1
|
Gao J, Wang Z, Lin S, Tian Y, Wu H, Li Z, Liu F. CCR7/DUSP1 signaling Axis mediates iCAF to regulates head and neck squamous cell carcinoma growth. Cell Signal 2024; 122:111305. [PMID: 39067836 DOI: 10.1016/j.cellsig.2024.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE C-C motif chemokine receptor 7 (CCR7) significantly influences tumors onset and progression, yet its impact on the tumor microenvironment (TME) and specific mechanisms remain elusive. Inflammatory Cancer-Associated Fibroblasts (iCAF), a vital subtype of Cancer-Associated Fibroblasts (CAF), play a critical role in regulating the TME and tumor growth, though the underlying molecular mechanisms are not fully understood. This study aims to determine whether CCR7 participates in tumor regulation by iCAF and to elucidate the specific mechanisms involved. METHODS Differential gene analysis of CAF subtypes in CCR7 knockout and wild-type groups was conducted using single-cell data. Animal models facilitated the extraction of primary iCAF cells via flow cytometry sorting. Changes in DUSP1 expression and the efficiency of lentivirus-mediated knockdown and overexpression were examined through qPCR and Western Blot. MOC1 and MOC2 cells were co-cultured with iCAF, with subsequent validation of changes in tumor cell proliferation, migration, and invasion using CCK8, EdU, and wound healing assays. ELISA was employed to detect changes in TGF-β1 concentration in the iCAF supernatant. RESULTS CAF was categorized into three subtypes-myCAF, iCAF, and apCAF-based on single-cell data. Analysis revealed a significant increase in DUSP1 expression in iCAF from the CCR7 knockout group, confirmed by in vitro experiments. Co-culturing MOC1 and MOC2 cells with iCAF exhibiting lentivirus-mediated DUSP1 knockdown resulted in inhibited tumor cell proliferation, invasion, and migration. In contrast, co-culture with iCAF overexpressing DUSP1 enhanced these capabilities. Additionally, the TGF-β1 concentration in the supernatant increased in the DUSP1 knockdown iCAF group, whereas it decreased in the DUSP1 overexpression group. CONCLUSION The CCR7/DUSP1 signaling axis regulates tumor growth by modulating TGF-β1 secretion in iCAF.
Collapse
Affiliation(s)
- Jiaxing Gao
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110000, People's Republic of China; Shigezhuang Community Health Service Center in Changping District, Beijing.
| | - Zengxu Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110000, People's Republic of China.
| | - Shanfeng Lin
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110000, People's Republic of China.
| | - Yuan Tian
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110000, People's Republic of China.
| | - Haoxuan Wu
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110000, People's Republic of China
| | - Zhenning Li
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110000, People's Republic of China.
| | - Fayu Liu
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110000, People's Republic of China.
| |
Collapse
|
2
|
Castellana C, Eusebi LH, Dajti E, Iascone V, Vestito A, Fusaroli P, Fuccio L, D’Errico A, Zagari RM. Autoimmune Atrophic Gastritis: A Clinical Review. Cancers (Basel) 2024; 16:1310. [PMID: 38610988 PMCID: PMC11010983 DOI: 10.3390/cancers16071310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Autoimmune atrophic gastritis (AAG) is a chronic condition characterized by the presence of atrophy in the oxyntic mucosa due to anti-parietal cell antibodies. This review provides a comprehensive and up-to-date overview of autoimmune atrophic gastritis, reporting recent evidence on epidemiology, pathogenesis, diagnosis, clinical presentation, risk of malignancies, and management. The prevalence of AAG has been estimated at between 0.3% and 2.7% in the general population. The diagnosis of AAG is based on a combination of the serologic profile and the histological examination of gastric biopsies. Patients with AAG are often asymptomatic but can also have dyspeptic or reflux symptoms. The atrophy of the oxyntic mucosa leads to iron and vitamin B12 malabsorption, which may result in anemia and neurological affections. Autoimmune atrophic gastritis is associated with an increased risk of type I neuroendocrine tumors (NETs) and gastric cancer, with an incidence rate of 2.8% and 0.5% per person/year, respectively. Management is directed to reinstate vitamins and iron and to prevent malignancies with endoscopic surveillance. In conclusion, atrophic autoimmune gastritis is an infrequent condition, often asymptomatic and misdiagnosed, that requires an early diagnosis for appropriate vitamin supplementation and endoscopic follow-up for the early diagnosis of NETs and gastric cancer.
