1
|
He L, Xu J, Huang P, Bai Y, Chen H, Xu X, Hu Y, Liu J, Zhang H. miR-9-5p and miR-221-3p Promote Human Mesenchymal Stem Cells to Alleviate Carbon Tetrachloride-Induced Liver Injury by Enhancing Human Mesenchymal Stem Cell Engraftment and Inhibiting Hepatic Stellate Cell Activation. Int J Mol Sci 2024; 25:7235. [PMID: 39000343 PMCID: PMC11241704 DOI: 10.3390/ijms25137235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great potential for the treatment of liver injuries, and the therapeutic efficacy greatly depends on their homing to the site of injury. In the present study, we detected significant upregulation of hepatocyte growth factor (HGF) in the serum and liver in mice with acute or chronic liver injury. In vitro study revealed that upregulation of miR-9-5p or miR-221-3p promoted the migration of human MSCs (hMSCs) toward HGF. Moreover, overexpression of miR-9-5p or miR-221-3p promoted hMSC homing to the injured liver and resulted in significantly higher engraftment upon peripheral infusion. hMSCs reduced hepatic necrosis and inflammatory infiltration but showed little effect on extracellular matrix (ECM) deposition. By contrast, hMSCs overexpressing miR-9-5p or miR-221-3p resulted in not only less centrilobular necrosis and venous congestion but also a significant reduction of ECM deposition, leading to obvious improvement of hepatocyte morphology and alleviation of fibrosis around central vein and portal triads. Further studies showed that hMSCs inhibited the activation of hepatic stellate cells (HSCs) but could not decrease the expression of TIMP-1 upon acute injury and the expression of MCP-1 and TIMP-1 upon chronic injury, while hMSCs overexpressing miR-9-5p or miR-221-3p led to further inactivation of HSCs and downregulation of all three fibrogenic and proinflammatory factors TGF-β, MCP-1, and TIMP-1 upon both acute and chronic injuries. Overexpression of miR-9-5p or miR-221-3p significantly downregulated the expression of α-SMA and Col-1α1 in activated human hepatic stellate cell line LX-2, suggesting that miR-9-5p and miR-221-3p may partially contribute to the alleviation of liver injury by preventing HSC activation and collagen expression, shedding light on improving the therapeutic efficacy of hMSCs via microRNA modification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huanxiang Zhang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China; (L.H.); (J.X.)
| |
Collapse
|
2
|
Gobin C, Inkabi S, Lattimore CC, Gu T, Menefee JN, Rodriguez M, Kates H, Fields C, Bian T, Silver N, Xing C, Yates C, Renne R, Xie M, Fredenburg KM. Investigating miR-9 as a mediator in laryngeal cancer health disparities. Front Oncol 2023; 13:1096882. [PMID: 37081981 PMCID: PMC10112398 DOI: 10.3389/fonc.2023.1096882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Background For several decades, Black patients have carried a higher burden of laryngeal cancer among all races. Even when accounting for sociodemographics, a disparity remains. Differentially expressed microRNAs have been linked to racially disparate clinical outcomes in breast and prostate cancers, yet an association in laryngeal cancer has not been addressed. In this study, we present our computational analysis of differentially expressed miRNAs in Black compared with White laryngeal cancer and further validate microRNA-9-5p (miR-9-5p) as a potential mediator of cancer phenotype and chemoresistance. Methods Bioinformatic analysis of 111 (92 Whites, 19 Black) laryngeal squamous cell carcinoma (LSCC) specimens from the TCGA revealed miRNAs were significantly differentially expressed in Black compared with White LSCC. We focused on miR-9-5 p which had a significant 4-fold lower expression in Black compared with White LSCC (p<0.05). After transient transfection with either miR-9 mimic or inhibitor in cell lines derived from Black (UM-SCC-12) or White LSCC patients (UM-SCC-10A), cellular migration and cell proliferation was assessed. Alterations in cisplatin sensitivity was evaluated in transient transfected cells via IC50 analysis. qPCR was performed on transfected cells to evaluate miR-9 targets and chemoresistance predictors, ABCC1 and MAP1B. Results Northern blot analysis revealed mature miR-9-5p was inherently lower in cell line UM-SCC-12 compared with UM-SCC-10A. UM -SCC-12 had baseline increase in cellular migration (p < 0.01), proliferation (p < 0.0001) and chemosensitivity (p < 0.01) compared to UM-SCC-10A. Increasing miR-9 in UM-SCC-12 cells resulted in decreased cellular migration (p < 0.05), decreased proliferation (p < 0.0001) and increased sensitivity to cisplatin (p < 0.001). Reducing miR-9 in UM-SCC-10A cells resulted in increased cellular migration (p < 0.05), increased proliferation (p < 0.05) and decreased sensitivity to cisplatin (p < 0.01). A significant inverse relationship in ABCC1 and MAP1B gene expression was observed when miR-9 levels were transiently elevated or reduced in either UM-SCC-12 or UM-SCC-10A cell lines, respectively, suggesting modulation by miR-9. Conclusion Collectively, these studies introduce differential miRNA expression in LSCC cancer health disparities and propose a role for low miR-9-5p as a mediator in LSCC tumorigenesis and chemoresistance.
