1
|
Metovic J, Cabutti F, Osella-Abate S, Orlando G, Tampieri C, Napoli F, Maletta F, Daniele L, Volante M, Papotti M. Clinical and Pathological Features and Gene Expression Profiles of Clinically Aggressive Papillary Thyroid Carcinomas. Endocr Pathol 2023; 34:298-310. [PMID: 37208504 PMCID: PMC10511602 DOI: 10.1007/s12022-023-09769-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
Papillary thyroid carcinoma (PTC) is considered an indolent neoplasm but it may demonstrate aggressive behavior. We aimed to identify clinical and pathological characteristics and molecular signatures associated with aggressive forms of PTCs. We selected 43 aggressive PTC cases based on the presence of metastases at the time of diagnosis, the development of distant metastasis during follow-up, and/or biochemical recurrence, and 43 PTC patients that were disease-free upon follow-up, matching them according to age, sex, pT, and pN parameters. Twenty-four pairs (a total of 48 cases) and 6 normal thyroid tissues were studied using targeted mRNA screening of cancer-associated genes employing NanoString nCounter® technology. In general, aggressive PTCs showed distinctive clinical and morphological features. Among adverse prognostic parameters, the presence of necrosis and an increased mitotic index were associated with shorter disease-free and overall survivals. Other parameters associated with shorter disease-free or overall survivals include a lack of tumor capsule, the presence of vascular invasion, tumor-infiltrating lymphocytes, fibrosclerotic changes, age > 55 years, and a high pTN stage. Various pathways were differentially regulated in non-aggressive as compared to aggressive PTC, including the DNA damage repair, the MAPK, and the RAS pathways. In particular, the hedgehog pathway was differentially de-regulated in aggressive PTC as compared to non-aggressive PTC cases, being WNT10A and GLI3 genes significantly up- and down-regulated in aggressive PTC and GSK3B up-regulated in non-aggressive PTC cases. In conclusion, our study revealed specific molecular signatures and morphological features in aggressive PTC that may be useful to predict more aggressive behavior in a subset of PTC patients. These findings may be useful when developing novel, tailored treatment options for these patients.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| | - Francesco Cabutti
- Department of Medical Sciences, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| | | | - Giulia Orlando
- Department of Oncology, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| | - Cristian Tampieri
- Department of Medical Sciences, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Francesca Maletta
- Pathology Unit, Città della Salute e della Scienza Hospital, Turin, Italy
| | | | - Marco Volante
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy.
| | - Mauro Papotti
- Department of Oncology, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| |
Collapse
|
2
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
3
|
Xu Q, Yang H, Fan G, Zhang B, Yu J, Zhang Z, Jia G. Clinical importance of PLA2R1 and RASSF9 in thyroid cancer and their inhibitory roles on the Wnt/β-catenin pathway and thyroid cancer cell malignant behaviors. Pathol Res Pract 2022; 238:154092. [PMID: 36049438 DOI: 10.1016/j.prp.2022.154092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Thyroid cancer is a common malignant tumor with rising incidence worldwide. The purpose of this study was to explore key genes in thyroid cancer. The differentially expressed genes were analyzed according to GEO datasets. PLA2R1 and RASSF9 levels were confirmed by UALCAN and the Human Protein Atlas databases. The disease free survival and linear correlation were analyzed by GEPIA. ROC curve was generated according to The Cancer Genome Atlas (TCGA) database. The methylation level and immune infiltration were analyzed using GSCA platform. PLA2R1, RASSF9 and Wnt/β-catenin-related protein levels were detected by western blotting. Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine assay. Cell invasion and migration were evaluated by Transwell assay. There were 2 common differentially expressed genes (PLA2R1 and RASSF9) in thyroid cancer from GSE104005, GSE65144 and GSE53157 datasets. Decreased PLA2R1 and RASSF9 were associated with advanced stages and lower disease free survival. PLA2R1 and RASSF9 methylation levels were enhanced in thyroid cancer samples compared with normal samples. PLA2R1 methylation level was negatively correlated to its mRNA level. PLA2R1 and RASSF9 were related to immune infiltration in thyroid cancer. PLA2R1 and RASSF9 expression was associated with radioiodine resistance, and positively correlated to expression of iodide uptake-related factors. Multiple signaling pathways were involved in the action mechanisms of PLA2R1 and RASSF9, including the Wnt/β-catenin signaling. Overexpression of PLA2R1 and RASSF9 inhibited the activation of the Wnt/β-catenin pathway, proliferation, invasion, and migration in thyroid cancer cells. Collectively, PLA2R1 and RASSF9 are two key genes in thyroid cancer, which have potential diagnostic, prognostic, and anti-tumor effects in thyroid cancer.