Collapse
Affiliation(s)
- Chiara Castellana
- Department of Medical Sciences and Surgery, University of Bologna, 40138 Bologna, Italy; (C.C.); (L.H.E.); (E.D.); (V.I.); (L.F.); (A.D.)
- Gastroenterology Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Leonardo Henry Eusebi
- Department of Medical Sciences and Surgery, University of Bologna, 40138 Bologna, Italy; (C.C.); (L.H.E.); (E.D.); (V.I.); (L.F.); (A.D.)
- Gastroenterology Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Elton Dajti
- Department of Medical Sciences and Surgery, University of Bologna, 40138 Bologna, Italy; (C.C.); (L.H.E.); (E.D.); (V.I.); (L.F.); (A.D.)
| | - Veronica Iascone
- Department of Medical Sciences and Surgery, University of Bologna, 40138 Bologna, Italy; (C.C.); (L.H.E.); (E.D.); (V.I.); (L.F.); (A.D.)
- Gastro-Esophageal Organic Diseases Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Amanda Vestito
- Gastroenterology Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Pietro Fusaroli
- Department of Medical Sciences and Surgery, University of Bologna, 40138 Bologna, Italy; (C.C.); (L.H.E.); (E.D.); (V.I.); (L.F.); (A.D.)
- Gastroenterology Unit, Hospital of Imola, 40026 Imola, Italy
| | - Lorenzo Fuccio
- Department of Medical Sciences and Surgery, University of Bologna, 40138 Bologna, Italy; (C.C.); (L.H.E.); (E.D.); (V.I.); (L.F.); (A.D.)
- Gastroenterology Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Antonietta D’Errico
- Department of Medical Sciences and Surgery, University of Bologna, 40138 Bologna, Italy; (C.C.); (L.H.E.); (E.D.); (V.I.); (L.F.); (A.D.)
- Pathology Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Rocco Maurizio Zagari
- Department of Medical Sciences and Surgery, University of Bologna, 40138 Bologna, Italy; (C.C.); (L.H.E.); (E.D.); (V.I.); (L.F.); (A.D.)
- Gastro-Esophageal Organic Diseases Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
3
|
Xu J, Li JQ, Chen QL, Shestakova EA, Misyurin VA, Pokrovsky VS, Tchevkina EM, Chen HB, Song H, Zhang JY. Advances in Research on the Effects and Mechanisms of Chemokines and Their Receptors in Cancer. Front Pharmacol 2022; 13:920779. [PMID: 35770088 PMCID: PMC9235028 DOI: 10.3389/fphar.2022.920779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer is a common and intractable disease that seriously affects quality of life of patients and imposes heavy economic burden on families and the entire society. Current medications and intervention strategies for cancer have respective shortcomings. In recent years, it has been increasingly spotlighted that chemokines and their receptors play vital roles in the pathophysiology of cancer. Chemokines are a class of structurally similar short-chain secreted proteins that initiate intracellular signaling pathways through the activation of corresponding G protein-coupled receptors and participate in physiological and pathological processes such as cell migration and proliferation. Studies have shown that chemokines and their receptors have close relationships with cancer epigenetic regulation, growth, progression, invasion, metastasis, and angiogenesis. Chemokines and their receptors may also serve as potential targets for cancer treatment. We herein summarize recent research progresses on anti-tumor effects and mechanisms of chemokines and their receptors, suggesting avenues for future studies. Perspectives for upcoming explorations, such as development of multi-targeted chemokine-based anti-tumor drugs, are also discussed in the present review.