Collapse
Affiliation(s)
- Christina Gobin
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Samuel Inkabi
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO, United States
| | - Chayil C. Lattimore
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research Bioinformatics Core Facility, University of Florida, Gainesville, FL, United States
| | - James N. Menefee
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Mayrangela Rodriguez
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Heather Kates
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Christopher Fields
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Tengfei Bian
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Natalie Silver
- Head and Neck Institute/Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Clayton Yates
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Kristianna M. Fredenburg
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Wong R, Zhang Y, Zhao H, Ma D. Circular RNAs in organ injury: recent development. J Transl Med 2022; 20:533. [PMID: 36401311 PMCID: PMC9673305 DOI: 10.1186/s12967-022-03725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Circular ribonucleic acids (circRNAs) are a class of long non-coding RNA that were once regarded as non-functional transcription byproducts. However, recent studies suggested that circRNAs may exhibit important regulatory roles in many critical biological pathways and disease pathologies. These studies have identified significantly differential expression profiles of circRNAs upon changes in physiological and pathological conditions of eukaryotic cells. Importantly, a substantial number of studies have suggested that circRNAs may play critical roles in organ injuries. This review aims to provide a summary of recent studies on circRNAs in organ injuries with respect to (1) changes in circRNAs expression patterns, (2) main mechanism axi(e)s, (3) therapeutic implications and (4) future study prospective. With the increasing attention to this research area and the advancement in high-throughput nucleic acid sequencing techniques, our knowledge of circRNAs may bring fruitful outcomes from basic and clinical research.
Collapse
|
4
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Abstract
Hepatic fibrosis is a reversible wound healing process following liver injury. Although this process is necessary for maintaining liver integrity, severe excessive extracellular matrix accumulation (ECM) could lead to permanent scar formation and destroy the liver structure. The activation of hepatic stellate cells (HSCs) is a key event in hepatic fibrosis. Previous studies show that most antifibrotic therapies focus on the apoptosis of HSCs and the prevention of HSC activation. Noncoding RNAs (ncRNAs) play a substantial role in HSC activation and are likely to be biomarkers or therapeutic targets for the treatment of hepatic fibrosis. This review summarizes and discusses the previously reported ncRNAs, including the microRNAs, long noncoding RNAs, and circular RNAs, highlighting their regulatory roles and interactions in the signaling pathways that regulate HSC activation in hepatic fibrosis.
