1
|
Fu L, Yong JM, Yeh R, Bartlett F, Whitelock JM, Lord MS. Functionalized Cerium Oxide Nanoparticles Enhance Penetration into Melanoma Spheroids In Vivo through Angiogenesis. Adv Healthc Mater 2025:e2405129. [PMID: 40109098 DOI: 10.1002/adhm.202405129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Angiogenesis is a crucial step in tumor progression, including melanoma, making anti-angiogenic strategies a widely explored treatment approach. However, both innate and acquired resistance to these therapies suggest that this approach may need re-evaluation. Nanoparticles have gained attention for their potential to enhance drug delivery and retention within tumors via the bloodstream. However, the in vitro screening of nanoparticles is limited by the inability of preclinical models to replicate the complex tumor microenvironment, especially the blood supply. Here, it is demonstrated that melanoma cells embedded in Matrigel spheroids can engraft in and be vascularized by the chorioallantoic membrane (CAM) of fertilized chicken eggs. This model allows for the assessment of nanoparticle toxicity and accumulation in tumor spheroids, as well as functional effects such as angiogenesis. Cerium oxide nanoparticles (nanoceria) and their surface functionalized derivatives are widely explored for biomedical applications due to their ability to modulate oxidative stress and angiogenesis. Here, it is observed that heparin functionalized nanoceria penetrate melanoma spheroids in the CAM and promote spheroid vascularization to a greater extent than nanoceria alone. This study aids in the development of preclinical cancer models for nanoparticle screening and provides new insight into the interplay between nanoparticle surface coatings and biological effects.
Collapse
Affiliation(s)
- Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joel M Yong
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Robyn Yeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Florence Bartlett
- Katherina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Mangalpady SS, Peña-Corona SI, Borbolla-Jiménez F, Kaverikana R, Shetty S, Shet VB, Almarhoon ZM, Calina D, Leyva-Gómez G, Sharifi-Rad J. Arnicolide D: a multi-targeted anticancer sesquiterpene lactone-preclinical efficacy and mechanistic insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6317-6336. [PMID: 38652277 DOI: 10.1007/s00210-024-03095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Arnicolide D, a potent sesquiterpene lactone from Centipeda minima, has emerged as a promising anticancer candidate, demonstrating significant efficacy in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis across various cancer models. This comprehensive study delves into the molecular underpinnings of Arnicolide D's anticancer actions, emphasizing its impact on key signaling pathways such as PI3K/AKT/mTOR and STAT3, and its role in modulating cell cycle and survival mechanisms. Quantitative data from preclinical studies reveal Arnicolide D's dose-dependent cytotoxicity against cancer cell lines, including nasopharyngeal carcinoma, triple-negative breast cancer, and human colon carcinoma, showcasing its broad-spectrum anticancer potential. Given its multifaceted mechanisms and preclinical efficacy, Arnicolide D warrants further investigation in clinical settings to validate its therapeutic utility against cancer. The evidence presented underscores the need for rigorous pharmacokinetic and toxicological studies to establish safe dosing parameters for future clinical trials.
Collapse
Affiliation(s)
- Shivaprasad Shetty Mangalpady
- Department of Chemistry, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Nitte, Mangaluru, India
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Fabiola Borbolla-Jiménez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Rajesh Kaverikana
- Department of Pharmacology, NGSM Institute of Pharmaceuticals, Nitte (Deemed to Be University), Mangaluru, India
| | - Shobhitha Shetty
- Department of Chemistry, A.J. Institute of Engineering & Technology, Mangaluru, India
| | - Vinayaka Babu Shet
- Department of Biotechnology Engineering, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Mangaluru, India
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | | |
Collapse
|
3
|
Mesas C, Chico MA, Doello K, Lara P, Moreno J, Melguizo C, Perazzoli G, Prados J. Experimental Tumor Induction and Evaluation of Its Treatment in the Chicken Embryo Chorioallantoic Membrane Model: A Systematic Review. Int J Mol Sci 2024; 25:837. [PMID: 38255911 PMCID: PMC10815318 DOI: 10.3390/ijms25020837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The chorioallantoic membrane (CAM) model, generated during avian development, can be used in cancer research as an alternative in vivo model to perform tumorigenesis in ovo due to advantages such as simplicity, low cost, rapid growth, and being naturally immunodeficient. The aim of this systematic review has been to compile and analyze all studies that use the CAM assay as a tumor induction model. For that, a systematic search was carried out in four different databases: PubMed, Scopus, Cochrane, and WOS. After eliminating duplicates and following the established inclusion and exclusion criteria, a total of 74 articles were included. Of these, 62% use the in ovo technique, 13% use the ex ovo technique, 9% study the formation of metastasis, and 16% induce tumors from patient biopsies. Regarding the methodology followed, the main species used is chicken (95%), although some studies use quail eggs (4%), and one article uses ostrich eggs. Therefore, the CAM assay is a revolutionary technique that allows a simple and effective way to induce tumors, test the effectiveness of treatments, carry out metastasis studies, perform biopsy grafts of patients, and carry out personalized medicine. However, unification of the methodology used is necessary.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
| | - Maria Angeles Chico
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Service of Medical Oncology, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
Gag O, Dinu Ș, Manea H, Marcovici I, Pînzaru I, Popovici R, Crăiniceanu Z, Gyori Z, Iovănescu G, Chiriac S. UVA/UVB Irradiation Exerts a Distinct Phototoxic Effect on Human Keratinocytes Compared to Human Malignant Melanoma Cells. Life (Basel) 2023; 13:life13051144. [PMID: 37240789 DOI: 10.3390/life13051144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Solar ultraviolet radiation (UVR) is responsible for the development of many skin diseases, including malignant melanoma (MM). This study assessed the phototoxic effects of UVA, and UVB radiations on healthy and pathologic skin cells by evaluating the behavior of human keratinocytes (HaCaT) and MM cells (A375) at 24 h post-irradiation. The main results showed that UVA 10 J/cm2 exerted no cytotoxicity on HaCaT and A375 cells, while UVB 0.5 J/cm2 significantly reduced cell viability and confluence, induced cell shrinkage and rounding, generated nuclear and F-actin condensation, and induced apoptosis by modulating the expressions of Bax and Bcl-2. The association of UVA 10 J/cm2 with UVB 0.5 J/cm2 (UVA/UVB) induced the highest cytotoxicity in both cell lines (viability < 40%). However, the morphological changes were different-HaCaT cells showed signs of necrosis, while in A375 nuclear polarization and expulsion from the cells were observed, features that indicate enucleation. By unraveling the impact of different UVR treatments on the behavior of normal and cancer skin cells and describing enucleation as a novel process involved in the cytotoxicity of UVA/UVB irradiation, these findings bridge the gap between the current and the future status of research in the field.
