1
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications. Front Cell Dev Biol 2024; 12:1437951. [PMID: 39114567 PMCID: PMC11304453 DOI: 10.3389/fcell.2024.1437951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Mastrolia I, Catani V, Oltrecolli M, Pipitone S, Vitale MG, Masciale V, Chiavelli C, Bortolotti CA, Nasso C, Grisendi G, Sabbatini R, Dominici M. Chasing the Role of miRNAs in RCC: From Free-Circulating to Extracellular-Vesicle-Derived Biomarkers. BIOLOGY 2023; 12:877. [PMID: 37372161 DOI: 10.3390/biology12060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Renal cell carcinoma (RCC) is the second most common cancer of the urinary system. The current therapeutic strategies are based on partial or total nephrectomy and/or targeted therapies based on immune checkpoint inhibitors to which patients are often refractory. Preventive and screening strategies do not exist and the few available biomarkers for RCC are characterized by a lack of sensitivity, outlining the need for novel noninvasive and sensitive biomarkers for early diagnosis and better disease monitoring. Blood liquid biopsy (LB) is a non- or minimally invasive procedure for a more representative view of tumor heterogeneity than a tissue biopsy, potentially allowing the real-time monitoring of cancer evolution. Growing interest is focused on the extracellular vesicles (EVs) secreted by either healthy or tumoral cells and recovered in a variety of biological matrices, blood included. EVs are involved in cell-to-cell crosstalk transferring their mRNAs, microRNAs (miRNAs), and protein content. In particular, transferred miRNAs may regulate tumorigenesis and proliferation also impacting resistance to apoptosis, thus representing potential useful biomarkers. Here, we present the latest efforts in the identification of circulating miRNAs in blood samples, focusing on the potential use of EV-derived miRNAs as RCC diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Virginia Catani
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | | - Cecilia Nasso
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Division of Oncology, S. Corona Hospital, 17027 Pietra Ligure, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
4
|
Sabry R, Williams M, LaMarre J, Favetta LA. Granulosa cells undergo BPA-induced apoptosis in a miR-21-independent manner. Exp Cell Res 2023; 427:113574. [PMID: 37004947 DOI: 10.1016/j.yexcr.2023.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Bisphenol A (BPA) is a harmful endocrine disrupting compound that alters not only classical cellular mechanisms but also epigenetic mechanisms. Evidence suggests that BPA-induced changes in microRNA expression can explain, in part, the changes observed at both the molecular and cellular levels. BPA is toxic to granulosa cells (GCs) as it can activate apoptosis, which is known to contribute to increased follicular atresia. miR-21 is a crucial antiapoptotic regulator in GCs, yet the exact function in a BPA toxicity model remains unclear. BPA was found to induce bovine GC apoptosis through the activation of several intrinsic factors. BPA reduced live cells counts, increased late apoptosis/necrosis, increased apoptotic transcripts (BAX, BAD, BCL-2, CASP-9, HSP70), increased the BAX/Bcl-2 ratio and HSP70 at the protein level, and induced caspase-9 activity at 12 h post-exposure. miR-21 inhibition increased early apoptosis and, while it did not influence transcript levels or caspase-9 activity, it did elevate the BAX/Bcl-2 protein ratio and HSP70 in the same manner as BPA. Overall, this study shows that miR-21 plays a molecular role in regulating intrinsic mitochondrial apoptosis; however, miR-21 inhibition did not make the cells more sensitive to BPA. Therefore, apoptosis induced by BPA in bovine GCs is miR-21 independent.