Collapse
|
6
|
Zhao H, Feng YL, Liu T, Wang JJ, Yu J. MicroRNAs in organ fibrosis: From molecular mechanisms to potential therapeutic targets. Pathol Res Pract 2021; 225:153588. [PMID: 34419718 DOI: 10.1016/j.prp.2021.153588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022]
Abstract
Fibrosis is caused by chronic tissue injury and characterized by the excessive deposition of extracellular matrix (ECM) that ultimately results in organ failure and death. Owing to lacking of effective treatment against tissue fibrosis, it causes a high morbidity and mortality worldwide. Thus, it is of great importance to find an effective therapy strategy for the treatment of fibrosis. MicroRNAs (miRNAs) play vital roles in many biological processes by targeting downstream genes. Numerous studies demonstrated that miRNAs served as biomarkers of various diseases, suggesting the potential therapeutic targets for diseases. It was recently reported that miRNAs played an important role in the development of organ fibrosis, which showed a promising prospect against fibrosis by targeting intervention. Here, we summarize the roles of miRNAs in the process of organ fibrosis, including liver, lung, heart and kidney, and highlight miRNAs being novel therapeutic targets for organ fibrosis.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi'an International Medical Center Hospital, No. 777 Xitai Road Xi'an, Shaanxi 710100, China; Xi'an Engineering Technology Research Center for Cardiovascular Active Peptids, No. 777 Xitai Road Xi'an, Shaanxi 710100, China
| | - Ya-Long Feng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi, 712000, China
| | - Tian Liu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, No. 777 Xitai Road Xi'an, Shaanxi 710100, China; Xi'an Engineering Technology Research Center for Cardiovascular Active Peptids, No. 777 Xitai Road Xi'an, Shaanxi 710100, China
| | - Jing-Jing Wang
- Weinan Linwei District Maternal and Child Health Family Planning Service Center, No.144 Dongfeng Road Weinan, Shannxi 714000, China
| | - Jun Yu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, No. 777 Xitai Road Xi'an, Shaanxi 710100, China; Xi'an Engineering Technology Research Center for Cardiovascular Active Peptids, No. 777 Xitai Road Xi'an, Shaanxi 710100, China.
| |
Collapse
|
7
|
Chae YJ, Chang JE, Lee MK, Lim J, Shin KH, Lee KR. Regulation of drug transporters by microRNA and implications in disease treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00538-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
miR-125b acts as anti-fibrotic therapeutic target through regulating Gli3 in vivo and in vitro. Ann Hepatol 2020; 18:825-832. [PMID: 31548167 DOI: 10.1016/j.aohep.2019.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/03/2019] [Accepted: 03/26/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Liver fibrosis is a major characteristic of most chronic liver diseases which leads to accumulation of extracellular matrix (ECM) proteins. Hedgehog (Hh) pathway activated by Gli genes participated in the pathogenesis of liver fibrosis. However, the regulatory role of miR-125b in liver fibrosis via targeting Gli genes remains unknown. MATERIALS AND METHODS RT-qPCR and western blot were employed to the expression levels of mRNA and protein, respectively. The fibrosis level of liver tissue was determined by Masson's trichrome staining. The interaction between miR-125b and Gli3 was tested by luciferase reporter assay. In addition, LX2 cells were activated and CCl4-induced rat model was used in this study. RESULTS miR-125b was significantly declined in serum samples of the clinical liver fibrosis patient, activated LX2 cells and the liver tissues of the CCl4-induced rat model. Furthermore, in cellular level, the alpha-smooth muscle actin (α-SMA) and Albumin expressions were ascending and descending in LX2 cells, respectively, with the decline of miR-125b. However, when transfecting with miR-125b mimic, the expressions of α-SMA and Albumin was reversed and Gli3 expression was notably repressed in LX2 cells. The target interaction between miR-125b and Gli3 was determined by dual-luciferase assays. It was further discovered that the changes of α-SMA, Albumin, and Gli3 were similar to the expression trend in LX2 cells with miR-125b mimic transfection. CONCLUSION These results suggested that miR-125b might be protective against liver fibrosis via regulating Gli3 and it might be a promising target in the development of novel therapies to treat pathological fibrotic disorders.