Collapse
Affiliation(s)
- Qiu Xu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China; Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital of Nanyang, Nanyang 473000, China
| | - Gai Fan
- Department of Otolaryngology, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China
| | - Bo Zhang
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China; Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China; Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China
| | - Zhixin Zhang
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China; Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital affiliated to Henan University, Nanyang 473012, China.
| |
Collapse
|
4
|
Li J, Zhang Y, Sun F, Xing L, Sun X. Towards an era of precise diagnosis and treatment: Role of novel molecular modification-based imaging and therapy for dedifferentiated thyroid cancer. Front Endocrinol (Lausanne) 2022; 13:980582. [PMID: 36157447 PMCID: PMC9493193 DOI: 10.3389/fendo.2022.980582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 12/07/2022] Open
Abstract
Dedifferentiated thyroid cancer is the major cause of mortality in thyroid cancer and is difficult to treat. Hence, the essential molecular mechanisms involved in dedifferentiation should be thoroughly investigated. Several studies have explored the biomolecular modifications of dedifferentiated thyroid cancer such as DNA methylation, protein phosphorylation, acetylation, ubiquitination, and glycosylation and the new targets for radiological imaging and therapy in recent years. Novel radionuclide tracers and drugs have shown attractive potential in the early diagnosis and treatment of dedifferentiated thyroid cancer. We summarized the updated molecular mechanisms of dedifferentiation combined with early detection by molecular modification-based imaging to provide more accurate diagnosis and novel therapeutics in the management of dedifferentiated thyroid cancer.
Collapse
Affiliation(s)
- Jing Li
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yingjie Zhang
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fenghao Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Effects of Annurca Flesh Apple Polyphenols in Human Thyroid Cancer Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6268755. [PMID: 35222800 PMCID: PMC8872649 DOI: 10.1155/2022/6268755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
Among natural macromolecules, the polyphenol extract from Annurca flesh (AFPE) apple could play a potential therapeutic role for a large spectrum of human cancer also by exerting antioxidant properties. Thyroid cancer is a common neoplasia in women, and it is in general responsive to treatments although patients may relapse and metastasize or therapy-related side effects could occur. In this study, we explored the effects of AFPE on papillary (TPC-1) and anaplastic (CAL62) thyroid cancer cell line proliferation and viability. We found that AFPE exposure induced a reduction of cell proliferation and cell viability in dose-dependent manner. The effect was associated with the reduction of phosphorylation of Rb protein. To study the mechanisms underlying the biological effects of AFPE treatment in thyroid cancer cells, we investigated the modulation of miRNA (miR) expression. We found that AFPE treatment increased the expression of the miR-141, miR-145, miR-200a-5p, miR-425, and miR-551b-5p. Additionally, since natural polyphenols could exert their beneficial effects through the antioxidant properties, we investigated this aspect, and we found that AFPE treatment reduced the production of reactive oxygen species (ROS) in CAL62 cells. Moreover, AFPE pretreatment protects against hydrogen peroxide-induced oxidative stress in thyroid cancer cell lines. Taken together, our findings suggest that AFPE, by acting at micromolar concentration in thyroid cancer cell lines, may be considered a promising adjuvant natural agent for thyroid cancer treatment approach.
Collapse
|
6
|
Yan Z, Gang LW, Yan GS, Zhou P. Prediction of the invasiveness of PTMC by a combination of ultrasound and the WNT10A gene. Front Endocrinol (Lausanne) 2022; 13:1026059. [PMID: 36605938 PMCID: PMC9807605 DOI: 10.3389/fendo.2022.1026059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The purpose of this study was to predict the invasiveness of papillary thyroid microcarcinoma (PTMC) via ultrasonography in combination with the Wnt family member 10A (WNT10A) gene to provide a reference basis for evaluating the invasive capability of PTMC. METHODS Cancer tissue were collected from 182 patients with unifocal PTMC, and the patients were divided into the invasive group and the non-invasive group based on whether the lesions invaded the thyroid capsules or whether lymph node metastasis occurred. The expression of WNT10A protein was examined. Age, sex, maximum nodule diameter, color Doppler flow imaging (CDFI), nodule echo, microcalcification, aspect ratio, morphology (boundary), nodule location, internal structure, ultrasound-suspected lymph node metastasis (US-LNM), and WNT10A expression were compared between the invasive group and the non-invasive group. Univariate analysis and multivariate logistic regression analysis were performed, and a p value of less than 0.05 indicated that the difference was statistically significant. RESULTS (1) 36 patients in the non-invasive group showed high expression and 66 patients showed low or no expression, while 54 patients in the invasive group showed high expression and 26 patients showed low or no expression, suggesting that the expression level of WNT10A was higher in the invasive group than in the non-invasive group, with a statistically significant difference between the two groups (P<0.01). (2) Univariate analysis showed that there were statistically significant differences between the invasive PTMC group and the non-invasive group in age, sex, maximum nodule diameter, microcalcification, US-LNM and high WNT10A expression. (3) Multivariate analysis showed that the risk factors for invasiveness in patients with PTMC included age < 45 years, maximum nodule diameter > 7 mm, microcalcification, US-LNM and high WNT10A expression. CONCLUSION The risk factors for PTMC invasiveness included age < 45 years, maximum nodule diameter >7 mm, microcalcification, US-LNM and high WNT10A expression. A combination of ultrasonography and WNT10A gene analysis could provide a reference basis for evaluating the invasive capability of PTMC.