Collapse
|
5
|
LI X, ZHANG X, MA H, LIU Y, CHENG S, WANG H, SUN J. Upregulation of serum exosomal miR-21 was associated with poor prognosis of acute myeloid leukemia patients. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.51621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xingang LI
- The Third People's Hospital of Zhengzhou, China
| | | | - Hongxia MA
- The Third People's Hospital of Zhengzhou, China
| | - Yang LIU
- The Third People's Hospital of Zhengzhou, China
| | | | - Huili WANG
- The Third People's Hospital of Zhengzhou, China
| | - Jing SUN
- The Third People's Hospital of Zhengzhou, China
| |
Collapse
|
6
|
Yan H, Huang W, Rao J, Yuan J. miR-21 regulates ischemic neuronal injury via the p53/Bcl-2/Bax signaling pathway. Aging (Albany NY) 2021; 13:22242-22255. [PMID: 34552038 PMCID: PMC8507259 DOI: 10.18632/aging.203530] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022]
Abstract
Focal cerebral ischemia leads to a large number of neuronal apoptosis, and secondary neuronal death is the main cause of cerebral infarction. MicroRNA-21 (miR-21) has been shown to be a strong anti-apoptosis and pro-survival factor in ischemia. However, the precise mechanism of miR-21 in ischemic neuroprotection remains largely unknown. In this study, miR-21 was down-regulated while p53 was up-regulated following ischemia in vitro and in vivo. Overexpression of miR-21 in vitro and in vivo substantially inhibited the expression of p53 following ischemia, while inhibition of miR-21 in vitro and in vivo promoted p53 expression following ischemia. Moreover, the miR-21/p53 axis regulated the expression of Bcl-2/Bax and abolished OGD/R-induced neuronal injury in vitro. Furthermore, overexpression of miR-21 in vivo reduced neuronal death, protected against ischemic damage, and improved neurological functions by inhibiting p53/Bcl-2/Bax signaling, while inhibition of miR-21 enhanced the p53/Bcl-2/Bax signaling and aggravated the ischemic neuronal injury in vivo. Our data uncover a novel mechanism of miR-21 in regulating cerebral ischemic neuronal injury by inhibiting p53/Bcl-2/Bax signaling pathway, which suggests that miR-21/p53 may be attractive therapeutic molecules for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Jie Rao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| |
Collapse
|
7
|
Yang L, Zou X, Zou J, Zhang G. A Review of Recent Research on the Role of MicroRNAs in Renal Cancer. Med Sci Monit 2021; 27:e930639. [PMID: 33963171 PMCID: PMC8114846 DOI: 10.12659/msm.930639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) is a most common type of urologic neoplasms; it accounts for 3% of malignant tumors, with high rates of relapse and mortality. The most common types of renal cancer are clear cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal carcinoma (chRCC), which account for 90%, 6–15%, and 2–5%, respectively, of all renal malignancies. Although surgical resection, chemotherapy, and radiotherapy are the most common treatment method for those diseases, their effects remain dissatisfactory. Furthermore, recent research shows that the treatment efficacy of checkpoint inhibitors in advanced RCC patients is widely variable. Hence, patients urgently need a new molecular biomarker for early diagnosis and evaluating the prognosis of RCC. MicroRNAs (miRNAs) belong to a family of short, non-coding RNAs that are highly conserved, have long half-life evolution, and post-transcriptionally regulate gene expression; they have been predicted to play crucial roles in tumor metastasis, invasion, angiogenesis, proliferation, apoptosis, epithelial-mesenchymal transition, differentiation, metabolism, cancer occurrence, and treatment resistance. Although some previous papers demonstrated that miRNAs play vital roles in renal cancer, such as pathogenesis, diagnosis, and prognosis, the roles of miRNAs in kidney cancer are still unclear. Therefore, we reviewed studies indexed in PubMed from 2017 to 2020, and found several studies suggesting that there are more than 82 miRNAs involved in renal cancers. The present review describes the current status of miRNAs in RCC and their roles in progression, diagnosis, therapy targeting, and prognosis of RCC.
