1
|
Huang KCY, Chen WTL, Chen JY, Lee CY, Wu CH, Lai CY, Yang PC, Liang JA, Shiau AC, Chao KSC, Ke TW. Neoantigen-augmented iPSC cancer vaccine combined with radiotherapy promotes antitumor immunity in poorly immunogenic cancers. NPJ Vaccines 2024; 9:95. [PMID: 38821980 PMCID: PMC11143272 DOI: 10.1038/s41541-024-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
Although irradiated induced-pluripotent stem cells (iPSCs) as a prophylactic cancer vaccine elicit an antitumor immune response, the therapeutic efficacy of iPSC-based cancer vaccines is not promising due to their insufficient antigenicity and the immunosuppressive tumor microenvironment. Here, we found that neoantigen-engineered iPSC cancer vaccines can trigger neoantigen-specific T cell responses to eradicate cancer cells and increase the therapeutic efficacy of RT in poorly immunogenic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). We generated neoantigen-augmented iPSCs (NA-iPSCs) by engineering AAV2 vector carrying murine neoantigens and evaluated their therapeutic efficacy in combination with radiotherapy. After administration of NA-iPSC cancer vaccine and radiotherapy, we found that ~60% of tumor-bearing mice achieved a complete response in microsatellite-stable CRC model. Furthermore, splenocytes from mice treated with NA-iPSC plus RT produced high levels of IFNγ secretion in response to neoantigens and had a greater cytotoxicity to cancer cells, suggesting that the NA-iPSC vaccine combined with radiotherapy elicited a superior neoantigen-specific T-cell response to eradicate cancer cells. The superior therapeutic efficacy of NA-iPSCs engineered by mouse TNBC neoantigens was also observed in the syngeneic immunocompetent TNBC mouse model. We found that the risk of spontaneous lung and liver metastasis was dramatically decreased by NA-iPSCs plus RT in the TNBC animal model. Altogether, these results indicated that autologous iPSC cancer vaccines engineered by neoantigens can elicit a high neoantigen-specific T-cell response, promote tumor regression, and reduce the risk of distant metastasis in combination with local radiotherapy.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - William Tzu-Liang Chen
- Department of Surgery, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Jia-Yi Chen
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Chien-Yueh Lee
- Innovation Frontier Institute of Research for Science and Technology, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan, ROC
| | - Chia-Hsin Wu
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan, ROC
| | - Chia-Ying Lai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
| | - An-Cheng Shiau
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- School of Chinese Medicine and Graduate Institute of Chinese Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| |
Collapse
|
2
|
Niknam MR, Attari F. The Potential Applications of Stem Cells for Cancer Treatment. Curr Stem Cell Res Ther 2022; 17:26-42. [PMID: 35048802 DOI: 10.2174/1574888x16666210810100858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
:
Scientists encounter many obstacles in traditional cancer therapies, including the side effects
on the healthy cells, drug resistance, tumor relapse, the short half-life of employed drugs in
the blood circulation, and the improper delivery of drugs toward the tumor site. The unique traits of
stem cells (SCs) such as self-renewal, differentiation, tumor tropism, the release of bioactive
molecules, and immunosuppression have opened a new window for utilizing SCs as a novel tool in
cancer treatment. In this regard, engineered SCs can secrete anti-cancer proteins or express enzymes
used in suicide gene therapy which locally induce apoptosis in neoplastic cells via the bystander
effect. These cells also stand as proper candidates to serve as careers for drug-loaded nanoparticles
or to play suitable hosts for oncolytic viruses. Moreover, they harbor great potential to be
employed in immunotherapy and combination therapy. However, tactful strategies should be devised
to allow easier transplantation and protection of SCs from in vivo immune responses. In spite
of the great hope concerning SCs application in cancer therapy, there are shortcomings and challenges
to be addressed. This review tends to elaborate on recent advances on the various applications
of SCs in cancer therapy and existing challenges in this regard.
Collapse
Affiliation(s)
- Malikeh Rad Niknam
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Embryonic Stem Cells in Clinical Trials: Current Overview of Developments and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1312:19-37. [PMID: 33159303 DOI: 10.1007/5584_2020_592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first isolation of human embryonic stem cells (hESC) reported in the late 90s opened a new window to promising possibilities in the fields of human developmental biology and regenerative medicine. Subsequently, the differentiation of hESC lines into different precursor cells showed their potential in treating different incurable diseases. However, this promising field has consistently had remarkable ethical and experimental limitations. This paper is a review of clinical trial studies dealing with hESC and their advantages, limitations, and other specific concerns. Some of the hESC limitations have been solved, and several clinical trial studies are ongoing so that recent clinical trials have strived to improve the clinical applications of hESC, especially in macular degeneration and neurodegenerative diseases. However, regarding hESC-based therapy, several important issues need more research and discussion. Despite considerable studies to Date, hESC-based therapy is not available for conventional clinical applications, and more studies and data are needed to overcome current clinical and ethical limitations. When all the limitations of Embryonic stem cells (ESC) are wholly resolved, perhaps hESC can become superior to the existing stem cell sources. This overview will be beneficial for understanding the standard and promising applications of cell and tissue-based therapeutic approaches and for developing novel therapeutic applications of hESC.
Collapse
|
4
|
Ouyang X, Telli ML, Wu JC. Induced Pluripotent Stem Cell-Based Cancer Vaccines. Front Immunol 2019; 10:1510. [PMID: 31338094 PMCID: PMC6628907 DOI: 10.3389/fimmu.2019.01510] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Over a century ago, it was reported that immunization with embryonic/fetal tissue could lead to the rejection of transplanted tumors in animals. Subsequent studies demonstrated that vaccination of embryonic materials in animals induced cellular and humoral immunity against transplantable tumors and carcinogen-induced tumors. Therefore, it has been hypothesized that the shared antigens between tumors and embryonic/fetal tissues (oncofetal antigens) are the key to anti-tumor immune responses in these studies. However, early oncofetal antigen-based cancer vaccines usually utilize xenogeneic or allogeneic embryonic stem cells or tissues, making it difficult to tease apart the anti-tumor immunity elicited by the oncofetal antigens vs. graft-vs.-host responses. Recently, one oncofetal antigen-based cancer vaccine using autologous induced pluripotent stem cells (iPSCs) demonstrated marked prophylactic and therapeutic potential, suggesting critical roles of oncofetal antigens in inducing anti-tumor immunity. In this review, we present an overview of recent studies in the field of oncofetal antigen-based cancer vaccines, including single peptide-based cancer vaccines, embryonic stem cell (ESC)- and iPSC-based whole-cell vaccines, and provide insights on future directions.
Collapse
Affiliation(s)
- Xiaoming Ouyang
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | - Melinda L Telli
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Joseph C Wu
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|