1
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Chen K, Li J, Ouyang Y, Xie Y, Xu G, Xia T, You R, Liu G, He H, Huang R, Chen M. Prognostic significance of Dickkopf-1 in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther 2024; 24:147-154. [PMID: 38044867 DOI: 10.1080/14737140.2023.2289597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Dickkopf-1 (DKK1) exhibits abnormal expression in various cancers and correlates with poor prognosis. This study investigates DKK1's prognostic relevance in head and neck squamous cell carcinoma (HNSC). METHODS We conducted a comprehensive search across literature and sequencing databases to gather eligible studies and HNSC datasets. We calculated pooled standardized mean differences (SMD) and 95% confidence intervals (CI) for clinical characteristics, as well as hazard ratios (HR) with 95% CIs for overall survival (OS) and progression-free/disease-free survival (PFS/DFS). Sensitivity analysis gauged result stability, and Egger's test assessed publication bias. RESULTS Pooled results indicated that HNSC patients with higher T-stage exhibited elevated DKK1 expression levels, and this elevated expression was associated with shorter OS and PFS/DFS. While sensitivity analysis identified some studies significantly affecting pooled results, most were unaffected, and no publication bias was detected. CONCLUSION DKK1 holds promise as a potential biomarker for predicting poor prognosis in HNSC patients, but further research is needed for confirmation.
Collapse
Affiliation(s)
- Kai Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin Li
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yanfeng Ouyang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yulong Xie
- Department of Radiotherapy, Cancer Center, The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Guiqiong Xu
- Department of Radiotherapy, Cancer Center, The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Tianliang Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Rui You
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Guichao Liu
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Han He
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Rong Huang
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Mingyuan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Bhagtaney L, Dharmarajan A, Warrier S. miRNA on the Battlefield of Cancer: Significance in Cancer Stem Cells, WNT Pathway, and Treatment. Cancers (Basel) 2024; 16:957. [PMID: 38473318 DOI: 10.3390/cancers16050957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Carcinogenesis is a complex process characterized by intricate changes in organ histology, biochemistry, epigenetics, and genetics. Within this intricate landscape, cancer stem cells (CSCs) have emerged as distinct cell types possessing unique attributes that significantly contribute to the pathogenesis of cancer. The WNT signaling pathway plays a critical role in maintaining somatic stem cell pluripotency. However, in cancer, overexpression of WNT mediators enhances the activity of β-catenin, resulting in phenomena such as recurrence and unfavorable survival outcomes. Notably, CSCs exhibit heightened WNT signaling compared to bulk cancer cells, providing intriguing insights into their functional characteristics. MicroRNAs (miRNAs), as post-transcriptional gene expression regulators, modulate various physiological processes in numerous diseases including cancer. Upregulation or downregulation of miRNAs can affect the production of pro-oncogenic or anti-oncogenic proteins, influencing cellular processes that maintain tissue homeostasis and promote either apoptosis or differentiation, even in cancer cells. In order to understand the dysregulation of miRNAs, it is essential to examine miRNA biogenesis and any possible alterations at each step. The potential of a miRNA as a biomarker in prognosis, diagnosis, and detection is being assessed using technologies such as next-generation sequencing. Extensive research has explored miRNA expression profiles in cancer, leading to their utilization as diagnostic tools and the development of personalized and targeted cancer therapies. This review delves into the role of miRNAs in carcinogenesis in relation to the WNT signaling pathway along with their potential as druggable compounds.