Collapse
Affiliation(s)
- Longfei Yang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Junrong Zou
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| |
Collapse
|
8
|
Al Monla R, Dassouki Z, Kouzayha A, Salma Y, Gali-Muhtasib H, Mawlawi H. The Cytotoxic and Apoptotic Effects of the Brown Algae Colpomenia sinuosa are Mediated by the Generation of Reactive Oxygen Species. Molecules 2020; 25:E1993. [PMID: 32344512 PMCID: PMC7221617 DOI: 10.3390/molecules25081993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Brown algae are a novel resource of biogenic molecules, however few studies have been conducted in the Mediterranean to assess the cytotoxic mechanisms of algal-derived compounds. This study focuses on the antineoplastic activity of extracts from non-investigated algae of the Lebanese coast, Colpomenia sinuosa. Extracts' antineoplastic activities were evaluated by MTT and trypan blue on different tumorigenic cells. Results indicated that the most potent extract was obtained by soxhlet using dichloromethane:methanol solvent (DM soxhlet) against HCT-116. Wound healing assay confirmed that this extract decreased the migration potential of HCT-116 cells with minimal effects on non-tumorigenic cells. It also induced an increase in the subG1 population as determined by flow cytometry. Western blot analysis demonstrated that apoptosis in treated HCT-116 cells was induced via upregulation of p21 protein and downregulation of the anti-apoptotic Bcl 2, which led to caspases activation. The latter, catalyzes the degradation of PARP-1, and thus suppresses cancer proliferation. Morphological alterations, further confirmed apoptosis. A strong pro-oxidant activity evidenced by the enhanced generation of reactive oxygen species (ROS) was observed in HCT-116 treated cells. Interestingly, a strong antioxidant effectively blocked effect induced by the extract. These results indicate that C. sinuosa is a source of bioactive compounds possessing pro-apoptotic and anti-migratory efficacy.
Collapse
Affiliation(s)
- Reem Al Monla
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon; (R.A.M.); (A.K.); (Y.S.)
| | - Zeina Dassouki
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon; (R.A.M.); (A.K.); (Y.S.)
| | - Achraf Kouzayha
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon; (R.A.M.); (A.K.); (Y.S.)
| | - Yahya Salma
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon; (R.A.M.); (A.K.); (Y.S.)
| | - Hala Gali-Muhtasib
- Department of Biology and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Drug Discovery, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Hiba Mawlawi
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon; (R.A.M.); (A.K.); (Y.S.)
| |
Collapse
|
9
|
Identification and profiling of microRNAs expressed in oral buccal mucosa squamous cell carcinoma of Chinese hamster. Sci Rep 2019; 9:15616. [PMID: 31666604 PMCID: PMC6821846 DOI: 10.1038/s41598-019-52197-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are known to play essential role in the gene expression regulation in cancer. In our research, next-generation sequencing technology was applied to explore the abnormal miRNA expression of oral squamous cell carcinoma (OSCC) in Chinese hamster. A total of 3 novel miRNAs (Novel-117, Novel-118, and Novel-135) and 11 known miRNAs (crg-miR-130b-3p, crg-miR-142-5p, crg-miR-21-3p, crg-miR-21-5p, crg-miR-542-3p, crg-miR-486-3p, crg-miR-499-5p, crg-miR-504, crg-miR-34c-5p, crg-miR-34b-5p and crg-miR-34c-3p) were identified. We conducted functional analysis, finding that 340 biological processes, 47 cell components, 46 molecular functions were associated with OSCC. Meanwhile the gene expression of Caspase-9, Caspase-3, Bax, and Bcl-2 were determined by qRT-PCR and the protein expression of PTEN and p-AKT by immunohistochemistry. Our research proposed further insights to the profiles of these miRNAs and provided a basis for investigating the regulatory mechanisms involved in oral cancer research.