Collapse
Affiliation(s)
- Otilia Gag
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Ștefania Dinu
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Horațiu Manea
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Iulia Pînzaru
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Ramona Popovici
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Zorin Crăiniceanu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Zsolt Gyori
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Gheorghe Iovănescu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Sorin Chiriac
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Pinho JO, Matias M, Godinho-Santos A, Amaral JD, Mendes E, Jesus Perry M, Paula Francisco A, Rodrigues CMP, Manuela Gaspar M. A step forward on the in vitro and in vivo assessment of a novel nanomedicine against melanoma. Int J Pharm 2023; 640:123011. [PMID: 37146952 DOI: 10.1016/j.ijpharm.2023.123011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Melanoma is the most aggressive form of skin cancer, with increasing incidence and mortality rates. To overcome current treatment limitations, a hybrid molecule (HM) combining a triazene and a ʟ-tyrosine analogue, was recently synthesized, incorporated in long blood circulating liposomes (LIP HM) and validated in an immunocompetent melanoma model. The present work constitutes a step forward in the therapeutic assessment of HM formulations. Here, human melanoma cells, A375 and MNT-1, were used and dacarbazine (DTIC), a triazene drug clinically available as first-line treatment for melanoma, constituted the positive control. In cell cycle analysis, A375 cells, after 24-h incubation with HM (60 μM) and DTIC (70 μM), resulted in a 1.2 fold increase (related to control) in the percentage of cells in G0/G1 phase. The therapeutic activity was evaluated in a human murine melanoma model (subcutaneously injected with A375 cells) to most closely resemble the human pathology. Animals treated with LIP HM exhibited the highest antimelanoma effect resulting in a 6-, 5- and 4-fold reduction on tumor volume compared to negative control, Free HM and DTIC groups, respectively. No toxic side effects were detected. Overall, these results constitute another step forward in the validation of the antimelanoma activity of LIP HM, using a murine model that more accurately simulates the pathology that occurs in human patients.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Godinho-Santos
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana D Amaral
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Eduarda Mendes
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Jesus Perry
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana Paula Francisco
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Cecília M P Rodrigues
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
6
|
Nascentes Melo LM, Kumar S, Riess V, Szylo KJ, Eisenburger R, Schadendorf D, Ubellacker JM, Tasdogan A. Advancements in melanoma cancer metastasis models. Pigment Cell Melanoma Res 2023; 36:206-223. [PMID: 36478190 DOI: 10.1111/pcmr.13078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Metastatic melanoma is a complex and deadly disease. Due to its complexity, the development of novel therapeutic strategies to inhibit metastatic melanoma remains an outstanding challenge. Our ability to study metastasis is advanced with the development of in vitro and in vivo models that better mimic the different steps of the metastatic cascade beginning from primary tumor initiation to final metastatic seeding. In this review, we provide a comprehensive summary of in vitro models, in vivo models, and in silico platforms to study the individual steps of melanoma metastasis. Furthermore, we highlight the advantages and limitations of each model and discuss the challenges of how to improve current models to enhance translation for melanoma cancer patients and future therapies.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Valeria Riess
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Krystina J Szylo
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Robin Eisenburger
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| |
Collapse
|
7
|
Lin A, Sahun M, Biscop E, Verswyvel H, De Waele J, De Backer J, Theys C, Cuypers B, Laukens K, Berghe WV, Smits E, Bogaerts A. Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma. Drug Resist Updat 2023; 67:100914. [PMID: 36630862 DOI: 10.1016/j.drup.2022.100914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
AIMS To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the first-ever NTP-resistant cell line derived from sensitive melanoma cells (A375). METHODS Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification, and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via Annexin V, Caspase 3/7, and lipid peroxidation analysis. RESULTS Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and ferroptosis. CONCLUSIONS A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
Collapse
Affiliation(s)
- Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium.
| | - Maxime Sahun
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Eline Biscop
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Hanne Verswyvel
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Joey De Backer
- Protein Chemistry, Proteomics, and Epigenetic Signalling, University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Claudia Theys
- Protein Chemistry, Proteomics, and Epigenetic Signalling, University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Bart Cuypers
- Adrem Data Lab, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Adrem Data Lab, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics, and Epigenetic Signalling, University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium
| |
Collapse
|
8
|
Combined Therapy with Dacarbazine and Hyperthermia Induces Cytotoxicity in A375 and MNT-1 Melanoma Cells. Int J Mol Sci 2022; 23:ijms23073586. [PMID: 35408947 PMCID: PMC8998307 DOI: 10.3390/ijms23073586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/16/2023] Open
Abstract
Melanoma is a drug-resistant cancer, representing a serious challenge in cancer treatment. Dacarbazine (DTIC) is the standard drug in metastatic melanoma treatment, despite the poor results. Hyperthermia has been proven to potentiate chemotherapy. Hence, this work analyzed the combined action of hyperthermia and DTIC on A375 and MNT-1 cell lines. First, temperatures between 40 °C and 45 °C were tested. The effect of DTIC on cell viability was also investigated after exposures of 24, 48, and 72 h. Then, cells were exposed to 43 °C and to the respective DTIC IC10 or IC20 of each time exposure. Overall, hyperthermia reduced cell viability, however, 45 °C caused an excessive cell death (>90%). Combinational treatment revealed that hyperthermia potentiates DTIC’s effect, but it is dependent on the concentration and temperature used. Also, it has different mechanisms from the treatments alone, delaying A375 cells at the G2/M phase and MNT-1 cells at the S and G2/M phases. Intracellular reactive oxygen species (ROS) levels increased after treatment with hyperthermia, but the combined treatment showed no additional differences. Also, hyperthermia highly increased the number of A375 early apoptotic cells. These results suggest that combining hyperthermia and DTIC should be more explored to improve melanoma treatment.
Collapse
|
9
|
Kis B, Pavel IZ, Avram S, Moaca EA, Herrero San Juan M, Schwiebs A, Radeke HH, Muntean D, Diaconeasa Z, Minda D, Oprean C, Bojin F, Dehelean CA, Soica C, Danciu C. Antimicrobial activity, in vitro anticancer effect (MCF-7 breast cancer cell line), antiangiogenic and immunomodulatory potentials of Populus nigra L. buds extract. BMC Complement Med Ther 2022; 22:74. [PMID: 35296309 PMCID: PMC8928639 DOI: 10.1186/s12906-022-03526-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the antioxidant potential, antimicrobial activity, the in vitro anticancer effect (tested on MCF-7 breast cancer cell line), as well as the antiangiogenic and immunomodulatory potential of Populus nigra L. bud (Pg) extract collected from the western part of Romania. RESULTS Populus nigra L. bud extract presents an important antioxidant activity, due to the rich phytochemical composition. Regarding the biological activity, results have shown that poplar bud extract presents a significant inhibitory activity against Gram-positive bacteria and a dose-dependent decrease of MCF-7 tumor cell viability with an IC50 of 66.26 μg/mL, while not affecting healthy cells. Phenomena of early apoptotic events at the maximum concentration tested (150 μg/mL) were detected by Annexin V-PI double staining. The extract induced G0/G1 phase cell cycle arrest. In addition, Pg extract showed antiangiogenic potential on the chorioallantoic membrane. Also, at the highest concentration (150 μg/mL), good tolerability and no signs of toxicity upon vascular plexus were observed. Moreover, in low concentrations, the Pg extract had immunomodulatory activity on primary human dendritic cells by upregulating IL-12 and IL-23 subunits. CONCLUSION The study concludes that poplar bud extract elicited antioxidant activity, antitumor properties on the breast cancer cell line, followed by an antiangiogenic effect and an immunomodulatory potential on human primary dendritic cells. The biological activity of Populus nigra L. buds extract may open new directions of research on the topic addressed.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania. .,Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.
| | - Stefana Avram
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Elena Alina Moaca
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Department of Toxicology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Martina Herrero San Juan
- Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Hospital of the Goethe University, 60590, Frankfurt/Main, Germany
| | - Anja Schwiebs
- Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Hospital of the Goethe University, 60590, Frankfurt/Main, Germany
| | - Heinfried H Radeke
- Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Hospital of the Goethe University, 60590, Frankfurt/Main, Germany
| | - Delia Muntean
- Department of Microbiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372, Cluj-Napoca, Romania
| | - Daliana Minda
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Camelia Oprean
- Department of Pharmacy I, Drug Analysis, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,"Pius Brinzeu" Timişoara County Emergency Clinical Hospital, Oncogen Institute, 156 Liviu Rebreanu, 300723, Timişoara, Romania.,Advanced Instrumental Screening Center, Faculty of Pharmacy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Florina Bojin
- "Pius Brinzeu" Timişoara County Emergency Clinical Hospital, Oncogen Institute, 156 Liviu Rebreanu, 300723, Timişoara, Romania.,Department of Functional Sciences, Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Department of Toxicology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Codruta Soica
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Department of Pharmaceutical Chemistry, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| |
Collapse
|
10
|
Alexa VT, Galuscan A, Soica CM, Cozma A, Coricovac D, Borcan F, Popescu I, Mioc A, Szuhanek C, Dehelean CA, Jumanca D. In Vitro Assessment of the Cytotoxic and Antiproliferative Profile of Natural Preparations Containing Bergamot, Orange and Clove Essential Oils. Molecules 2022; 27:molecules27030990. [PMID: 35164253 PMCID: PMC8838259 DOI: 10.3390/molecules27030990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
Medicinal plants and essential oils (EOs), in particular, were intensively studied in recent years as viable alternatives for antiproliferative chemical synthetic agents. In the same lines, the present study focuses on investigating the effects of natural preparations (emulsions) based on EOs obtained from Citrus bergamia Risso (bergamot-BEO), Citrus sinensis Osbeck (orange-OEO), and Syzygium aromaticum Merill et L. M. Perry (clove-CEO) on different healthy (human immortalized keratinocytes—HaCaT and primary human gingival fibroblasts—HGF) and human tumor cell lines (human melanoma—A375 and oral squamous carcinoma—SCC-4) in terms of the cells’ viability and cellular morphology. The obtained results indicate that the CEO emulsion (ECEO) induced a dose-dependent cytotoxic in both healthy (HaCaT and HGF) and tumor (A375 and SCC-4) cells. OEO emulsion (EOEO) increased cell viability percentage both for HaCaT and A375 cells and had an antiproliferative effect at the highest concentration in HGF and SCC-4 cells. BEO emulsion (EBEO) decreased the viability percentage of SCC-4 tumor cells. By associating OEO with CEO as a binary mixture in an emulsified formulation, the inhibition of tumor cell viability increases. The E(BEO/OEO) binary emulsion induced an antiproliferative effect on oral health and tumor cells, with a minimal effect on skin cells. The non-invasive tests performed to verify the safety of the test compound’s emulsions at skin level indicated that these compounds do not significantly modify the physiological skin parameters and can be considered safe for human skin.