Collapse
Affiliation(s)
- Lekha Bhagtaney
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
- School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| |
Collapse
|
5
|
Tewari AB, Saini A, Sharma D. Extirpating the cancer stem cell hydra: Differentiation therapy and Hyperthermia therapy for targeting the cancer stem cell hierarchy. Clin Exp Med 2023; 23:3125-3145. [PMID: 37093450 DOI: 10.1007/s10238-023-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023]
Abstract
Ever since the discovery of cancer stem cells (CSCs), they have progressively attracted more attention as a therapeutic target. Like the mythical hydra, this subpopulation of cells seems to contribute to cancer immortality, spawning more cells each time that some components of the cancer cell hierarchy are destroyed. Traditional modalities focusing on cancer treatment have emphasized apoptosis as a route to eliminate the tumor burden. A major problem is that cancer cells are often in varying degrees of dedifferentiation contributing to what is known as the CSCs hierarchy and cells which are known to be resistant to conventional therapy. Differentiation therapy is an experimental therapeutic modality aimed at the conversion of malignant phenotype to a more benign one. Hyperthermia therapy (HT) is a modality exploiting the changes induced in cells by the application of heat produced to aid in cancer therapy. While differentiation therapy has been successfully employed in the treatment of acute myeloid leukemia, it has not been hugely successful for other cancer types. Mounting evidence suggests that hyperthermia therapy may greatly augment the effects of differentiation therapy while simultaneously overcoming many of the hard-to-treat facets of recurrent tumors. This review summarizes the progress made so far in integrating hyperthermia therapy with existing modules of differentiation therapy. The focus is on studies related to the successful application of both hyperthermia and differentiation therapy when used alone or in conjunction for hard-to-treat cancer cell niche with emphasis on combined approaches to target the CSCs hierarchy.
Collapse
Affiliation(s)
- Amit B Tewari
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Abu-Shahba N, Hegazy E, Khan FM, Elhefnawi M. In Silico Analysis of MicroRNA Expression Data in Liver Cancer. Cancer Inform 2023; 22:11769351231171743. [PMID: 37200943 PMCID: PMC10185868 DOI: 10.1177/11769351231171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Abnormal miRNA expression has been evidenced to be directly linked to HCC initiation and progression. This study was designed to detect possible prognostic, diagnostic, and/or therapeutic miRNAs for HCC using computational analysis of miRNAs expression. Methods: miRNA expression datasets meta-analysis was performed using the YM500v2 server to compare miRNA expression in normal and cancerous liver tissues. The most significant differentially regulated miRNAs in our study undergone target gene analysis using the mirWalk tool to obtain their validated and predicted targets. The combinatorial target prediction tool; miRror Suite was used to obtain the commonly regulated target genes. Functional enrichment analysis was performed on the resulting targets using the DAVID tool. A network was constructed based on interactions among microRNAs, their targets, and transcription factors. Hub nodes and gatekeepers were identified using network topological analysis. Further, we performed patient data survival analysis based on low and high expression of identified hubs and gatekeeper nodes, patients were stratified into low and high survival probability groups. Results: Using the meta-analysis option in the YM500v2 server, 34 miRNAs were found to be significantly differentially regulated (P-value ⩽ .05); 5 miRNAs were down-regulated while 29 were up-regulated. The validated and predicted target genes for each miRNA, as well as the combinatorially predicted targets, were obtained. DAVID enrichment analysis resulted in several important cellular functions that are directly related to the main cancer hallmarks. Among these functions are focal adhesion, cell cycle, PI3K-Akt signaling, insulin signaling, Ras and MAPK signaling pathways. Several hub genes and gatekeepers were found that could serve as potential drug targets for hepatocellular carcinoma. POU2F1 and PPARA showed a significant difference between low and high survival probabilities (P-value ⩽ .05) in HCC patients. Our study sheds light on important biomarker miRNAs for hepatocellular carcinoma along with their target genes and their regulated functions.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Cairo, Egypt
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Faiz M. Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
- Mahmoud Elhefnawi, Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, 33, elbohouth street, Cairo 11211, Egypt.
