reversed by epigenetic inhibitors. It was found that both parental and SUR cells were sensitive to different histone deacetylase (HDAC) inhibitors, such as SAHA and MGCD0103, and to the cyclin‑dependent kinase (CDK)9 inhibitor, CDKI‑73, which induced apoptosis and reduced proliferation both in the parental and SUR populations. The results suggested that the combination of PLX4032 with HDAC and CDK9 inhibitors may achieve complete elimination of SUR cells that persist after BRAF inhibitor treatment, and reduce the development of resistance to BRAF inhibitors.
Collapse
Affiliation(s)
- Florencia Paula Madorsky Rowdo
- Cancerology Laboratory, Leloir Institute‑Biochemical Research Institute of Buenos Aires (IIBBA), National Scientific and Technical Research Council (CONICET), Buenos Aires C1405BWE, Argentina
| | - Antonela Barón
- Cancerology Laboratory, Leloir Institute‑Biochemical Research Institute of Buenos Aires (IIBBA), National Scientific and Technical Research Council (CONICET), Buenos Aires C1405BWE, Argentina
| | - Stuart John Gallagher
- Melanoma Oncology and Immunology Group, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Peter Hersey
- Melanoma Oncology and Immunology Group, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Abdullah Al Emran
- Melanoma Oncology and Immunology Group, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Erika M Von Euw
- Department of Medicine, Division of Hematology‑Oncology, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA
| | - María Marcela Barrio
- Oncology Research Center‑Cancer Foundation (FUCA), Buenos Aires C1426 ANZ, Argentina
| | - José Mordoh
- Cancerology Laboratory, Leloir Institute‑Biochemical Research Institute of Buenos Aires (IIBBA), National Scientific and Technical Research Council (CONICET), Buenos Aires C1405BWE, Argentina
| |
Collapse
|
5
|
A Nonquiescent "Idling" Population State in Drug-Treated, BRAF-Mutated Melanoma. Biophys J 2019; 114:1499-1511. [PMID: 29590606 DOI: 10.1016/j.bpj.2018.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/01/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023] Open
Abstract
Targeted therapy is an effective standard of care in BRAF-mutated malignant melanoma. However, the duration of tumor remission varies unpredictably among patients, and relapse is almost inevitable. Here, we examine the responses of several BRAF-mutated melanoma cell lines (including isogenic subclones) to BRAF inhibitors. We observe complex response dynamics across cell lines, with short-term responses (<100 h) varying from cell line to cell line. In the long term, however, we observe equilibration of all drug-treated populations into a nonquiescent state characterized by a balanced rate of death and division, which we term the "idling" state, and to our knowledge, this state has not been previously reported. Using mathematical modeling, we propose that the observed population-level dynamics are the result of cells transitioning between basins of attraction within a drug-modified phenotypic landscape. Each basin is associated with a drug-induced proliferation rate, a recently introduced metric of an antiproliferative drug effect. The idling population state represents a new dynamic equilibrium in which cells are distributed across the landscape such that the population achieves zero net growth. By fitting our model to experimental drug-response data, we infer the phenotypic landscapes of all considered melanoma cell lines and provide a unifying view of how BRAF-mutated melanomas respond to BRAF inhibition. We hypothesize that the residual disease observed in patients after targeted therapy is composed of a significant number of idling cells. Thus, defining molecular determinants of the phenotypic landscape that idling populations occupy may lead to "targeted landscaping" therapies based on rational modification of the landscape to favor basins with greater drug susceptibility.
Collapse
|
6
|
Rodrigues-Junior DM, Tan SS, Lim SK, de Souza Viana L, Carvalho AL, Vettore AL, Iyer NG. High expression of MLANA in the plasma of patients with head and neck squamous cell carcinoma as a predictor of tumor progression. Head Neck 2019; 41:1199-1205. [PMID: 30803092 DOI: 10.1002/hed.25510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 05/04/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND There is a paucity of plasma-based biomarkers that predict outcome in patients with head and neck squamous cell carcinoma (HNSCC) treated with chemoradiation therapy (CRT). Here, we evaluate the prognostic potential of plasma Melanoma-Antigen Recognized by T-cells 1 (MLANA) in this setting. METHODS MLANA expression in HNSCC lines were evaluated by reverse transcription polymerase chain reaction, whereas plasma levels were quantified using ELISA in 48 patients with locally advanced HNSCC undergoing a phase 2 trial with CRT. RESULTS MLANA is expressed at variable levels in a panel of HNSCC lines. In plasma, levels were elevated in patients with tumor relapse compared to those without (P < .004); 73.9% of the patients expressing high plasma MLANA levels progressed with recurrent disease (P = .020). Multivariate analysis showed that plasma MLANA levels and tumor resectability were independent prognostic factors for progression free survival. CONCLUSION Plasma MLANA expression appears to be an effective noninvasive biomarker for outcomes in patients treated with CRT, and could potentially guide therapeutic decisions in this context.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Biological Science Department, Campus Diadema, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.,Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
| | | | | | - Luciano de Souza Viana
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Andre Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Andre Luiz Vettore
- Biological Science Department, Campus Diadema, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore.,Division of Surgical Oncology, National Cancer Centre, Singapore
| |
Collapse
|