Collapse
Affiliation(s)
- Vlad Tiberiu Alexa
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (D.J.)
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No 2, 300041 Timisoara, Romania;
| | - Atena Galuscan
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, “Victor Babeş” University of Medicine and Pharmacy 14A TudorVladimirescu Ave., 300173 Timisoara, Romania
| | - Codruța M. Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (D.C.); (C.A.D.)
- Correspondence: (C.M.S.); (A.C.)
| | - Antoanela Cozma
- Department of Soil Science, Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania;
- Correspondence: (C.M.S.); (A.C.)
| | - Dorina Coricovac
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (D.C.); (C.A.D.)
- Department of Toxicology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Florin Borcan
- Department of Analytical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
| | - Iuliana Popescu
- Department of Soil Science, Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania;
| | - Alexandra Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (D.C.); (C.A.D.)
| | - Camelia Szuhanek
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No 2, 300041 Timisoara, Romania;
- Department of Orthodontics, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (D.C.); (C.A.D.)
- Department of Toxicology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Daniela Jumanca
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, “Victor Babeş” University of Medicine and Pharmacy 14A TudorVladimirescu Ave., 300173 Timisoara, Romania
| |
Collapse
|
11
|
Qian HG, Wu Q, Wu JH, Tian XY, Xu W, Hao CY. Long non‑coding RNA LINC00238 suppresses the malignant phenotype of liver cancer by sponging miR‑522. Mol Med Rep 2022; 25:71. [PMID: 35014686 PMCID: PMC8767542 DOI: 10.3892/mmr.2022.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/05/2022] Open
Abstract
Long non‑coding RNAs can regulate the malignant tumor phenotype either as tumor suppressors or oncogenes. The present study investigated the underlying mechanism of LINC00238 in liver cancer. LINC00238 was identified as a downregulated molecule in The Cancer Genome Atlas liver hepatocellular carcinoma dataset through Gene Expression Profiling Interactive Analysis software. Through gain‑ and loss‑of‑function experiments, LINC00238 was confirmed as a tumor suppressor that could not only decrease cell viability, migration and invasion in vitro, but also tumorigenesis and tumor metastasis in vivo. By cytoplasmic and nuclear RNA isolation, LINC00238 was confirmed to be predominantly cytoplasmic. Mechanistically, RNA pull‑down assays showed that LINC00238 sponged microRNA (miR)‑522 and then reversed the inhibitory effects on two downstream targets, secreted frizzled related protein 2 and dickkopf1. Collectively, LINC00238 was identified as a tumor suppressor that acts via sponging miR‑522 followed by silencing of downstream targets, suggesting that LINC00238 may have a key role in suppressing the malignant phenotype of liver cancer cells.
Collapse
Affiliation(s)
- Hong-Gang Qian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Qiong Wu
- MOE Key Lab, Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Jian-Hui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiu-Yun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Wei Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Chun-Yi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
12
|
Liu Y, Geng X. Long non-coding RNA (lncRNA) CYTOR promotes hepatocellular carcinoma proliferation by targeting the microRNA-125a-5p/LASP1 axis. Bioengineered 2022; 13:3666-3679. [PMID: 35081873 PMCID: PMC8974008 DOI: 10.1080/21655979.2021.2024328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
This study investigated the function of long non-coding RNA (lncRNA) cytoskeleton regulator RNA (CYTOR) in hepatocellular carcinoma (HCC). In HCC, the expression of CYTOR and microRNA (miR)-125a-5p were measured by quantitative real-time PCR (qRT-PCR). The expression of actin skeletal protein 1 (LASP1) was evaluated by Western blot analysis. Flow cytometry assays, transwell assays, colony formation assay, and cell counting kit-8 (CCK-8) assay were used to evaluate the roles of miR-125a-5p and CYTOR in HCC cells. The target genes of CYTOR and miR-125a-5p were identified by bioinformatics analysis and Luciferase assay. CYTOR was upregulated in HCC cell lines, and knockdown of CYTOR inhibited HCC cell growth. MiR-125a-5p was downregulated in HCC cells and a target of CYTOR in regulating HCC progression. Furthermore, LASP1 was a downstream target of miR-125a-5p. Finally, CYTOR was found to be involved in HCC progression in vivo. CYTOR promotes HCC development by regulating the miR-125a-5p/LASP1 axis.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| | - Xiaoling Geng
- Department of Gastroenterology& Hepatology, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| |
Collapse
|
13
|
Piotrowska A, Beserra FP, Wierzbicka JM, Nowak JI, Żmijewski MA. Vitamin D Enhances Anticancer Properties of Cediranib, a VEGFR Inhibitor, by Modulation of VEGFR2 Expression in Melanoma Cells. Front Oncol 2022; 11:763895. [PMID: 35004285 PMCID: PMC8740239 DOI: 10.3389/fonc.2021.763895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2023] Open
Abstract
Regardless of the recent groundbreaking introduction of personalized therapy, melanoma continues to be one of the most lethal skin malignancies. Still, a substantial proportion of patients either fail to respond to the therapy or will relapse over time, representing a challenging clinical problem. Recently, we have shown that vitamin D enhances the effectiveness of classical chemotherapeutics in the human malignant melanoma A375 cell line. In search for new combination strategies and adjuvant settings to improve melanoma patient outcomes in the current study, the effects of cediranib (AZD2171), an oral tyrosine kinase inhibitor of VEGFR1-3, PDGFR, and c-KIT, used in combination either with 1,25(OH)2D3 or with low-calcemic analog calcipotriol were tested on four human malignant melanoma cell lines (A375, MNT-1, RPMI-7951, and SK-MEL-28). Melanoma cells were pretreated with vitamin D and subsequently exposed to cediranib. We observed a marked decrease in melanoma cell proliferation (A375 and SK-MEL-28), G2/M cell cycle arrest, and a significant decrease in melanoma cell mobility in experimental conditions used (A375). Surprisingly, concurrently with a very desirable decrease in melanoma cell proliferation and mobility, we noticed the upregulation of VEGFR2 at both protein and mRNA levels. No effect of vitamin D was observed in MNT-1 and RPMI-7951 melanoma cells. It seems that vitamin D derivatives enhance cediranib efficacy by modulation of VEGFR2 expression in melanoma cells expressing VEGFR2. In conclusion, our experiments demonstrated that vitamin D derivatives hold promise as novel adjuvant candidates to conquer melanoma, especially in patients suffering from vitamin D deficiency. However, further extensive research is indispensable to reliably assess their potential benefits for melanoma patients.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Joanna Irena Nowak
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
14
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
15
|
Design, synthesis, and biological evaluation of symmetrical azine derivatives as novel tyrosinase inhibitors. BMC Chem 2021; 15:54. [PMID: 34587988 PMCID: PMC8480273 DOI: 10.1186/s13065-021-00780-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
A series of symmetrical azine derivatives containing different substituted benzyl moieties were designed, synthesized, and evaluated for their inhibitory activity against tyrosinase. The results showed that compounds 3e, 3f, 3h, 3i, 3j, and 3k possess effective tyrosinase inhibition with IC50 values ranging from 7.30 μM to 62.60 μM. Particularly, compounds 3f displayed around three-fold improvement in the potency (IC50 = 7.30 ± 1.15 μM) compared to that of kojic acid (IC50 = 20.24 ± 2.28 μM) as the positive control. Kinetic study of compound 3f confirmed uncompetitive inhibitory activity towards tyrosinase indicating that it can bind to enzyme–substrate complex. Next, molecular docking analysis was performed to study the interactions and binding mode of the most potent compound 3f in the tyrosinase active site. Besides, the cytotoxicity of 3f, as well as its potency to reduce the melanin content were also measured on invasive melanoma B16F10 cell line. Also, 3f exhibited above 82% cell viability in the A375 cell line at 10 µM. Consequently, compounds 3f could be introduced as a potent tyrosinase inhibitor that might be a promising candidate in the cosmetics, medicine, and food industry.