| |
Collapse
|
7
|
Li W, Yang C, Li J, Li X, Zhou P. MicroRNA-217 aggravates breast cancer through activation of NF1-mediated HSF1/ATG7 axis and c-Jun/ATF3/MMP13 axis. Hum Cell 2023; 36:377-392. [PMID: 36357766 DOI: 10.1007/s13577-022-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
Application of microRNA-mediated mRNA expression in treatment of diverse cancers has been documented. The current study was explored to study the role of miR-217 in breast cancer (BC) progression and the related downstream factors. Clinical tissue samples, BC cell lines and the established xenograft models were prepared for ectopic expression and depletion experiments to discern the regulatory roles of miR-217-mediated NF1 in BC cell proliferation, metastasis and chemoresistance as well as tumorigenic ability of BC cells in nude mice. miR-217 was upregulated in BC, which was a predictor of poor prognosis of BC patients. NF1 could be targeted by miR-217. miR-217 promoted malignant characteristics of BC cells through enhancing ATF3-MMP13 interaction by inhibiting NF1. miR-217 repressed sensitivity against anti-cancer drugs by inducing autophagy of BC cells through the NF1/HSF1/ATG7 axis. Also, miR-217 could inhibit NF1 to facilitate tumorigenic ability of BC cells in vivo. Our study emphasized that miR-217 could potentially inhibit NF1 expression to activate the c-Jun, thus enhancing the expression and interaction of ATF3/MMP13 and promoting the malignant features of BC cells. Furthermore, miR-217 conferred chemoresistance on BC by enhancing BC cell autophagy, which was achieved by limiting NF1 expression to induce the HSF1/ATG7 pathway.
Collapse
Affiliation(s)
- Weihan Li
- Department of Acupuncture and Moxibustion, Shenzhen Bao'an Traditional Chinese Medicine Hospital, No. 25, Yu'an Second Road, Bao'an District, Shenzhen, 518000, People's Republic of China
| | - Chaojie Yang
- Otorhinolaryngology Head and Neck Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Jingjing Li
- Department of Breast Surgery, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, People's Republic of China
| | - Xiaolian Li
- Department of Breast Surgery, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, People's Republic of China
| | - Peng Zhou
- Department of Acupuncture and Moxibustion, Shenzhen Bao'an Traditional Chinese Medicine Hospital, No. 25, Yu'an Second Road, Bao'an District, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
8
|
Wang G, Li L, Li Y, Zhang LH. Toosendanin reduces cisplatin resistance in ovarian cancer through modulating the miR-195/ERK/β-catenin pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154571. [PMID: 36610147 DOI: 10.1016/j.phymed.2022.154571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cisplatin (DDP) resistance is prevalent in ovarian cancer (OC) patients and contributes to the poor prognosis. Therefore, it is of great significance to develop new agent to intervene and even reverse DDP resistance in OC. Toosendanin (TSN), a triterpenoid extracted from the bark or fruits of Melia toosendan Sieb et Zucc, has been proved to possess significant antitumor activities. However, the efficacy of TSN on DDP resistance in OC has not been reported yet. PURPOSE The aim of this study is to investigate the effects of TSN on DDP resistance in OC and explore the molecular mechanism in vitro and in vivo. METHODS Human OC cell line (SKOV3) and DDP-resistant cell line (SKOV3/DDP) were used. Cell proliferation was measured by CCK-8 and colony formation assay. Annexin V/PI double staining and hoechst 33342 nuclear staining were employed to detect cell apoptosis. Transwell and wound-healing assay were used to determine the invasion and migration potential of cells respectively. Quantitative real-time PCR (qPCR) and western blotting were performed to detect the expression of molecules related to miR-195/ERK/β-catenin pathway. The effects and mechanism of TSN on DDP resistance of OC in vivo was investigated using xenograft model, TUNEL staining assay and immunohistochemistry. RESULTS TSN improved the DDP sensitivity of SKOV3/DDP cells in vitro and in vivo, reflected in promoting inhibition of proliferation, invasion, migration and epithelial mesenchymal transformation (EMT) as well as induction of apoptosis by DDP. TSN could modulate the miR-195/ERK/β-catenin axis by upregulating the miR-195-5p expression and then suppressing ERK/GSK3β/β-catenin pathway which were activated in SKOV3/DDP cells. Moreover, co-treatment of β-catenin pathway activator LiCl or miR-195-5p silencing partially recovered the DDP resistance which was previously repressed by TSN. CONCLUSION Both in vitro and in vivo data demonstrated that TSN could reduce DDP resistance in OC through regulating the miR-195/ERK/β-catenin pathway, highlighting the potential of TSN as an effective agent for favoring overcoming clinical DDP resistance in OC.