Collapse
|
10
|
Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, Baradaran B. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019; 139:1-15. [PMID: 31102709 DOI: 10.1016/j.freeradbiomed.2019.05.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
To protect tissues and the organism from disease, potentially harmful cells are removed through programmed cell death processes, including apoptosis and necroptosis. These types of cell death are critically controlled by microRNAs (miRNAs). MiRNAs are short RNA molecules that target and inhibit expression of many cellular regulators, including those controlling programmed cell death via the intrinsic (Bcl-2 and Mcl-1), extrinsic (TRAIL and Fas), p53-and endoplasmic reticulum (ER) stress-induced apoptotic pathways, as well as the necroptosis cell death pathway. In this review, we discuss the current knowledge of apoptosis and necroptosis pathways and how these are impaired in cancer cells. We focus on how miRNAs disrupt apoptosis and necroptosis, thereby critically contributing to malignancy. Understanding which and how miRNAs and their targets affect cell death pathways could open up novel therapeutic opportunities for cancer patients. Indeed, restoration of pro-apoptotic tumor suppressor miRNAs (apoptomiRs) or inhibition of oncogenic miRNAs (oncomiRs) represent strategies that are currently being trialed or are already applied as miRNA-based cancer therapies. Therefore, better understanding the cancer type-specific expression of apoptomiRs and oncomiRs and their underlying mechanisms in cell death pathways will not only advance our knowledge, but also continue to provide new opportunities to treat cancer.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Wang J, Zhang C, He W, Gou X. Construction and comprehensive analysis of dysregulated long non-coding RNA-associated competing endogenous RNA network in clear cell renal cell carcinoma. J Cell Biochem 2019; 120:2576-2593. [PMID: 30278113 DOI: 10.1002/jcb.27557] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This study aimed to assess the long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) regulatory network in clear cell renal cell carcinoma (ccRCC) by gene expression analyses. MATERIALS AND METHODS LncRNA, miRNA, and mRNA expression profiles in ccRCC were obtained from The Cancer Genome Atlas. Differentially expressed lncRNAs, mRNAs (cut-off: |log 2 [fold change, FC])| > 2.0 and adjusted P < 0.01) and miRNAs (|log 2FC| > 1.5 and adjusted P < 0.01) were unveiled using R. Cox regression analysis was performed to identify prognostic factors of ccRCC related to overall survival (OS). A protein-protein interaction (PPI) network was constructed for differentially expressed mRNAs (DEmRNAs) by Search Tool for the Retrieval of Interacting Genes (STRING). Key hub genes were screened from top 300 DEmRNAs. LncRNA-miRNA and miRNA-mRNA regulatory network were constructed and combined into the competing endogenous RNA regulatory network. Gene ontology biological terms were screened by STRING; Kyoto Encyclopedia of Genes and Genomes pathways were identified using the "clusterProfiler" package in R. RESULTS A total of 2331, 1517, and 83 DEmRNAs, lncRNAs, and miRNAs were identified, respectively. Eleven lncRNAs (AC016773.1, HOTTIP, LINC00460, NALCN-AS1, PVT1, TRIM36-IT1, WT1-AS, COL18A1-AS1, LINC00443, LINC00472, and TCL6), three miRNAs (hsa-mir-21, hsa-mir-144, and hsa-mir-155), and three mRNAs (COL4A4, NOD2, and GOLGA8B) were associated with OS. Specifically, four lncRNAs (PVT1, LINC00472, TCL6, and WT1-AS1) and one mRNA (Collagen Type IV Alpha 4 Chain) were verified as independent prognostic factors by Gene Expression Profiling Interactive Analysis. Eleven key hub genes were obtained by PPI analysis. "Cell adhesion molecules (CAMs)," "chemical carcinogenesis," and "cytokine-cytokine receptor interaction" were significantly enriched in the network. CONCLUSION The findings clarify the pathogenesis of ccRCC and might provide potential therapeutic targets.
Collapse
Affiliation(s)
- Jiawu Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengyao Zhang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhou J, Zhong J, Huang Z, Liao M, Lin S, Chen J, Chen H. TAK1 mediates apoptosis via p38 involve in ischemia-induced renal fibrosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1016-1025. [PMID: 29661023 DOI: 10.1080/21691401.2018.1442841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Renal fibrosis is a common and characteristic symptom of chronic kidney disease (CKD). However, the molecular mechanisms of renal fibrosis remain elusive. Ischemia injury, as a major cause of AKI, deserves more attention in order to improve the knowledge of AKI-induced fibrosis. Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) interacts directly with TGF-β, which play a critical role in the progression of fibrosis. Therefore, the present study aimed to investigate the role of TAK1 in the pathogenesis of ischemia-induced renal fibrosis. Compared with mice in the vehicle group, mice intraperitoneally injected with TAK1 inhibitor were found to have lower serum creatinine, less tubular damage and more mild fibrosis following ischemia-induced AKI. Furthermore, inhibition of TAK1 reduced p38 phosphorylation, decreased expression of Bax and caspase 3 and apoptosis cells in kidneys of mice treated with IR-induced AKI. Compared with vehicle-treated renal tubular epithelial cells, TAK1 overexpression cells were found to have a higher apoptosis and fibrosis index level and p38 phosphorylation following hypoxia/reoxygenation (H/R) treatment. Furthermore, the p38 inhibitor combined with TAK1 overexpression verified the role of TAK1/p38 signaling pathway in apoptosis and fibrosis index level of renal tubular epithelial cells treated with H/R. Thus, our results show that TAK1 plays an important role in the pathogenesis of ischemia-induced renal fibrosis and may mediate p38-regulated cell apoptosis.