Collapse
|
16
|
Chen H, Deng S, Albadari N, Yun MK, Zhang S, Li Y, Ma D, Parke DN, Yang L, Seagroves TN, White SW, Miller DD, Li W. Design, Synthesis, and Biological Evaluation of Stable Colchicine-Binding Site Tubulin Inhibitors 6-Aryl-2-benzoyl-pyridines as Potential Anticancer Agents. J Med Chem 2021; 64:12049-12074. [PMID: 34378386 PMCID: PMC9206500 DOI: 10.1021/acs.jmedchem.1c00715] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We previously reported a potent tubulin inhibitor CH-2-77. In this study, we optimized the structure of CH-2-77 by blocking metabolically labile sites and synthesized a series of CH-2-77 analogues. Two compounds, 40a and 60c, preserved the potency while improving the metabolic stability over CH-2-77 by 3- to 4-fold (46.8 and 29.4 vs 10.8 min in human microsomes). We determined the high-resolution X-ray crystal structures of 40a (resolution 2.3 Å) and 60c (resolution 2.6 Å) in complex with tubulin and confirmed their direct binding at the colchicine-binding site. In vitro, 60c maintained its mode of action by inhibiting tubulin polymerization and was effective against P-glycoprotein-mediated multiple drug resistance and taxol resistance. In vivo, 60c exhibited a strong inhibitory effect on tumor growth and metastasis in a taxol-resistant A375/TxR xenograft model without obvious toxicity. Collectively, this work showed that 60c is a promising lead compound for further development as a potential anticancer agent.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Tiffany N Seagroves
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
17
|
Lee J, Kim B, Park B, Won Y, Kim SY, Lee S. Real-time cancer diagnosis of breast cancer using fluorescence lifetime endoscopy based on the pH. Sci Rep 2021; 11:16864. [PMID: 34413447 PMCID: PMC8376886 DOI: 10.1038/s41598-021-96531-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
A biopsy is often performed for the diagnosis of cancer during a surgical operation. In addition, pathological biopsy is required to discriminate the margin between cancer tissues and normal tissues in surgical specimens. In this study, we presented a novel method for discriminating between tumor and normal tissues using fluorescence lifetime endoscopy (FLE). We demonstrated the relationship between the fluorescence lifetime and pH in fluorescein using the proposed fluorescence lifetime measurement system. We also showed that cancer could be diagnosed based on this relationship by assessing differences in pH based fluorescence lifetime between cancer and normal tissues using two different types of tumor such as breast tumors (MDA-MB-361) and skin tumors (A375), where cancer tissues have ranged in pH from 4.5 to 7.0 and normal tissues have ranged in pH from 7.0 to 7.4. To support this approach, we performed hematoxylin and eosin (H&E) staining test of normal and cancer tissues within a certain area. From these results, we showed the ability to diagnose a cancer using FLE technique, which were consistent with the diagnosis of a cancer with H&E staining test. In summary, the proposed pH-based FLE technique could provide a real time, in vivo, and in-situ clinical diagnostic method for the cancer surgical and could be presented as an alternative to biopsy procedures.
Collapse
Affiliation(s)
- Jooran Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungyeon Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungjun Park
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Youngjae Won
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
- Intek-Medi, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736, South Korea
| | - Seungrag Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea.
| |
Collapse
|
18
|
Mekkawy AI, Naguib YW, Alhaj-Suliman SO, Wafa EI, Ebeid K, Acri T, Salem AK. Paclitaxel anticancer activity is enhanced by the MEK 1/2 inhibitor PD98059 in vitro and by PD98059-loaded nanoparticles in BRAF V600E melanoma-bearing mice. Int J Pharm 2021; 606:120876. [PMID: 34252520 DOI: 10.1016/j.ijpharm.2021.120876] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 02/02/2023]
Abstract
Melanoma, the most malignant form of skin cancer, shows resistance to traditional anticancer drugs including paclitaxel (PTX). Furthermore, over 50% of melanoma cases express the BRAFV600E mutation which activates the MAPK pathway increasing cell proliferation and survival. In the current study, we investigated the capacity of the combination therapy of PTX and the MAPK inhibitor, PD98059, to enhance the cytotoxicity of PTX against melanoma and therefore improve treatment outcomes. Synergistic in vitro cytotoxicity was observed when soluble PTX and PD98059 were used to treat the A375 melanoma cell line as evidenced by a significant reduction in the cell viability and IC50 value for PTX. Then, in further studies, TPGS-emulsified PD98059-loaded PLGA nanoparticles (NPs) were prepared, characterized in vitro and assessed for therapeutic efficacy when used in combination with soluble PTX. The average particle size (180 nm d.), zeta potential (-34.8 mV), polydispersity index (0.081), encapsulation efficiency (20%), particle yield (90.8%), and drug loading (6.633 µg/mg) of the prepared NPs were evaluated. Also, cellular uptake and in vitro cytotoxicity studies were performed with these PD98059-loaded NPs and compared to soluble PD98059. The PD98059-loaded NPs were superior to soluble PD98059 in terms of both cellular uptake and in vitro cytotoxicity in A375 cells. In in vivo studies, using A375 challenged mice, we report improved survival in mice treated with soluble PTX and PD98059-loaded NPs. Our findings suggest the potential for using this combinatorial therapy in the management of patients with metastatic melanoma harboring the BRAF mutation as a means to improve survival outcomes.
Collapse
Affiliation(s)
- Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Sohag 82524, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Minia 61519, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia 61768, Egypt
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Minia 61519, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia 61768, Egypt
| | - Timothy Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Trandafir CM, Tischer AA, Horhat ID, Balica NC, Sitaru AM, Guran K, Morar R, Baderca F, Jifcu EM, Moţ IC, Burlacu ON, Poenaru M, Sarău CA. Fortuitous discovery of melanomas in the ENT Department - a histopathological and immunohistochemical study. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1163-1171. [PMID: 34171065 PMCID: PMC8343656 DOI: 10.47162/rjme.61.4.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The melanoma, having its origin in the melanocyte cells, is one of the most aggressive forms of skin cancer in the world with one of the highest rates of brain metastasis. The incidence of cutaneous melanoma in the Mediterranean countries varies from three to five cases/100 000 people/year. Its prognosis is based on an early diagnosis. Sinonasal mucosal melanoma (SNMM) is an extremely rare tumor, accounting for 0.3–2% of all melanomas. The non-specific symptomatology is often delaying the presentation of the patient at the hospital and therefore the diagnosis. The SNMM is a highly aggressive tumor, and the presence of metastasis at the diagnosis usually implies a poor prognosis. The management of the melanomas requires a precise pre-therapeutic assessment and a multidisciplinary approach for the diagnosis, with surgical treatment or radiotherapy required in order to ensure a better a quality of life. In this paper, we retrospectively analyzed two cases of mucosal melanoma and one case of cutaneous melanoma of the nose.