Collapse
Affiliation(s)
- Jing Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing-quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Qi-lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Elena A. Shestakova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vsevolod A. Misyurin
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Biochemistry, People’s Friendship University, Moscow, Russia
| | - Elena M. Tchevkina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Hu-biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Hu-biao Chen, ; Hang Song, ; Jian-ye Zhang,
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Hu-biao Chen, ; Hang Song, ; Jian-ye Zhang,
| | - Jian-ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hu-biao Chen, ; Hang Song, ; Jian-ye Zhang,
| |
Collapse
|
4
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
C-C Chemokine Receptor 7 in Cancer. Cells 2022; 11:cells11040656. [PMID: 35203305 PMCID: PMC8870371 DOI: 10.3390/cells11040656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
C-C chemokine receptor 7 (CCR7) was one of the first two chemokine receptors that were found to be upregulated in breast cancers. Chemokine receptors promote chemotaxis of cells and tissue organization. Since under homeostatic conditions, CCR7 promotes migration of immune cells to lymph nodes, questions immediately arose regarding the ability of CCR7 to direct migration of cancer cells to lymph nodes. The literature since 2000 was examined to determine to what extent the expression of CCR7 in malignant tumors promoted migration to the lymph nodes. The data indicated that in different cancers, CCR7 plays distinct roles in directing cells to lymph nodes, the skin or to the central nervous system. In certain tumors, it may even serve a protective role. Future studies should focus on defining mechanisms that differentially regulate the unfavorable or beneficial role that CCR7 plays in cancer pathophysiology, to be able to improve outcomes in patients who harbor CCR7-positive cancers.
Collapse
|
6
|
The Significance of the Alter miR let-7a and miR-335 Expression Level Regulating the CCR7/CCL19 Axis as Potential Biomarkers of Tumor Progression in NSCLC. J Clin Med 2022; 11:jcm11030655. [PMID: 35160116 PMCID: PMC8836798 DOI: 10.3390/jcm11030655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The chemokine receptor 7/C-C ligand 19 chemokine (CCR7/CCL19) has been implicated in the development and progression of NSCLC. Its expression is regulated by various epigenetic factors including miRNAs. The aim of this study was to assess the expression of CCR7/CCL19 in cancer tissue in relation to that of miRNAs (miR-let-7a, miR-335) as transcriptional regulators. The expression of the tested miRNAs was also evaluated in serum exosomes. Sixty patients (n = 60) were enrolled in the study. The total expression of the studied mRNA and miRNAs were evaluated using qPCR. Tumor tissue fragments, macroscopically unchanged adjacent tissue, and serum were used as controls. Higher CCR7 and CCL19 mRNA expression levels were observed in tumor tissue compared to control. According to stages of the disease (AJCC tumor staging), the greatest expression level of the studied genes' mRNA was observed in patients with stage III. In NSCLC patients, lower miR let-7a expression level was observed in tumor tissue compared to serum; however, miR-335 expression level was higher (p < 0.05). The expression level of miR-335 positively correlated with tumor size (T features according to pTNM staging) and AJCC tumor staging, while miR let-7a had a negative correlation (p > 0.05) with liquid biopsy. Significantly greater miR-335 expression level and lower miR let-7a expression level in serum were observed in patients with metastases to lymph nodes. Our findings reveal a significant correlation between the expression levels of the mRNA of the studied genes and miRNAs. Changes in miR-335 and miR let-7a expression levels in the serum exosomes of NSCLC patients in relation to lymph node metastases and tumor stage may serve as a non-invasive molecular biomarker of tumor progression.