Collapse
Affiliation(s)
- Jun Zhou
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Jiying Zhong
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Zhenxing Huang
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Meijuan Liao
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Sen Lin
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Jia Chen
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Hongtao Chen
- b Department of Anesthesiology , The Eighth People's Hospital of Guangzhou , Guangzhou , Guangdong Province , China
| |
Collapse
|
13
|
Ahrend H, Kaul A, Ziegler S, Brandenburg LO, Zimmermann U, Mustea A, Burchardt M, Ziegler P, Stope MB. MicroRNA-1 and MicroRNA-21 Individually Regulate Cellular Growth of Non-malignant and Malignant Renal Cells. ACTA ACUST UNITED AC 2018; 31:625-630. [PMID: 28652429 DOI: 10.21873/invivo.11103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM Due to its poor prognosis, it is increasingly necessary to understand the biology of renal cell cancer (RCC). Therefore, we investigated the role of microRNAs miR-1 and miR-21 in the growth of RCC cells compared to that of non-malignant renal cells. MATERIALS AND METHODS Four malignant cell lines (Caki-1, 786-O, RCC4, A498) were examined regarding their cell growth, microRNA and telomerase expression, and were compared to non-malignant RC-124 renal cells. RESULTS Inconsistencies appeared in the panel of RCC cells regarding antiproliferative and proliferative properties of miR-1 and miR-21, respectively. Notably, and most likely due to immortaliziation, non-malignant RC-124 cells exhibited telomerase expression and activity. CONCLUSION miR-1 and miR-21 functionality in cancer progression, particularly in tumor growth, may be more dependent on the individual cellular context and may reflect RCC heterogeneity. Thus, both microRNAs, in combination with other stratifying biomarkers, may be useful in terms of RCC diagnosis, prognosis, or treatment response.
Collapse
Affiliation(s)
- Hannes Ahrend
- Department of Urology, University of Medicine Greifswald, Greifswald, Germany
| | - Anne Kaul
- Department of Gynaecology and Obstetrics, University of Medicine Greifswald, Greifswald, Germany
| | - Susanne Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | | | - Uwe Zimmermann
- Department of Urology, University of Medicine Greifswald, Greifswald, Germany
| | - Alexander Mustea
- Department of Gynaecology and Obstetrics, University of Medicine Greifswald, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University of Medicine Greifswald, Greifswald, Germany
| | - Patrick Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Matthias B Stope
- Department of Urology, University of Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Liu Y, Ren L, Liu W, Xiao Z. MiR-21 regulates the apoptosis of keloid fibroblasts by caspase-8 and the mitochondria-mediated apoptotic signaling pathway via targeting FasL. Biochem Cell Biol 2018. [PMID: 29527928 DOI: 10.1139/bcb-2017-0306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MicroRNA-21 (miR-21) has been found to be upregulated in keloid tissue and to affect the proliferation and apoptosis of keloid fibroblasts; however, the possible mechanisms remain unclear. In this study, we aimed to evaluate the role of miR-21 in FasL-induced caspase-8 activation and the mitochondria-mediated apoptotic signaling pathway in keloid fibroblasts. Our study found that the protein level of FasL was decreased by miR-21 over-expression, while being enhanced by miR-21 inhibition in keloid fibroblasts. Subsequently, the mitochondria-mediated apoptosis of keloid fibroblasts was restrained by miR-21 over-expression, as evidenced by enhanced mitochondrial membrane potential and decreased production of mitochondrial ROS. Moreover, over-expression of miR-21 inhibited the activation of the caspase-8 and the mitochondria-mediated apoptotic signaling pathway. As expected, inhibition of miR-21 had the opposite effects. Finally, silencing of FasL suppressed miR-21 inhibition-induced apoptosis by inactivation of caspase-8 and the mitochondria-mediated apoptotic signaling pathway, which was comparable to Z-IETD-FMK, a caspase-8 inhibitor. Taken together, these results suggest that miR-21 regulates the apoptosis of keloid fibroblasts via targeting FasL, and caspase-8 and the mitochondria-mediated apoptotic signaling pathway is involved in this process. Our findings provide evidence that miR-21 may be considered to be a therapeutic target for keloids.