Collapse
Affiliation(s)
- Cornelia Marina Trandafir
- Department of Thoracic Surgery, Department of ENT, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania; ,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fraguas-Sánchez AI, Martín-Sabroso C, Torres-Suárez AI. The chick embryo chorioallantoic membrane model: a research approach for ex vivo and in vivo experiments. Curr Med Chem 2021; 29:1702-1717. [PMID: 34176455 DOI: 10.2174/0929867328666210625105438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The chick chorioallantoic membrane (CAM) model has attracted a great deal of interest in pharmaceutical and biological research as an alternative or complementary in vivo assay to animal models. Traditionally, CAM assay has been widely used to perform some toxicological studies, specifically to evaluate the skin, ocular and embryo toxicity of new drugs and formulations, and perform angiogenesis studies. Due to the possibility to generate the tumors onto the CAM, this model has also become an excellent strategy to evaluate the metastatic potential of different tumours and test the efficacy of novel anticancer therapies in vivo. Moreover, in the recent years, its use has considerably grown in other research areas, including the evaluation of new anti-infective agents, the development of biodistribution studies and tissue engineering research. OBJECTIVES This manuscript provides a critical overview of the use of CAM model in pharmaceutical and biological research, especially to test the toxicity of new drugs and formulations and the biodistribution and the efficacy of novel anticancer and anti-infective therapies, analyzing its advantages and disadvantages compared to animal models. CONCLUSION The chick chorioallantoic membrane model shows great utility in several research areas, such as cancer, toxicology, biodistribution studies and anti-infective therapies. In fact, it has become an intermediate stage between in vitro experiments and animal studies, and, in the case of toxicological studies (skin and ocular toxicity), has even replaced the animal models.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
21
|
Radu A, Bejenaru C, Ţolea I, Maranduca MA, Brănişteanu DC, Bejenaru LE, Petrariu FD, Stoleriu G, Brănişteanu DE. Immunohistochemical study of CD117 in various cutaneous melanocytic lesions. Exp Ther Med 2020; 21:78. [PMID: 33363589 PMCID: PMC7725021 DOI: 10.3892/etm.2020.9510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to carried out a comparative immunohistochemical evaluation of CD117 (c-Kit), a biomarker that evaluates both tumor progression and prognosis, in different melanocytic lesions, to emphasize the significance of this biomarker in malignant melanoma (MM). The study was performed on 55 cases, represented by a control group, which included 5 cases of simple nevi and 5 cases of dysplastic nevi, as well as a study group consisting of 35 cases of primary MM and 10 metastases (one intestinal, 3 cutaneous - one satellite and two distant as well as 6 in the lymph nodes). The study group included 15 cases of superficial spreading melanoma (SSM), 10 cases of nodular melanoma (NM), 3 lentigo maligna melanoma (LMM), 3 cases of acral lentiginous melanoma (ALM) and 4 cases of amelanotic MM. CD117 was found to be massively involved in the process of tumorigenesis of cutaneous malignancies, being immunohistochemically undetectable in benign neural lesions, but densely expressed in dysplastic lesions and in situ melanoma areas. In invasive cutaneous MMs, CD117 expression tended to decrease with neoplasia progression proceding into the tumorigenic, vertical growth phase, being lower in the profound dermal component of tumors and in nodular MMs. To eliminate the epidermal barriers and gain a proliferative advantage to allow the transition to the vertical growth phase, it seems that MM should lose expression of c-Kit. Cutaneous metastases were found to express CD117 at a level comparable to their primary tumors, suggesting that other mechanisms interfere directly with the metastatic process and not loss of c-Kit expression by itself. CD117 overexpression in cutaneous melanocytic lesions correlates significantly with increased immunostaining intensity, suggesting that the immunohistochemical evaluation of CD117 may be a good method for screening patients, who could benefit from personalized therapy with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Antonia Radu
- Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Ion Ţolea
- Department of Dermatology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Minela Aida Maranduca
- Department of Physiology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Ludovic Everard Bejenaru
- Department of Pharmacognosy and Phytotherapy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Florin Dumitru Petrariu
- Department of Preventive Medicine and Interdisciplinarity, 'Grigore T. Popa' University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Gabriela Stoleriu
- Clinical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, Galati 800008, Romania
| | - Daciana Elena Brănişteanu
- Department of Dermatology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
22
|
Faur A, Watz C, Moacă EA, Avram Ş, Borcan F, Pinzaru I, Iftode A, Nicolov M, Popovici RA, Raica M, Szuhanek CA, Dehelean C. Correlations on Phenolic Screening Related to In Vitro and In Ovo Assessment of Ocimum basilicum L. Hydro-Alcoholic Extracts Used as Skin Active Ingredient. Molecules 2020; 25:molecules25225442. [PMID: 33233640 PMCID: PMC7699777 DOI: 10.3390/molecules25225442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022] Open
Abstract
The current study was aimed to evaluate the phenolic composition parameters of two hydro-alcoholic extracts of Ocimum basilicum L. (OB) obtained from the aerial part (without leaves) and leaves, in order to determine their contribution to the antioxidant activity (AOA). Both hydro-alcoholic extracts have proven to be rich in polyphenolic compounds, flavonoids, flavonols and tannins. Therefore, the leaves’ extracts reveal an inhibition percentage of 89%, almost comparable with the standard reference (95%). To complete the toxicological profile, the study also assessed the potential cytotoxicity of basil hydro-alcoholic extracts on immortalized human keratinocytes (HaCaT), skin human fibroblasts (1BR3), mice epidermis (JB6Cl41-5a) and primary human melanocytes (HEMa) cells, correlated to A375 antitumor in vitro activity. The extracts did not induce significant cytotoxic effect on any of the selected normal cell lines but showed relevant activity on A375 cells. Considering the low values obtained regarding the irritative effects in the chorionallantoic membrane of the egg on blood vessels, we can emphasize that both extracts can be considered as biocompatible ingredients. Regarding the potential activity of hydro-alcoholic extracts on human skin, the decrease of erythema values after the application of extracts was a relevant observation which indicates the anti-inflammatory potential of Ocimum basilicum L.
Collapse
Affiliation(s)
- Alin Faur
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (A.F.); (M.R.)
| | - Claudia Watz
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.W.); (M.N.)
| | - Elena-Alina Moacă
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (I.P.); (A.I.); (C.D.)
- Correspondence: ; Tel.: +40-745-762-600
| | - Ştefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Florin Borcan
- Department of Analytical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Iulia Pinzaru
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (I.P.); (A.I.); (C.D.)
| | - Andrada Iftode
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (I.P.); (A.I.); (C.D.)
| | - Mirela Nicolov
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.W.); (M.N.)
| | - Ramona Amina Popovici
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dentistry, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (A.F.); (M.R.)
| | - Camelia A. Szuhanek
- Department of Orthodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Cristina Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (I.P.); (A.I.); (C.D.)