Collapse
|
7
|
Arora C, Kaur D, Naorem LD, Raghava GPS. Prognostic biomarkers for predicting papillary thyroid carcinoma patients at high risk using nine genes of apoptotic pathway. PLoS One 2021; 16:e0259534. [PMID: 34767591 PMCID: PMC8589158 DOI: 10.1371/journal.pone.0259534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant expressions of apoptotic genes have been associated with papillary thyroid carcinoma (PTC) in the past, however, their prognostic role and utility as biomarkers remains poorly understood. In this study, we analysed 505 PTC patients by employing Cox-PH regression techniques, prognostic index models and machine learning methods to elucidate the relationship between overall survival (OS) of PTC patients and 165 apoptosis related genes. It was observed that nine genes (ANXA1, TGFBR3, CLU, PSEN1, TNFRSF12A, GPX4, TIMP3, LEF1, BNIP3L) showed significant association with OS of PTC patients. Five out of nine genes were found to be positively correlated with OS of the patients, while the remaining four genes were negatively correlated. These genes were used for developing risk prediction models, which can be utilized to classify patients with a higher risk of death from the patients which have a good prognosis. Our voting-based model achieved highest performance (HR = 41.59, p = 3.36x10-4, C = 0.84, logrank-p = 3.8x10-8). The performance of voting-based model improved significantly when we used the age of patients with prognostic biomarker genes and achieved HR = 57.04 with p = 10−4 (C = 0.88, logrank-p = 1.44x10-9). We also developed classification models that can classify high risk patients (survival ≤ 6 years) and low risk patients (survival > 6 years). Our best model achieved AUROC of 0.92. Further, the expression pattern of the prognostic genes was verified at mRNA level, which showed their differential expression between normal and PTC samples. Also, the immunostaining results from HPA validated these findings. Since these genes can also be used as potential therapeutic targets in PTC, we also identified potential drug molecules which could modulate their expression profile. The study briefly revealed the key prognostic biomarker genes in the apoptotic pathway whose altered expression is associated with PTC progression and aggressiveness. In addition to this, risk assessment models proposed here can help in efficient management of PTC patients.
Collapse
Affiliation(s)
- Chakit Arora
- Indraprastha Institute of Information Technology-Delhi, Department of Computational Biology, New Delhi, India
| | - Dilraj Kaur
- Indraprastha Institute of Information Technology-Delhi, Department of Computational Biology, New Delhi, India
| | - Leimarembi Devi Naorem
- Indraprastha Institute of Information Technology-Delhi, Department of Computational Biology, New Delhi, India
| | - Gajendra P. S. Raghava
- Indraprastha Institute of Information Technology-Delhi, Department of Computational Biology, New Delhi, India
- * E-mail:
| |
Collapse
|
8
|
Cao X, Wang X, Zhang W, Xia G, Zhang L, Wen Z, He J, Wang Z, Huang J, Wu S. WNT10A induces apoptosis of senescent synovial resident stem cells through Wnt/calcium pathway-mediated HDAC5 phosphorylation in OA joints. Bone 2021; 150:116006. [PMID: 34000432 DOI: 10.1016/j.bone.2021.116006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Recently, the accumulation of senescent cells (SnCs) within joints was found to promote osteoarthritis (OA) progression. Our previous study found that Wnt proteins, especially Wnt10a, have marked effects on cellular senescence and joint health. However, the effect of WNT10A on SnCs in OA joints remains unknown. In this study, we confirmed that the synovium was the first and most marked site of SnC accumulation in the OA joint, and synovial resident mesenchymal stem cells (SMSCs) seemed to be the main source of these SnCs. In synovium samples from OA patients, WNT10A level inversely correlated with the extent of SnCs accumulation. Therefore, we further explored the possible regulatory role and mechanism of WNT10A in intraarticular senescent SMSCs. In brief, we confirmed that WNT10A could specifically clear these senescent OA-SMSCs in vitro experiments and naturally occurring OA models via proapoptotic effects. Mechanistically, WNT10A activated noncanonical Wnt/calcium signaling in senescent OA-SMSCs, which in turn induced histone deacetylase 5 (HDAC5) phosphorylation and nuclear export via its downstream Ca2+/calmodulin-dependent protein kinase II (CaMKII) to regulate cell fate. The regulation of this pathway significantly improved the regenerative microenvironment of OA, exhibiting its potential as a novel clinical disease-modifying OA drugs (DMOADs) target.