Collapse
|
9
|
Liang H, Wang X, Si C, Duan Y, Chen B, Liang H, Yang D. Downregulation of miR‑141 deactivates hepatic stellate cells by targeting the PTEN/AKT/mTOR pathway. Int J Mol Med 2020; 46:406-414. [PMID: 32319536 DOI: 10.3892/ijmm.2020.4578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/27/2020] [Indexed: 01/18/2023] Open
Abstract
The activation of hepatic stellate cells (HSCs) caused by stimulating factors or fibrogenic cytokines is the critical stage of liver fibrosis. Recent studies have demonstrated the influence of microRNAs (miRNAs or miRs) on HSC activation and transformation; however, the function and underlying mechanisms of miRNAs in HSC activation have not yet been completely clarified. In the present study, transforming growth factor β1 (TGF‑β1) was used to treat human HSC lines (HSC‑T6 and LX2 cells) to simulate the activation of HSCs in vivo and whether the expression of miRNAs in HSCs was affected by TGF‑β1 treatment was examined using a miRNA microarray. It was observed that miR‑141 was one of the most upregulated miRNAs during HSC activation. Functional analyses revealed that miR‑141 knockdown suppressed the viability of HSCs and inhibited the expression levels of pro‑fibrotic markers. In addition, phosphatase and tensin homolog (PTEN), a well‑known suppressor of the AKT/mammalian target of rapamycin (mTOR) pathway, was found to be directly targeted by miR‑141 in HSCs. More importantly, the knockdown of PTEN markedly reversed the suppressive effects of miR‑141 inhibition on the viability of and the expression levels of pro‑fibrotic markers during HSC activation. Finally, it was observed that the downregulation of miR‑141 blocked the TGF‑β1‑induced activation of the AKT/mTOR pathway in HSCs. On the whole, the findings of the present study indicate that miR‑141 inhibition suppresses HSC activation via the AKT/mTOR pathway by targeting PTEN, highlighting that miR‑141 may serve as a novel therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Haijun Liang
- Department of Infectious Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xinwei Wang
- Department of Infectious Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Changyun Si
- Department of Infectious Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yuxiu Duan
- Department of Infectious Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Baoxin Chen
- Department of Infectious Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Haixia Liang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Daokun Yang
- Department of Infectious Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
10
|
Bruhn O, Lindsay M, Wiebel F, Kaehler M, Nagel I, Böhm R, Röder C, Cascorbi I. Alternative Polyadenylation of ABC Transporters of the C-Family (ABCC1, ABCC2, ABCC3) and Implications on Posttranscriptional Micro-RNA Regulation. Mol Pharmacol 2019; 97:112-122. [PMID: 31757862 DOI: 10.1124/mol.119.116590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent a large group of efflux pumps that are strongly involved in the pharmacokinetics of various drugs and nutrient distribution. It was recently shown that micro-RNAs (miRNAs) may significantly alter their expression as proven, e.g., for miR-379 and ABCC2 However, alternative mRNA polyadenylation may result in expression of 3'-untranslated regions (3'-UTRs) with varying lengths. Thus, length variants may result in presence or absence of miRNA binding sites for regulatory miRNAs with consequences on posttranscriptional control. In the present study, we report on 3'-UTR variants of ABCC1, ABCC2, and ABCC3 mRNA. Applying in vitro luciferase reporter gene assays, we show that expression of short ABCC2 3'-UTR variants leads to a significant loss of miR-379/ABCC2 interaction and subsequent upregulation of ABCC2 expression. Furthermore, we show that expression of ABCC2 3'-UTR lengths varies significantly between human healthy tissues but is not directly correlated to the respective protein level in vivo. In conclusion, the presence of altered 3'-UTR lengths in ABC transporters could lead to functional consequences regarding posttranscriptional gene expression, potentially regulated by alternative polyadenylation. Hence, 3'-UTR length variability may be considered as a further mechanism contributing to variability of ABCC transporter expression and subsequent drug variation in drug response. SIGNIFICANCE STATEMENT: micro-RNA (miRNA) binding to 3'-untranslated region (3'-UTR) plays an important role in the control of ATP-binding cassette (ABC)-transporter mRNA degradation and translation into proteins. We disclosed various 3'-UTR length variants of ABCC1, C2, and C3 mRNA, with loss of mRNA seed regions partly leading to varying and tissue-dependent interaction with miRNAs, as proven by reporter gene assays. Alternative 3'-UTR lengths may contribute to variable ABCC transporter expression and potentially explains inconsistent findings in miRNA studies.
Collapse
Affiliation(s)
- Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marie Lindsay
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Friederike Wiebel
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ruwen Böhm
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christian Röder
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
11
|
Pan G. Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:293-340. [PMID: 31571168 DOI: 10.1007/978-981-13-7647-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug's liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug's liver disposition and DILI are reviewed.