| |
Collapse
|
23
|
Napoli M, Li X, Ackerman HD, Deshpande AA, Barannikov I, Pisegna MA, Bedrosian I, Mitsch J, Quinlan P, Thompson A, Rajapakshe K, Coarfa C, Gunaratne PH, Marchion DC, Magliocco AM, Tsai KY, Flores ER. Pan-cancer analysis reveals TAp63-regulated oncogenic lncRNAs that promote cancer progression through AKT activation. Nat Commun 2020; 11:5156. [PMID: 33056990 PMCID: PMC7561725 DOI: 10.1038/s41467-020-18973-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
The most frequent genetic alterations across multiple human cancers are mutations in TP53 and the activation of the PI3K/AKT pathway, two events crucial for cancer progression. Mutations in TP53 lead to the inhibition of the tumour and metastasis suppressor TAp63, a p53 family member. By performing a mouse-human cross species analysis between the TAp63 metastatic mammary adenocarcinoma mouse model and models of human breast cancer progression, we identified two TAp63-regulated oncogenic lncRNAs, TROLL-2 and TROLL-3. Further, using a pan-cancer analysis of human cancers and multiple mouse models of tumour progression, we revealed that these two lncRNAs induce the activation of AKT to promote cancer progression by regulating the nuclear to cytoplasmic translocation of their effector, WDR26, via the shuttling protein NOLC1. Our data provide preclinical rationale for the implementation of these lncRNAs and WDR26 as therapeutic targets for the treatment of human tumours dependent upon mutant TP53 and/or the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Xiaobo Li
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hayley D Ackerman
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Avani A Deshpande
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ivan Barannikov
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Marlese A Pisegna
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Isabelle Bedrosian
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jürgen Mitsch
- Advanced Data Analysis Centre, Nottingham, NG7 2RD, UK.,School of Computer Sciences University of Nottingham, Nottingham, NG7 2RD, UK
| | - Philip Quinlan
- Advanced Data Analysis Centre, Nottingham, NG7 2RD, UK.,School of Computer Sciences University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alastair Thompson
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA
| | - Douglas C Marchion
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Anthony M Magliocco
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
24
|
Signetti L, Elizarov N, Simsir M, Paquet A, Douguet D, Labbal F, Debayle D, Di Giorgio A, Biou V, Girard C, Duca M, Bretillon L, Bertolotto C, Verrier B, Azoulay S, Mus-Veteau I. Inhibition of Patched Drug Efflux Increases Vemurafenib Effectiveness against Resistant Braf V600E Melanoma. Cancers (Basel) 2020; 12:cancers12061500. [PMID: 32526884 PMCID: PMC7352342 DOI: 10.3390/cancers12061500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
Melanoma patients harboring the BRAFV600E mutation are treated with vemurafenib. Almost all of them ultimately acquire resistance, leading to disease progression. Here, we find that a small molecule from a marine sponge, panicein A hydroquinone (PAH), overcomes resistance of BRAFV600E melanoma cells to vemurafenib, leading to tumor elimination in corresponding human xenograft models in mice. We report the synthesis of PAH and demonstrate that this compound inhibits the drug efflux activity of the Hedgehog receptor, Patched. Our SAR study allowed identifying a key pharmacophore responsible for this activity. We showed that Patched is strongly expressed in metastatic samples from a cohort of melanoma patients and is correlated with decreased overall survival. Patched is a multidrug transporter that uses the proton motive force to efflux drugs. This makes its function specific to cancer cells, thereby avoiding toxicity issues that are commonly observed with inhibitors of ABC multidrug transporters. Our data provide strong evidence that PAH is a highly promising lead for the treatment of vemurafenib resistant BRAFV600E melanoma.
Collapse
Affiliation(s)
- Laurie Signetti
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Nelli Elizarov
- Université Côte d’Azur, CNRS, ICN, 28 Avenue Valrose, 06108 Nice, CEDEX 2, France; (N.E.); (A.D.G.); (M.D.)
| | - Méliné Simsir
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Agnès Paquet
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Dominique Douguet
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Fabien Labbal
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Delphine Debayle
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Audrey Di Giorgio
- Université Côte d’Azur, CNRS, ICN, 28 Avenue Valrose, 06108 Nice, CEDEX 2, France; (N.E.); (A.D.G.); (M.D.)
| | - Valérie Biou
- CNRS, IBPC, Sorbonne Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, University Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France;
| | - Christophe Girard
- Université Côte d’Azur, INSERM, CNRS, C3M, Bâtiment Universitaire ARCHIMED 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, CEDEX 3, France; (C.G.); (C.B.)
| | - Maria Duca
- Université Côte d’Azur, CNRS, ICN, 28 Avenue Valrose, 06108 Nice, CEDEX 2, France; (N.E.); (A.D.G.); (M.D.)
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l’Alimentation, Université Bourgogne Franche-Comté CNRS, INRA, SSGA, AgroSup Dijon, F-21000 Dijon, France;
| | - Corine Bertolotto
- Université Côte d’Azur, INSERM, CNRS, C3M, Bâtiment Universitaire ARCHIMED 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, CEDEX 3, France; (C.G.); (C.B.)
| | - Bernard Verrier
- Adjuvatis SAS, IBCP, 7 Passage du Vercors—69007 Lyon, France;
| | - Stéphane Azoulay
- Université Côte d’Azur, CNRS, ICN, 28 Avenue Valrose, 06108 Nice, CEDEX 2, France; (N.E.); (A.D.G.); (M.D.)
- Correspondence: (S.A.); (I.M.-V.)
| | - Isabelle Mus-Veteau
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
- Correspondence: (S.A.); (I.M.-V.)
| |
Collapse
|
25
|
Fecker R, Buda V, Alexa E, Avram S, Pavel IZ, Muntean D, Cocan I, Watz C, Minda D, Dehelean CA, Soica C, Danciu C. Phytochemical and Biological Screening of Oenothera Biennis L. Hydroalcoholic Extract. Biomolecules 2020; 10:biom10060818. [PMID: 32466573 PMCID: PMC7356052 DOI: 10.3390/biom10060818] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Oenothera biennis L. (OB), also commonly known as evening primrose, belongs to the Onagraceae family and has the best studied biological activity of all the members in the family. In therapy, the most frequently used type of extracts are from the aerial part, which are the fatty oils obtained from the seeds and have a wide range of medicinal properties. The aim of this study was to evaluate the phytochemical composition and biological activity of OB hydroalcoholic extract and to provide directions for the antimicrobial effect, antiproliferative and pro-apoptotic potential against A375 melanoma cell line, and anti-angiogenic and anti-inflammatory capacity. The main polyphenols and flavonoids identified were gallic acid, caffeic acid, epicatechin, coumaric acid, ferulic acid, rutin and rosmarinic acid. The total phenolic content was 631.496 µgGAE/mL of extract and the antioxidant activity was 7258.67 μmolTrolox/g of extract. The tested extract had a mild bacteriostatic effect on the tested bacterial strains. It was bactericidal only against Candida spp. and S. aureus. In the set of experimental conditions, the OB extract only manifested significant antiproliferative and pro-apoptotic activity against the A375 human melanoma cell line at the highest tested concentration, namely 60 μg/mL. The migration potential of A375 cells was hampered by the OB extract in a concentration-dependent manner. Furthermore, at the highest tested concentration, the OB extract altered the mitochondrial function in vitro, while reducing the angiogenic reaction, hindering compact tumor formation in the chorioallantoic membrane assay. Moreover, the OB extract elicited an anti-inflammatory effect on the experimental animal model of ear inflammation.
Collapse
Affiliation(s)
- Ramona Fecker
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania
- Correspondence: (V.B.); (D.M.); Tel.: +4-0755-100-408 (V.B.)
| | - Ersilia Alexa
- Department of Food Control, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului No. 119, 300641 Timişoara, Romania; (E.A.); (I.C.)
| | - Stefana Avram
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Delia Muntean
- Department of Microbiology, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania
- Correspondence: (V.B.); (D.M.); Tel.: +4-0755-100-408 (V.B.)
| | - Ileana Cocan
- Department of Food Control, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului No. 119, 300641 Timişoara, Romania; (E.A.); (I.C.)
| | - Claudia Watz
- Department of Pharmaceutical Physics, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Cristina Adriana Dehelean
- Department of Toxicology, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| |
Collapse
|
26
|
Lemon Balm Extracts Prevent Breast Cancer Progression In Vitro and In Ovo on Chorioallantoic Membrane Assay. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6489159. [PMID: 32351599 PMCID: PMC7178502 DOI: 10.1155/2020/6489159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequently diagnosed malignant pathology, representing the primary cause of cancer death in women. Natural products are an appealing strategy to limit the progression of the disease. Targeting angiogenesis in breast cancer may positively impact on poor prognosis of breast cancer. As source of natural compounds, we investigated the leaves of Melissa officinalis L. (MO), known as lemon balm, an aromatic plant that spontaneously grows in the South and Western areas of Romania, being traditionally recommended as anxiolytic, antispasmodic, or as digestive remedy. Our aim was to investigate the phytochemical profiling and the antiangiogenic and chemopreventive bioactivity of MO from Banat region, on breast cancer. Two ethanolic extracts of MO (MOE96 and MOE70) and one methanolic extract (MOM80) were subjected to polyphenol and triterpene profiling by HPLC-MS, and the antioxidant capacity was evaluated. The antiangiogenic potential was investigated using the chorioallantoic membrane assay (CAM). The MTT(3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide) assay was used to investigate the cytotoxic effects on MCF-7 and MDA-MB-231breast cancer cells, as well as on MCF-10A normal breast epithelial cells, while apoptosis was performed by DAPI staining. Rosmarinic acid (RA) and ursolic acid (UA) were revealed as dominant phytocompounds. The highest concentration in phytochemicals were found in MOM80; MOE96 was more concentrated in UA, while MOE70 extracted more RA. MOE96 inhibited cancer progression and angiogenesis in the in ovo CAM model using MDA-MB-231 cells, inhibiting breast cancer progression and angiogenesis for the MDA-MB-231 breast cancer cell line; no secondary tumoral areas were registered, indicative for a preventive effect against breast tumor cell invasiveness. The highest cell inhibitory activity was also exhibited by MOE96, in particular against the estrogen receptor positive MCF7 breast cancer cell line, with no cytotoxic effect on healthy cells. The estrogen receptor positive MCF7 cell line proved to be more sensitive to the extract antiproliferative activity than the triple negative MDA-MB-231 breast cancer cell line. Nevertheless, the chemopreventive potential of MOE96 extract is phenotype-dependent and is rather related to the apoptosis and antiangiogenic effects suggesting a multitargeted mechanism of action due to its multiple compound composition next to a concentration ratio of RA : UA in favor of UA.