Collapse
|
7
|
Kraus S, Kolman T, Yeung A, Deming D. Chemokine Receptor Antagonists: Role in Oncology. Curr Oncol Rep 2021; 23:131. [PMID: 34480662 DOI: 10.1007/s11912-021-01117-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To evaluate the clinical potential of chemokine receptor antagonists for the treatment of patients with cancer. RECENT FINDINGS Chemokine receptors and their ligands can have a significant impact on the infiltration of cells into the tumor microenvironment. The receptors are increasingly being investigated as targets for the treatment of cancers. Recent studies are demonstrating the promise of chemokine receptor antagonists in this setting. There are many chemokine receptors, and each can have different functions depending on the cellular context. Targeting chemokine receptors is a promising strategy in both pre-clinical research and clinical trials. Inhibiting chemokine receptors that either recruit suppressive cells or improve cancer mobility and viability while sparing those necessary for proper immune trafficking may prove to dramatically improve treatment responses. Further research in this area is warranted and has the potential to dramatically improve patient outcomes.
Collapse
Affiliation(s)
- Sean Kraus
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of WI-Madison, Madison, WI, USA
| | - Thomas Kolman
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of WI-Madison, Madison, WI, USA
| | - Austin Yeung
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of WI-Madison, Madison, WI, USA
| | - Dustin Deming
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of WI-Madison, Madison, WI, USA. .,University of Wisconsin Carbone Cancer Center, Madison, WI, USA. .,McArdle Laboratory for Cancer Research, Department of Oncology, University of WI-Madison, Madison, WI, USA. .,6507 WI Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CCR7 chemokine axis is comprised of chemokine ligand 21 (CCL21) and chemokine ligand 19 (CCL19) acting on chemokine receptor 7 (CCR7). This axis plays two important but apparently opposing roles in cancer. On the one hand, this axis is significantly engaged in the trafficking of a number of effecter cells involved in mounting an immune response to a growing tumour. This suggests therapeutic strategies which involve potentiation of this axis can be used to combat the spread of cancer. On the other hand, the CCR7 axis plays a significant role in controlling the migration of tumour cells towards the lymphatic system and metastasis and can thus contribute to the expansion of cancer. This implies that therapeutic strategies which involve decreasing signaling through the CCR7 axis would have a beneficial effect in preventing dissemination of cancer. This dichotomy has partly been the reason why this axis has not yet been exploited, as other chemokine axes have, as a therapeutic target in cancer. Recent report of a crystal structure for CCR7 provides opportunities to exploit this axis in developing new cancer therapies. However, it remains unclear which of these two strategies, potentiation or antagonism of the CCR7 axis, is more appropriate for cancer therapy. This review brings together the evidence supporting both roles of the CCR7 axis in cancer and examines the future potential of each of the two different therapeutic approaches involving the CCR7 axis in cancer.
Collapse
Affiliation(s)
- Anwar Salem
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Mashael Alotaibi
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Rima Mroueh
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
9
|
Yue Z, Ningning D, Lin Y, Jianming Y, Hongtu Z, Ligong Y, Feng L, Shuaibo W, Yousheng M. Correlation between CXCR4, CXCR5 and CCR7 expression and survival outcomes in patients with clinical T1N0M0 non-small cell lung cancer. Thorac Cancer 2020; 11:2955-2965. [PMID: 32896997 PMCID: PMC7529574 DOI: 10.1111/1759-7714.13645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death. Even if early detection and treatment have proven to be effective, the survival outcomes are still poor. METHODS Tissue samples and clinicopathological data of 244 patients with clinical T1N0M0 NSCLC were collected. We investigated CXCR4, CXCR5 and CCR7 expression levels using the immunohistochemical method and analyzed their correlations with clinicopathological characteristics and survival outcomes. RESULTS Elevated expression levels of CXCR4, CXCR5 and CCR7 were found in tumor tissues (P < 0.001). The expression levels were remarkably different in histological type (CXCR4, P = 0.032; CXCR5, P < 0.001; CCR7, P < 0.001) and LVI (CXCR4, P = 0.017; CXCR5, P = 0.030; CCR7, P < 0.001). In addition, CXCR4 and CXCR5 expression were significantly different in tumor differentiation (CXCR4, P < 0.001; CXCR5, P < 0.001). Survival analysis showed that patients with positive CXCR4 expression had a significantly