Collapse
Affiliation(s)
- Xu Cao
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Xinxing Wang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Wenxiu Zhang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Guang Xia
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Lina Zhang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Zi Wen
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Jinshen He
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Zili Wang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Junjie Huang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China..
| | - Song Wu
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China..
| |
Collapse
|
9
|
Zhu GX, Gao D, Shao ZZ, Chen L, Ding WJ, Yu QF. Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Mol Med Rep 2020; 23:105. [PMID: 33300082 PMCID: PMC7723170 DOI: 10.3892/mmr.2020.11744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in humans. Chemotherapy is used for the treatment of CRC. However, the effect of chemotherapy remains unsatisfactory due to drug resistance. Growing evidence has shown that the presence of highly metastatic tumor stem cells, regulation of non-coding RNAs and the tumor microenvironment contributes to drug resistance mechanisms in CRC. Wnt/β-catenin signaling mediates the chemoresistance of CRC in these three aspects. Therefore, the present study analyzed the abundant evidence of the contribution of Wnt/β-catenin signaling to the development of drug resistance in CRC and discussed its possible role in improving the chemosensitivity of CRC, which may provide guidelines for its clinical treatment.
Collapse
Affiliation(s)
- Gui-Xian Zhu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhao-Zhao Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Jie Ding
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong-Fang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
10
|
Sanjari M, Kordestani Z, Safavi M, Mashrouteh M, FekriSoofiAbadi M, Ghaseminejad Tafreshi A. Enhanced expression of Cyclin D1 and C-myc, a prognostic factor and possible mechanism for recurrence of papillary thyroid carcinoma. Sci Rep 2020; 10:5100. [PMID: 32198408 PMCID: PMC7083882 DOI: 10.1038/s41598-020-61985-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
A direct association has been shown between Cyclin D1 and C-myc gene expressions and the proliferation of human thyroid tumor cells. Our previous study showed that increased β catenin led to a reduction in disease-free probability in patients with papillary thyroid cancer. This study was designed to investigate Cyclin D1 and C-myc genes as targets for β catenin function in PTC and to determine the association between genes expression and staging, recurrence, metastasis, and disease-free survival of PTC. This study was conducted via a thorough investigation of available data from medical records as well as paraffin blocks of 77 out of 400 patients over a 10-year period. Cyclin D1 and C-myc gene expression levels were measured using real-time polymerase chain reaction (RT-PCR) and the Kaplan-Meier method was used to evaluate disease-free survival. Higher levels of Cyclin D1 and C-myc gene expressions were observed in patients with recurrence by 8.5 (P = 0.004) and 19.5 (p = 0.0001) folds, respectively. A significant positive correlation was found between Cyclin D1 expression and the cumulative dose of radioactive iodine received by patients (r = −0.2, p value = 0.03). The ten-year survival rate in the patients included in this study was 98.25% while disease-free survival was 48.1%. Higher Cyclin D1 and C-myc gene expression levels were observed in patients with recurrence/distant metastasis. Inversely, lower expression of Cyclin D1 and C-myc genes were associated with better survival of patients (SD, 0.142-0.052) (Mantel-Cox test, P = 0.002). The enhancement of Cyclin D1 and C-myc gene expression may be a potential mechanism for recurrence and aggressiveness of PTC.