Collapse
|
27
|
Strnadová K, Španko M, Dvořánková B, Lacina L, Kodet O, Shbat A, Klepáček I, Smetana K. Melanoma xenotransplant on the chicken chorioallantoic membrane: a complex biological model for the study of cancer cell behaviour. Histochem Cell Biol 2020; 154:177-188. [PMID: 32232553 DOI: 10.1007/s00418-020-01872-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
The globally increasing incidence of cancer, including melanoma, requires novel therapeutic strategies. Development of successful novel drugs is based on clear identification of the target mechanisms responsible for the disease progression. The specific cancer microenvironment represents a critically important aspect of cancer biology, which cannot be properly studied in simplistic cell culture conditions. Among other traditional options, the study of melanoma cell growth on the chicken chorioallantoic membrane offers several significant advantages. This model offers increased complexity compared to usual in silico culture models and still remains financially affordable. Using this model, we studied the growth of three established human melanoma cell lines: A2058, BLM, G361. The combination of histology, immunohistochemistry with the application of human-specific antibodies, intravascular injection of contrast material such as filtered Indian ink, Mercox solution and phosphotungstic acid, and X-ray micro-CT and live-cell monitoring was employed. Melanoma cells spread well on the chicken chorioallantoic membrane. However, invasion into the stroma of the chorioallantoic membrane and the limb primordium graft was rare. The melanoma cells also significantly influenced the architecture of the blood vessel network, resulting in the orientation of the vessels to the site of the tumour cell inoculation. The system of melanoma cell culture on the chorioallantoic membrane is suitable for the study of melanoma cell growth, particularly of rearrangement of the host vascular pattern after cancer cell implantation. The system also has promising potential for further development.
Collapse
Affiliation(s)
- Karolína Strnadová
- Institute of Anatomy, First Faculty of Medicine, Charles University, 12800, Prague, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, 25250, Vestec, Czech Republic
| | - Michal Španko
- Institute of Anatomy, First Faculty of Medicine, Charles University, 12800, Prague, Czech Republic.,Department of Stomatology, First Faculty of Medicine, Charles University, 12800, Prague, Czech Republic
| | - Barbora Dvořánková
- Institute of Anatomy, First Faculty of Medicine, Charles University, 12800, Prague, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, 25250, Vestec, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 12800, Prague, Czech Republic. .,BIOCEV, First Faculty of Medicine, Charles University, 25250, Vestec, Czech Republic. .,Department of Dermatovenereology, First Faculty of Medicine, Charles University, 12808, Prague, Czech Republic.
| | - Ondřej Kodet
- Institute of Anatomy, First Faculty of Medicine, Charles University, 12800, Prague, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, 25250, Vestec, Czech Republic.,Department of Dermatovenereology, First Faculty of Medicine, Charles University, 12808, Prague, Czech Republic
| | - Andrej Shbat
- Institute of Anatomy, First Faculty of Medicine, Charles University, 12800, Prague, Czech Republic
| | - Ivo Klepáček
- Institute of Anatomy, First Faculty of Medicine, Charles University, 12800, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 12800, Prague, Czech Republic. .,BIOCEV, First Faculty of Medicine, Charles University, 25250, Vestec, Czech Republic.
| |
Collapse
|
28
|
Gunasekera RS, Galbadage T, Ayala-Orozco C, Liu D, García-López V, Troutman BE, Tour JJ, Pal R, Krishnan S, Cirillo JD, Tour JM. Molecular Nanomachines Can Destroy Tissue or Kill Multicellular Eukaryotes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13657-13670. [PMID: 32091877 PMCID: PMC8189693 DOI: 10.1021/acsami.9b22595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Light-activated molecular nanomachines (MNMs) can be used to drill holes into prokaryotic (bacterial) cell walls and the membrane of eukaryotic cells, including mammalian cancer cells, by their fast rotational movement, leading to cell death. We examined how these MNMs function in multicellular organisms and investigated their use for treatment and eradication of specific diseases by causing damage to certain tissues and small organisms. Three model eukaryotic species, Caenorhabditis elegans, Daphnia pulex, and Mus musculus (mouse), were evaluated. These organisms were exposed to light-activated fast-rotating MNMs and their physiological and pathological changes were studied in detail. Slow rotating MNMs were used to control for the effects of rotation rate. We demonstrate that fast-rotating MNMs caused depigmentation and 70% mortality in C. elegans while reducing the movement as well as heart rate and causing tissue damage in Daphnia. Topically applied light-activated MNMs on mouse skin caused ulceration and microlesions in the epithelial tissue, allowing MNMs to localize into deeper epidermal tissue. Overall, this study shows that the nanomechanical action of light-activated MNMs is effective against multicellular organisms, disrupting cell membranes and damaging tissue in vivo. Customized MNMs that target specific tissues for therapy combined with spatial and temporal control could have broad clinical applications in a variety of benign and malignant disease states including treatment of cancer, parasites, bacteria, and diseased tissues.
Collapse
Affiliation(s)
| | - Thushara Galbadage
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, United States
| | - Ciceron Ayala-Orozco
- Department of Experimental Oncology, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | | | | | - Josiah J Tour
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, United States
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| | - Sunil Krishnan
- Department of Experimental Oncology, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, United States
| | | |
Collapse
|
29
|
Putz AM, Ianăși C, Dudás Z, Coricovac D, Watz C(F, Len A, Almásy L, Sacarescu L, Dehelean C. SiO 2-PVA-Fe(acac) 3 Hybrid Based Superparamagnetic Nanocomposites for Nanomedicine: Morpho-textural Evaluation and In Vitro Cytotoxicity Assay. Molecules 2020; 25:molecules25030653. [PMID: 32033018 PMCID: PMC7038086 DOI: 10.3390/molecules25030653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/29/2022] Open
Abstract
A facile sol-gel route has been applied to synthesize hybrid silica-PVA-iron oxide nanocomposite materials. A step-by-step calcination (processing temperatures up to 400 °C) was applied in order to oxidize the organics together with the iron precursor. Transmission electron microscopy, X-ray diffraction, small angle neutron scattering, and nitrogen porosimetry were used to determine the temperature-induced morpho-textural modifications. In vitro cytotoxicity assay was conducted by monitoring the cell viability by the means of MTT assay to qualify the materials as MRI contrast agents or as drug carriers. Two cell lines were considered: the HaCaT (human keratinocyte cell line) and the A375 tumour cell line of human melanoma. Five concentrations of 10 µg/mL, 30 µg/mL, 50 µg/mL, 100 µg/mL, and 200 µg/mL were tested, while using DMSO (dimethylsulfoxid) and PBS (phosphate saline buffer) as solvents. The HaCaT and A375 cell lines were exposed to the prepared agent suspensions for 24 h. In the case of DMSO (dimethyl sulfoxide) suspensions, the effect on human keratinocytes migration and proliferation were also evaluated. The results indicate that only the concentrations of 100 μg/mL and 200 μg/mL of the nanocomposite in DMSO induced a slight decrease in the HaCaT cell viability. The PBS based in vitro assay showed that the nanocomposite did not present toxicity on the HaCaT cells, even at high doses (200 μg/mL agent).