lower five-year DFS (P = 0.007) and a lower five-year OS (P = 0.010). Patients in the CXCR5 positive group had a significantly lower five-year DFS (P = 0.038) and a lower five-year OS (P = 0.220), which were statistically insignificant. However, five-year DFS and five-year OS of patients with positive CCR7 expression were significantly higher (DFS: P < 0.001; OS: P < 0.001). CXCR5 and CCR7 expression were found to be independent prognostic factors through multivariate analysis. CONCLUSIONS Expression levels of CXCR4, CXCR5 and CCR7 were significantly higher in tumor tissues, and expression of CXCR5 and CCR7 were independent prognostic factors for survival. Moreover, all three chemokines were correlated to the survival outcomes of patients with clinical T1N0M0 NSCLC, providing potential prognosticators and therapy targets for lung cancer treatment.
Collapse
Affiliation(s)
- Zhao Yue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ding Ningning
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yang Lin
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ying Jianming
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhang Hongtu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuan Ligong
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Feng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wang Shuaibo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mao Yousheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Tao X, Wu X, Huang T, Mu D. Identification and Analysis of Dysfunctional Genes and Pathways in CD8 + T Cells of Non-Small Cell Lung Cancer Based on RNA Sequencing. Front Genet 2020; 11:352. [PMID: 32457792 PMCID: PMC7227791 DOI: 10.3389/fgene.2020.00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
Lung cancer, the most common of malignant tumors, is typically of the non-small cell (NSCLC) type. T-cell-based immunotherapies are a promising and powerful approach to treating NSCLCs. To characterize the CD8+ T cells of non-small cell lung cancer, we re-analyzed the published RNA-Seq gene expression profiles of 36 CD8+ T cell isolated from tumor (TIL) samples and 32 adjacent uninvolved lung (NTIL) samples. With an advanced Monte Carlo method of feature selection, we identified the CD8+ TIL specific expression patterns. These patterns revealed the key dysfunctional genes and pathways in CD8+ TIL and shed light on the molecular mechanisms of immunity and use of immunotherapy.
Collapse
Affiliation(s)
- Xuefang Tao
- Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deguang Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Bai J, Li K, Tang W, Liang Z, Wang X, Feng W, Zhang S, Ren L, Wu S, Han H, Zhao Y. A high-throughput screen for genes essential for PRRSV infection using a piggyBac-based system. Virology 2019; 531:19-30. [DOI: 10.1016/j.virol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 01/11/2023]
|
12
|
Gao P, Wang H, Yu J, Zhang J, Yang Z, Liu M, Niu Y, Wei X, Wang W, Li H, Wang Y, Sun G. miR-3607-3p suppresses non-small cell lung cancer (NSCLC) by targeting TGFBR1 and CCNE2. PLoS Genet 2018; 14:e1007790. [PMID: 30557355 PMCID: PMC6312350 DOI: 10.1371/journal.pgen.1007790] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/31/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence indicates that miRNAs can be promising diagnostic and/or prognostic markers for various cancers. In this study, we identified a novel miRNA, miR-3607-3p, and its targets in non-small cell lung cancer (NSCLC). The expression of miR-3607-3p was measured and its correlation with patient prognosis was determined. Ectopic expression in NSCLC cells, xenografts, and metastasis models was used to evaluate the effects of miR-3607-3p on proliferation and migration of NSCLC. Luciferase assay and western blotting were performed to validate the potential targets of miR-3607-3p after preliminary screening by microarray analysis and computer-aided algorithms. We demonstrated that miR-3607-3p was downregulated in NSCLC tissues and that miR-3607-3p might act as an independent predictor for overall survival in NSCLC. Moreover, serum miR-3607-3p may be a novel and stable marker for NSCLC. We found that overexpression of miR-3607-3p inhibited cell proliferation, colony formation, migration and invasion, and hampered the cell cycle of NSCLC cell lines in vitro. Our results suggested that miR-3607-3p directly targets TGFBR1 and CCNE2. In accordance with in vitro studies, we confirmed that miR-3607-3p functions as a potent suppressor miRNA of NSCLC. We showed that miR-3607-3p agomir could reduce tumor growth and inhibit TGFBR1 and CCNE2 protein expression. Taken together, our findings indicate that miR-3607-3p can inhibit NSCLC cell growth and metastasis by targeting TGFBR1 and CCNE2 protein expression, and provide new evidence of miR-3607-3p as a potential non-invasive biomarker and therapeutic target for NSCLC.