Collapse
|
11
|
Fuziwara CS, Kimura ET. How does microRNA modulate Wnt/β-catenin signaling in thyroid oncogenesis? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:266. [PMID: 32355710 PMCID: PMC7186644 DOI: 10.21037/atm.2020.02.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Mutation Enrichment and Transcriptomic Activation Signatures of 419 Molecular Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020271. [PMID: 31979117 PMCID: PMC7073226 DOI: 10.3390/cancers12020271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is linked with massive changes in regulation of gene networks. We used high throughput mutation and gene expression data to interrogate involvement of 278 signaling, 72 metabolic, 48 DNA repair and 47 cytoskeleton molecular pathways in cancer. Totally, we analyzed 4910 primary tumor samples with individual cancer RNA sequencing and whole exome sequencing profiles including ~1.3 million DNA mutations and representing thirteen cancer types. Gene expression in cancers was compared with the corresponding 655 normal tissue profiles. For the first time, we calculated mutation enrichment values and activation levels for these pathways. We found that pathway activation profiles were largely congruent among the different cancer types. However, we observed no correlation between mutation enrichment and expression changes both at the gene and at the pathway levels. Overall, positive median cancer-specific activation levels were seen in the DNA repair, versus similar slightly negative values in the other types of pathways. The DNA repair pathways also demonstrated the highest values of mutation enrichment. However, the signaling and cytoskeleton pathways had the biggest proportions of representatives among the outstandingly frequently mutated genes thus suggesting their initiator roles in carcinogenesis and the auxiliary/supporting roles for the other groups of molecular pathways.
Collapse
|
13
|
Wang ML, Liu JX. MALAT1 rs619586 polymorphism functions as a prognostic biomarker in the management of differentiated thyroid carcinoma. J Cell Physiol 2019; 235:1700-1710. [PMID: 31456244 DOI: 10.1002/jcp.29089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022]
Abstract
This study aimed to explore the roles of miR-214 and MALAT1 rs619586 polymorphism in the control and survival of differentiated thyroid carcinoma (DTC) via Cox regression analyses. The levels of MALAT1, miR-214, and CTNNB1 in different experimental groups were compared to study the interaction among MALAT1, miR-214, and CTNNB1. MTT and colony assays were used to investigate the role of rs619586 polymorphism in cell growth. The G allele of rs619586 polymorphism obviously decreased the 5-year survival of patients with DTC. Additionally, compared with AA-genotyped patients, patients carrying the AG/GG genotypes of MALAT1 rs619586 polymorphism showed much higher levels of DTC grade and CTNNB1 expression, along with lower levels of MALAT1 and miR-214 expression. Furthermore, the transcription activity of MALAT1 was significantly lowered by the rs619586G allele or miR-214 mimic, while the miR-214 inhibitor upregulated the luciferase activity of MALAT1. Additionally, miR-214 inhibited CTNNB1 expression by targeting CTNNB1 3'-untranslated region. Finally, the G allele of MALAT1 rs619586 polymorphism apparently promoted cell proliferation. Our study indicated that miR-214 inhibited MALAT1 expression by directly binding to the G allele of MALAT1 rs619586 polymorphism, thus inhibiting CTNNB1 expression and promoting cell proliferation in the pathogenesis of DTC. Therefore, MALAT1 rs619586 polymorphism could be used to predict the prognosis of DTC.
Collapse
Affiliation(s)
- Meng-Li Wang
- Department of Clinical Laboratory, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Jun-Xiao Liu
- Department of Clinical Laboratory, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| |
Collapse
|
14
|
Prieto-Vila M, Usuba W, Takahashi RU, Shimomura I, Sasaki H, Ochiya T, Yamamoto Y. Single-Cell Analysis Reveals a Preexisting Drug-Resistant Subpopulation in the Luminal Breast Cancer Subtype. Cancer Res 2019; 79:4412-4425. [PMID: 31289135 DOI: 10.1158/0008-5472.can-19-0122] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
Drug resistance is a major obstacle in the treatment of breast cancer. Surviving cells lead to tumor recurrence and metastasis, which remains the main cause of cancer-related mortality. Breast cancer is also highly heterogeneous, which hinders the identification of individual cells with the capacity to survive anticancer treatment. To address this, we performed extensive single-cell gene-expression profiling of the luminal-type breast cancer cell line MCF7 and its derivatives, including docetaxel-resistant cells. Upregulation of epithelial-to-mesenchymal transition and stemness-related genes and downregulation of cell-cycle-related genes, which were mainly regulated by LEF1, were observed in the drug-resistant cells. Interestingly, a small number of cells in the parental population exhibited a gene-expression profile similar to that of the drug-resistant cells, indicating that the untreated parental cells already contained a rare subpopulation of stem-like cells with an inherent predisposition toward docetaxel resistance. Our data suggest that during chemotherapy, this population may be positively selected, leading to treatment failure. SIGNIFICANCE: This study highlights the role of breast cancer intratumor heterogeneity in drug resistance at a single-cell level.
Collapse
Affiliation(s)
- Marta Prieto-Vila
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Wataru Usuba
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Urology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Ryou-U Takahashi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cellular and Molecular Biology, Hiroshima University, Hiroshima, Japan
| | - Iwao Shimomura
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideo Sasaki
- Department of Urology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takahiro Ochiya
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|