Collapse
Affiliation(s)
- Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai, China.
| |
Collapse
|
12
|
Li L, Zhang L, Zhao X, Cao J, Li J, Chu G. Downregulation of miR-152 contributes to the progression of liver fibrosis via targeting Gli3 in vivo and in vitro. Exp Ther Med 2019; 18:425-434. [PMID: 31258681 PMCID: PMC6566101 DOI: 10.3892/etm.2019.7595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
The Gli family is known to be required for the activation of hedgehog signalling, which participates in the pathogenesis of liver fibrosis. The aim of the present study was to identify the association between microRNA (miR)-152 and GLI family zinc finger 3 (Gli3) and their roles in liver fibrosis. In a carbon tetrachloride (CCl4)-treated rat model, fibrogenesis-associated indexes, including hydroxyproline content, collagen deposition, and α-smooth muscle actin (α-SMA) and albumin expression, were examined in in vivo and in vitro models. The expression of miR-152 and Gli3 in cells and tissues was determined by reverse transcription quantitative polymerase chain reaction and western blot analysis. The interaction of Gli3 and miR-152 was evaluated by bioinformatical analysis and a dual-luciferase reporter assay. The results demonstrated that miR-152 was significantly downregulated in serum samples from clinical patients, liver tissues from CCl4-treated rats and activated LX2 cells. Furthermore, at the cellular level, the mRNA and protein expression levels of α-SMA and albumin were increased and decreased, respectively, in LX2 cells. Nevertheless, following transfection with an miR-152 mimic, the expression levels of α-SMA and albumin were reversed, and Gli3 expression was notably decreased in LX2 cells. Additionally, the target interaction between miR-152 and Gli3 was demonstrated. Finally, an miR-152 mimic was introduced into the rat model and additionally demonstrated that the changes in α-SMA, albumin and Gli3 expression levels were similar to the expression pattern in LX2 cells following miR-152 mimic transfection. These data provided insight into the potential function of miR-152 as an anti-fibrotic therapy through the modulation of Gli3.
Collapse
Affiliation(s)
- Li Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Xiongqi Zhao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Jun Cao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Jingfeng Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Guang Chu
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| |
Collapse
|
13
|
Zhang Y, Guo J, Li Y, Jiao K, Zhang Y. let-7a suppresses liver fibrosis via TGFβ/SMAD signaling transduction pathway. Exp Ther Med 2019; 17:3935-3942. [PMID: 31007736 PMCID: PMC6468397 DOI: 10.3892/etm.2019.7457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is the most common pathological outcome and the most severe complication of chronic liver diseases. Accumulating evidence suggests that miRNAs are involved in cell proliferation, differentiation, apoptosis, as well as the occurrence and development of various diseases. In this study, we found that the expression of let-7a was markedly decreased in the liver tissue samples and blood samples from patients with liver fibrosis compared with healthy volunteers. Furthermore, let-7a was downregulated in the liver tissues and blood samples in mouse models of liver fibrosis. Further analysis indicated that let-7a suppresses the activation level of hepatic stellate cells (HSCs). In addition, overexpression of let-7a reduced cell viability and promoted apoptosis of HSCs. Western blot analysis showed that let-7a might inhibit HSCs through TGFβ/SMAD signaling pathway. The present study provides a potential accurate target and vital evidence to better understand the underlying pathogenesis for early diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yinghui Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Jia Guo
- Laboratory Center, Medical Technology College of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Yongchao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kai Jiao
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Yingbo Zhang
- Institute of Pathology, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
14
|
Wang YZ, Zhang W, Wang YH, Fu XL, Xue CQ. Repression of liver cirrhosis achieved by inhibitory effect of miR-454 on hepatic stellate cells activation and proliferation via Wnt10a. J Biochem 2019; 165:361-367. [PMID: 30535384 DOI: 10.1093/jb/mvy111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022] Open