Collapse
MESH Headings
- Aged
- Animals
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Cyclins/antagonists & inhibitors
- Cyclins/genetics
- Down-Regulation
- Female
- Gene Knockdown Techniques
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness/genetics
- Neoplasm Invasiveness/prevention & control
- Neoplasm Metastasis
- Prognosis
- RNA, Small Nucleolar/antagonists & inhibitors
- RNA, Small Nucleolar/blood
- RNA, Small Nucleolar/genetics
- Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors
- Receptor, Transforming Growth Factor-beta Type I/genetics
Collapse
Affiliation(s)
- Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Jiarui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Jie Zhang
- Department of pathology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Meiyue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Xiaomei Wei
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Hongmin Li
- Department of pathology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Yadi Wang
- Department of Radiation Oncology, PLA Army General Hospital, Beijing, China
| | - Guogui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| |
Collapse
|
13
|
Wu C, Yang P, Liu H, Xiao W, Zhao L. Increased frequency of CCR7 +CD4 + T cells from patients with primary Sjögren's syndrome: An indicator of disease activity rather than of damage severity. Cytokine 2018; 110:9-17. [PMID: 29684636 DOI: 10.1016/j.cyto.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/26/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Expression of CCR7 on T cells has been reported to be associated with the lymphocytic migration and infiltration, which is recognized as a vital part of the pathogenesis of Primary Sjögren's syndrome (pSS). Here, we compared the expression of CCR7 on CD4+T cells between pSS patients and control groups, including healthy donors (HD) and patients with systemic lupus erythematosus (SLE) and examined correlations with disease activity and damage severity, which were evaluated by EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI) and Sjogren's Syndrome Disease Damage Index (SSDDI), respectively. Peripheral blood mononuclear Cells (PBMC) were obtained from patients and controls and expressions of CCR7 were evaluated by flow cytometry. CCR7 was selectively and frequently expressed on CD4+T cells, but less on CD8+ T cells of patients with pSS. In contrast, this phenomenon was neither seen in normal subjects nor in patients with SLE. The expression level of CCR7 in the peripheral blood CD4+ T cells is closely correlated with ESSDAI, but not SSDDI. Correspondently, the chemotactic index (CI) of CD4+T cells was higher than CD8+T cells in patients with pSS. Furthermore, the CI of CD4+T cells is also higher than that of other controls, which is correlated with ESSDAI. All the findings suggested that CCR7 might play an important role in the development of pSS by mediating the migration of CD4+cells. Thus, the expression of CCR7 in CD4+ T cells is probably a useful biomarker to evaluate and monitor disease activity. CCR7 can also potentially be a novel target for the therapy of pSS.
Collapse
Affiliation(s)
- Chunling Wu
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China
| | - Pingting Yang
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China
| | - Haina Liu
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China
| | - Weiguo Xiao
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China
| | - Lijuan Zhao
- Department of Rhematology and Immunology, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang 110001, China.
| |
Collapse
|