Collapse
Affiliation(s)
- Ying Liu
- a Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Lihong Ren
- b Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Wenjing Liu
- b Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhibo Xiao
- b Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
15
|
Lokeshwar SD, Talukder A, Yates TJ, Hennig MJP, Garcia-Roig M, Lahorewala SS, Mullani NN, Klaassen Z, Kava BR, Manoharan M, Soloway MS, Lokeshwar VB. Molecular Characterization of Renal Cell Carcinoma: A Potential Three-MicroRNA Prognostic Signature. Cancer Epidemiol Biomarkers Prev 2018; 27:464-472. [PMID: 29440068 DOI: 10.1158/1055-9965.epi-17-0700] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/28/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022] Open
Abstract
Background: Aberrantly expressed miRNAs promote renal cell carcinoma (RCC) growth and metastasis and are potentially useful biomarkers for metastatic disease. However, a consensus clinically significant miRNA signature has not been identified. To identify an miRNA signature for predicting clinical outcome in RCC patients, we used a four-pronged interconnected approach.Methods: Differentially expressed miRNAs were identified and analyzed in 113 specimens (normal kidney: 59; tumor: 54). miRNA profiling was performed in matched normal and tumor specimens from 8 patients and extended to 32 specimens. Seven aberrantly expressed miRNAs were analyzed by qPCR, and their levels were correlated with RCC subtypes and clinical outcome. miRNA signature was confirmed in The Cancer Genome Atlas RCC dataset (n = 241).Results: Discovery phase identified miR-21, miR-142-3p, miR-142-5p, miR-150, and miR-155 as significantly upregulated (2-4-fold) and miR-192 and miR-194 as downregulated (3-60-fold) in RCC; miR-155 distinguished small tumors (<4 cm) from benign oncocytomas. In univariate and multivariate analyses, miRNA combinations (miR-21+194; miR-21+142-5p+194) significantly predicted metastasis and/or disease-specific mortality; miR-21+142-5p+194 (for metastasis): P = 0.0017; OR, 0.53; 95% confidence interval (CI), 0.75-0.33; 86.7% sensitivity; 82% specificity. In the TCGA dataset, combined biomarkers associated with metastasis and overall survival (miR-21+142-5p+194: P < 0.0001; OR, 0.37; 95% CI, 0.58-0.23).Conclusions: The interconnected discovery-validation approach identified a three-miRNA signature as a potential predictor of disease outcome in RCC patients.Impact: With 10% survival at 5 years, metastatic disease presents poor prognosis for RCC patients. The three-miRNA signature discovered and validated may potentially at an early stage detect and predict metastasis, to allow early intervention for improving patient prognosis. Cancer Epidemiol Biomarkers Prev; 27(4); 464-72. ©2018 AACR.
Collapse
Affiliation(s)
- Soum D Lokeshwar
- Honors Program in Medical Education, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Biochemistry and Molecular Biology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Asif Talukder
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Travis J Yates
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Martin J P Hennig
- Department of Urology, University of Schleswig-Holstein, Lübeck, Germany
| | - Michael Garcia-Roig
- Department of Urology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Sarrah S Lahorewala
- Honors Program in Medical Education, Miller School of Medicine, University of Miami, Miami, Florida
| | - Naureen N Mullani
- Honors Program in Medical Education, Miller School of Medicine, University of Miami, Miami, Florida
| | - Zachary Klaassen
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Bruce R Kava
- Department of Urology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Murugesan Manoharan
- Division of Urologic Oncology Surgery, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - Vinata B Lokeshwar
- Honors Program in Medical Education, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|