Abstract
As is known, hepatic stellate cells (HSCs) activation contributes to liver cirrhosis. This study aims to find out the acting mechanisms of miR-454 inhibiting the activation and proliferation of hepatic stellate cells. The expression of Col1A1, α-smooth muscle actin (α-SMA) and Wnt10a were determined by western blot, and the miR-454 level was determined by quantitative real-time PCR in this study. We took two objects as experiment subjects, one was liver cirrhosis rats, and the other was transforming growth factor (TGF)-β1-stimulated HSC-T6 cells. After activated with TGF-β1 and transfected with microRNA-454 mimic, separately or successively, the changes on the Col1A1 and α-SMA expression, HSC proliferation, miR-454 level and Wnt10a expression were examined in HSC-T6 cells, respectively. Interaction between miR-454 and Wnt10a was evaluated with dual luciferase reporter assay. MiR-454 expression was down-regulated in tissues of liver cirrhosis rats. TGF-β1 caused the down-regulation of the miR-454 in HSC-T6 cells. MiR-454 inhibited the activation and proliferation of HSC-T6 cells. Wnt10a had a targeting relationship with miR-454. TGF-β1 promoted HSC-T6 activation and proliferation via down-regulating miR-454 expression, which further up-regulated Wnt10a expression. MiR-454 mimic inhibited cirrhosis progression in liver cirrhosis rats. MiR-454 can inhibit the activation and proliferation of HSCs via suppressing the expression of Wnt10a, to restrain liver cirrhosis.
Collapse
Affiliation(s)
- Yong-Zhen Wang
- Department of Interventional Radiology and Vascular Surgery, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan
| | - Yan-Hua Wang
- Department of Ultrasound, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi-Lin Fu
- Department of Hepatopathy, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen-Qi Xue
- Department of Interventional Radiology and Vascular Surgery, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Xiao Y, Zhang Y, Chen Y, Li J, Zhang Z, Sun Y, Shen H, Zhao Z, Huang Z, Zhang W, Chen W, Shen Z. Inhibition of MicroRNA-9-5p Protects Against Cardiac Remodeling Following Myocardial Infarction in Mice. Hum Gene Ther 2019; 30:286-301. [PMID: 30101604 DOI: 10.1089/hum.2018.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Follistatin-like 1 (Fstl1) protects cardiomyocytes from a broad spectrum of pathologic injuries including myocardial infarction (MI). It is worthy of note that although cardiac Fstl1 is elevated in post-MI microenvironment, its cardioprotective role is still restricted to a limited extent considering the frequency and severity of adverse cardiac remodeling following MI. We therefore propose that intrinsic Fstl1-suppressing microRNA (miRNA) may exist in the heart and its neutralization may further facilitate post-MI recovery. Here, miR-9-5p is predicted as one of the potential Fstl1-targeting miRNAs whose expression is decreased in ischemic myocardium and reversely correlated with Fstl1. Luciferase activity assay further validated Fstl1 as a direct target of miR-9-5p. In addition, forced expression of miR-9-5p in H9c2 cells is concurrent with diminished expression of Fstl1 and vice versa. Importantly, transfection of miR-9-5p mimics in hypoxic H9c2 cells exacerbates cardiac cell death, lactate dehydrogenase release, reactive oxygen species accumulation, and malonyldialdehyde concentration. More importantly, in vivo silencing of miR-9-5p by a specific antagomir in a murine acute MI model effectively preserves post-MI heart function with attenuated fibrosis and inflammatory response. Further studies demonstrated that antagomir treatment stabilizes Fstl1 expression as well as blocks cardiac cell death and reactive oxygen species generation in both ischemia-challenged hearts and hypoxia-treated cardiomyoblasts. Finally, cytoprotection against hypoxic challenge by miR-9-5p inhibitor is partially reversed by knockdown of Fstl1, indicating a novel role of miR-9-5p/Fstl1 axis in survival defense against hypoxic challenge. In summary, these findings identified miR-9-5p as a mediator of hypoxic injury in cardiomyoblasts and miR-9-5p suppression prevents cardiac remodeling after acute MI, providing a potential strategy for early treatment against MI.