Collapse
Affiliation(s)
- Ana-Maria Putz
- ”Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, Mihai Viteazul Bd., No. 24, 300223 Timişoara, Romania; (A.-M.P.); (C.I.)
| | - Cătălin Ianăși
- ”Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, Mihai Viteazul Bd., No. 24, 300223 Timişoara, Romania; (A.-M.P.); (C.I.)
| | - Zoltán Dudás
- Wigner Research Centre for Physics, POB 49 1525 Budapest, Hungary
- Correspondence:
| | - Dorina Coricovac
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| | - Claudia (Farcas) Watz
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| | - Adél Len
- Centre for Energy Research, Konkoly-Thege 29-33, 1121 Budapest, Hungary;
- University of Pécs, Faculty of Engineering and Information technology, Boszorkány St. 2, 7624 Pécs, Hungary
| | - László Almásy
- Wigner Research Centre for Physics, POB 49 1525 Budapest, Hungary
| | - Liviu Sacarescu
- Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A 700487 Iasi, Romania;
| | - Cristina Dehelean
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| |
Collapse
|
30
|
Sharrow AC, Ishihara M, Hu J, Kim IH, Wu L. Using the Chicken Chorioallantoic Membrane In Vivo Model to Study Gynecological and Urological Cancers. J Vis Exp 2020. [PMID: 32065133 DOI: 10.3791/60651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mouse models are the benchmark tests for in vivo cancer studies. However, cost, time, and ethical considerations have led to calls for alternative in vivo cancer models. The chicken chorioallantoic membrane (CAM) model provides an inexpensive, rapid alternative that permits direct visualization of tumor development and is suitable for in vivo imaging. As such, we sought to develop an optimized protocol for engrafting gynecological and urological tumors into this model, which we present here. Approximately 7 days postfertilization, the air cell is moved to the vascularized side of the egg, where an opening is created in the shell. Tumors from murine and human cell lines and primary tissues can then be engrafted. These are typically seeded in a mixture of extracellular matrix and medium to avoid cellular dispersal and provide nutrient support until the cells recruit a vascular supply. Tumors may then grow for up to an additional 14 days prior to the eggs hatching. By implanting cells stably transduced with firefly luciferase, bioluminescence imaging can be used for the sensitive detection of tumor growth on the membrane and cancer cell spread throughout the embryo. This model can potentially be used to study tumorigenicity, invasion, metastasis, and therapeutic effectiveness. The chicken CAM model requires significantly less time and financial resources compared to traditional murine models. Because the eggs are immunocompromised and immune tolerant, tissues from any organism can potentially be implanted without costly transgenic animals (e.g., mice) required for implantation of human tissues. However, many of the advantages of this model could potentially also be limitations, including the short tumor generation time and immunocompromised/immune tolerant status. Additionally, although all tumor types presented here engraft in the chicken chorioallantoic membrane model, they do so with varying degrees of tumor growth.
Collapse
Affiliation(s)
- Allison C Sharrow
- Molecular and Medical Pharmacology, University of California Los Angeles;
| | - Moe Ishihara
- Molecular and Medical Pharmacology, University of California Los Angeles
| | - Junhui Hu
- Molecular and Medical Pharmacology, University of California Los Angeles
| | - Il Hyun Kim
- Molecular and Medical Pharmacology, University of California Los Angeles
| | - Lily Wu
- Molecular and Medical Pharmacology, University of California Los Angeles;
| |
Collapse
|
31
|
Lokman NA, Ricciardelli C, Oehler MK. Chick chorioallantoic membrane assay: a 3D animal model for cancer invasion and metastasis. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
A Comprehensive Assessment of Apigenin as an Antiproliferative, Proapoptotic, Antiangiogenic and Immunomodulatory Phytocompound. Nutrients 2019; 11:nu11040858. [PMID: 30995771 PMCID: PMC6521017 DOI: 10.3390/nu11040858] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Apigenin (4′,5,7-trihydroxyflavone) (Api) is an important component of the human diet, being distributed in a wide number of fruits, vegetables and herbs with the most important sources being represented by chamomile, celery, celeriac and parsley. This study was designed for a comprehensive evaluation of Api as an antiproliferative, proapoptotic, antiangiogenic and immunomodulatory phytocompound. In the set experimental conditions, Api presents antiproliferative activity against the A375 human melanoma cell line, a G2/M arrest of the cell cycle and cytotoxic events as revealed by the lactate dehydrogenase release. Caspase 3 activity was inversely proportional to the Api tested doses, namely 30 μM and 60 μM. Phenomena of early apoptosis, late apoptosis and necrosis following incubation with Api were detected by Annexin V-PI double staining. The flavone interfered with the mitochondrial respiration by modulating both glycolytic and mitochondrial pathways for ATP production. The metabolic activity of human dendritic cells (DCs) under LPS-activation was clearly attenuated by stimulation with high concentrations of Api. Il-6 and IL-10 secretion was almost completely blocked while TNF alpha secretion was reduced by about 60%. Api elicited antiangiogenic properties in a dose-dependent manner. Both concentrations of Api influenced tumour cell growth and migration, inducing a limited tumour area inside the application ring, associated with a low number of capillaries.
Collapse
|
33
|
Cutaneous Melanoma-A Long Road from Experimental Models to Clinical Outcome: A Review. Int J Mol Sci 2018; 19:ijms19061566. [PMID: 29795011 PMCID: PMC6032347 DOI: 10.3390/ijms19061566] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is a complex disorder characterized by an elevated degree of heterogeneity, features that place it among the most aggressive types of cancer. Although significant progress was recorded in both the understanding of melanoma biology and genetics, and in therapeutic approaches, this malignancy still represents a major problem worldwide due to its high incidence and the lack of a curative treatment for advanced stages. This review offers a survey of the most recent information available regarding the melanoma epidemiology, etiology, and genetic profile. Also discussed was the topic of cutaneous melanoma murine models outlining the role of these models in understanding the molecular pathways involved in melanoma initiation, progression, and metastasis.
Collapse
|
34
|
Serafim V, Shah A, Puiu M, Andreescu N, Coricovac D, Nosyrev AE, Spandidos DA, Tsatsakis AM, Dehelean C, Pinzaru I. Classification of cancer cell lines using matrix-assisted laser desorption/ionization time‑of‑flight mass spectrometry and statistical analysis. Int J Mol Med 2017; 40:1096-1104. [PMID: 28765873 PMCID: PMC5593469 DOI: 10.3892/ijmm.2017.3083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Over the past decade, matrix-assisted laser desorption/ionization time‑of‑flight mass spectrometry (MALDI‑TOF MS) has been established as a valuable platform for microbial identification, and it is also frequently applied in biology and clinical studies to identify new markers expressed in pathological conditions. The aim of the present study was to assess the potential of using this approach for the classification of cancer cell lines as a quantifiable method for the proteomic profiling of cellular organelles. Intact protein extracts isolated from different tumor cell lines (human and murine) were analyzed using MALDI‑TOF MS and the obtained mass lists were processed using principle component analysis (PCA) within Bruker Biotyper® software. Furthermore, reference spectra were created for each cell line and were used for classification. Based on the intact protein profiles, we were able to differentiate and classify six cancer cell lines: two murine melanoma (B16‑F0 and B164A5), one human melanoma (A375), two human breast carcinoma (MCF7 and MDA‑MB‑231) and one human liver carcinoma (HepG2). The cell lines were classified according to cancer type and the species they originated from, as well as by their metastatic potential, offering the possibility to differentiate non‑invasive from invasive cells. The obtained results pave the way for developing a broad‑based strategy for the identification and classification of cancer cells.
Collapse
Affiliation(s)
- Vlad Serafim
- Center of Genomic Medicine, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
- Department of Natural Sciences, Middlesex University, London NW4 4BT, UK
| | - Ajit Shah
- Department of Natural Sciences, Middlesex University, London NW4 4BT, UK
| | - Maria Puiu
- Center of Genomic Medicine, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Nicoleta Andreescu
- Center of Genomic Medicine, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Dorina Coricovac
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexander E. Nosyrev
- Central Chemical Laboratory of Toxicology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Aristides M. Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Cristina Dehelean
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|