Collapse
Affiliation(s)
- Yimin Xiao
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
- 2 Department of Cardiovascular Surgery, Shanghai Yoda Cardiothoracic Hospital, Shanghai, China
| | - Yanxia Zhang
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yueqiu Chen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jingjing Li
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zihan Zhang
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yimin Sun
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Han Shen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhenao Zhao
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zan Huang
- 3 Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Wencheng Zhang
- 4 The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Weiqian Chen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhenya Shen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Huang Y, Fan X, Tao R, Song Q, Wang L, Zhang H, Kong H, Huang J. Effect of miR-182 on hepatic fibrosis induced by Schistosomiasis japonica by targeting FOXO1 through PI3K/AKT signaling pathway. J Cell Physiol 2018; 233:6693-6704. [PMID: 29323718 DOI: 10.1002/jcp.26469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
The study aimed to investigate the impact of miR-182 and FOXO1 on S. japonica-induced hepatic fibrosis. Microarray analysis was performed to screen out differential expressed miRNAs and mRNAs. Rat hepatic fibrosis model and human hepatocellular cell line LX-2 were used to study the effect of miR-182 and FOXO1. qRT-PCR and Western blot were used to detect the expression of miR-182, FOXO1 or other fibrosis markers. The targeting relationship between FOXO1 and miR-182 was verified by luciferase reporter assay. Immunohistochemistry or immunofluorescence staining was conducted to detect FOXO1 or α-SMA in rat hepatic tissues. Cell viability and apoptosis were detected by MTT assay and flow cytometry. The expression of PI3K/AKT pathway-related proteins was detected by Western blot. miR-182 was highly expressed in liver fibrosis samples, and FOXO1 expression was negatively correlated with miR-182 expression. After transfection of miR-182, FOXO1 expression was down-regulated, with the results of LX-2 cells proliferation inhibition and apoptosis induction, as well as the aggravation of rat hepatic fibrosis. The expression of p-AKT/AKT and p-S6/S6 was increased, meaning that the PI3K/AKT signal pathway was activated. The results were reversed when treated with Wortmannin (PI3K inhibitor). After transfection of miR-182 inhibitor, FOXO1 expression was up-regulated, LX-2 cell proliferation was inhibited, and apoptosis rate was increased. High-expressed miR-182 and low-expressed FOXO1 promoted proliferation and inhibiting apoptosis on liver fibrosis cells, stimulating the development of S. japonica-induced hepatic fibrosis through feeding back to PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yu Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Nephrology, The First People's Hospital of Yichang, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Xiangxue Fan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department and Institute of Infectious Disease, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiqin Song
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Likui Wang
- Savaid Medical School, University of Chinese Academy of Sciences Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongyue Zhang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongyan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Xie ZY, Xiao ZH, Wang FF. Inhibition of autophagy reverses alcohol-induced hepatic stellate cells activation through activation of Nrf2-Keap1-ARE signaling pathway. Biochimie 2018; 147:55-62. [PMID: 29305174 DOI: 10.1016/j.biochi.2017.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous documents have indicated a critical role of autophagy in alcoholic liver fibrosis (ALF), but few papers have reported its function in hepatic stellate cells (HSCs) activation. The current study aimed to investigate the regulation effect of autophagy in HSCs activation, in further to explore the underlying mechanism involved. METHODS HSC-T6 cells were treated with ethanol, 3-MA (autophagy inhibitor) or rapamycin (autophagy inducer), and cells were also transfected with si-Nrf2 or si-Keap1. Moreover, ALF animal model was established and Nrf-2(-/-), Keap1 (-/-) mice were purchased. The level of autophagy, the expression of α-SMA and CoL1A1, and Nrf2 antioxidant response were evaluated in stellate cells and livers. RESULTS Ethanol treatment in cultured cells increased autophagy, oxidative stress level and promoted HSCs activation. Inhibition of autophagy reversed alcohol-induced HSCs activation and suppressed HSCs oxidative stress. Nrf2-Keap1-ARE pathway was involved in HSCs activation and oxidative stress regulated by autophagy. In addition, through in vivo study, we found that inhibition of autophagy could alleviate alcoholic fatty liver injury in ALF model mice and Nrf2 signaling was involved in autophagy regulated HSCs activation. CONCLUSION These data implicated mechanisms underlying autophagy in regulating the fibrogenic response in HSCs activation.
Collapse
Affiliation(s)
- Zheng-Yuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Zhi-Hua Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fen-Fen Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
18
|
Chen Y, Yuan B, Wu Z, Dong Y, Zhang L, Zeng Z. Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene 2017; 629:35-42. [PMID: 28774651 DOI: 10.1016/j.gene.2017.07.078] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/04/2017] [Accepted: 07/30/2017] [Indexed: 12/14/2022]
Abstract
Radiation-induced liver fibrosis (RILF) is considered as a major complication of radiation therapy for liver cancer. Circular RNA (circRNA) has been recently identified as a functional noncoding RNA involving in various biological processes. However, the expression pattern and regulatory capacity of circRNA in the irradiated hepatic stellate cell (HSC), the main fibrogenic cell type, still remain unclear. A circRNA microarray was used to identify circRNA expression profiles in irradiated and normal HSC. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to confirm the dysregulated circRNAs. Bioinformatic analyses including gene ontology (GO), KEGG pathway and circRNA/microRNA interaction network analysis were applied to predict the potential functions of circRNAs. Compared with the normal HSC, 179 circRNAs were found to be up-regulated and 630 circRNAs were down-regulated in irradiated HSC (fold change ≥2.0 and P<0.05). Six dysregulated circRNAs selected randomly were successfully verified by qRT-PCR. Bioinformatic analyses indicated that dysregulated circRNA might be involved in the cell response to irradiation and biological processes of hepatic fibrosis. Furthermore, inhibition of hsa_circ_0071410 increased the expression of miR-9-5p, resulting in the attenuation of irradiation induced HSC activation. In summary, this study revealed the expression profile and potential function of differentially expressed circRNAs in irradiated HSC, which provides novel clues for RILF study.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, Shanghai 200032, PR China
| | - Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, Shanghai 200032, PR China
| | - Zhifeng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, Shanghai 200032, PR China
| | - Yinying Dong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, Shanghai 200032, PR China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, Shanghai 200032, PR China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, Shanghai 200032, PR China.
| |
Collapse
|
19
|
de Oliveira da Silva B, Ramos LF, Moraes KCM. Molecular interplays in hepatic stellate cells: apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis. Cell Biol Int 2017; 41:946-959. [PMID: 28498509 DOI: 10.1002/cbin.10790] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Liver fibrosis is a pathophysiological process correlated with intense repair and cicatrization mechanisms in injured liver, and over the past few years, the characterization of the fine-tuning of molecular interconnections that support the development of liver fibrosis has been investigated. In this cellular process, the hepatic stellate cells (HSCs) support the organ fibrogenesis. The HSCs are found in two distinct morpho-physiological states: quiescent and activated. In normal liver, most HSCs are found in quiescent state, presenting a considerable amount of lipid droplets in the cytoplasm, while in injured liver, the activated phenotype of HSCs is a myofibroblast, that secrete extracellular matrix elements and contribute to the establishment of the fibrotic process. Studies on the molecular mechanisms by which HSCs try to restore their quiescent state have been performed; however, no effective treatment to reverse fibrosis has been so far prescribed. Therefore, the elucidation of the cellular and molecular mechanisms of apoptosis, senescence, and the cell reversion phenotype process from activate to quiescent state will certainly contribute to the development of effective therapies to treat hepatic fibrosis. In this context, this review aimed to address central elements of apoptosis, senescence, and reversal of HSC phenotype in the control of hepatic fibrogenesis, as a guide to future development of therapeutic strategies.
Collapse
Affiliation(s)
- Brenda de Oliveira da Silva
- Universidade Federal de Ouro Preto, Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Biotecnologia, Ouro Preto, Minas Gerais, Brazil.,Molecular Biology Laboratory, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho"-Campus Rio Claro, Rio Claro, São Paulo, Brazil
| | - Letícia Ferrreira Ramos
- Molecular Biology Laboratory, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho"-Campus Rio Claro, Rio Claro, São Paulo, Brazil
| | - Karen C M Moraes
- Molecular Biology Laboratory, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho"-Campus Rio Claro, Rio Claro, São Paulo, Brazil
| |
Collapse
|