Collapse
Affiliation(s)
- Ge Wang
- Department of Traditional Chinese and Western medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Lu Li
- Department of Traditional Chinese and Western medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yan Li
- Department of Traditional Chinese and Western medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Li-Hong Zhang
- Department of Traditional Chinese and Western medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
9
|
Yang X, Jiang H, Sun C. Construction of Lentiviral Vector for miR-217 Overexpression and Knockdown and Its Effect on CML. Mol Biotechnol 2022:10.1007/s12033-022-00615-9. [DOI: 10.1007/s12033-022-00615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
|
10
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Nazarnezhad MA, Barazesh M, Kavousipour S, Mohammadi S, Eftekhar E, Jalili S. The Computational Analysis of Single Nucleotide Associated with MicroRNA Affecting Hepatitis B Infection. Microrna 2022; 11:139-162. [PMID: 35579134 DOI: 10.2174/2211536611666220509103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have a pivotal role in Hepatitis B Virus (HBV) infection and its complications by targeting the cellular transcription factors required for gene expression or directly binding to HBV transcripts. Single Nucleotide Polymorphisms (SNPs) in miRNA genes affect their expression and the regulation of target genes, clinical course, diagnosis, and therapeutic interventions of HBV infection. METHODS Computational assessment and cataloging of miRNA gene polymorphisms targeting mRNA transcripts straightly or indirectly through the regulation of hepatitis B infection by annotating the functional impact of SNPs on mRNA-miRNA and miRNA-RBS (miRNA binding sites) interaction were screened by applying various universally available datasets such as the miRNA SNP3.0 software. RESULTS 2987 SNPs were detected in 139 miRNAs affecting hepatitis B infection. Among them, 313 SNPs were predicted to have a significant role in the progression of hepatitis B infection. The computational analysis also revealed that 45 out of the 313 SNPs were located in the seed region and were more important than others. Has-miR-139-3p had the largest number of SNPs in the seed region (n=6). On the other hand, proteoglycans in cancer, adherens junction, lysine degradation, NFkappa B signaling cascade, ECM-receptor binding, viral carcinogenesis, fatty acid metabolism, TGF-beta signaling pathway, p53 signaling pathway, immune evasion related pathways, and fatty acid biosynthesis were the most important pathways affected by these 139 miRNAs. CONCLUSION The results revealed 45 SNPs in the seed region of 25 miRNAs as the catalog in miRNA genes that regulated the hepatitis B infection. The results also showed the most important pathways regulated by these miRNAs that can be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Mirza Ali Nazarnezhad
- Infectious and Tropical Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
El-Mahdy HA, Sallam AAM, Ismail A, Elkhawaga SY, Elrebehy MA, Doghish AS. miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathol Res Pract 2022; 233:153886. [PMID: 35405621 DOI: 10.1016/j.prp.2022.153886] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. HCC initiation, progression, and therapy failure are all influenced by various variables, including microRNAs (miRNAs). miRNAs are short non-coding RNA sequences that modulate target mRNA expression by deteriorating or repressing translation. miRNAs play an imperative role in HCC pathogenesis by triggering the induction of cancer stem cells (CSCs) and their proliferation, while also delaying apoptosis, sustaining the cell cycle, and inspiring angiogenesis, invasion, and metastasis. Additionally, miRNAs modulate crucial HCC-related molecular pathways such as the p53 pathway, the Wnt/β-catenin pathway, VEGFR2, and PTEN/PI3K/AKT pathway. Consequently, the goal of this review was to give an up-to-date overview of oncogenic and tumor suppressor (TS) miRNAs, as well as their potential significance in HCC pathogenesis and treatment responses, highlighting their underpinning molecular pathways in HCC initiation and progression. Similarly, the biological importance and clinical application of miRNAs in HCC are summarized.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
13
|
Jiang H, Zhang Z, Yu Y, Chu HY, Yu S, Yao S, Zhang G, Zhang BT. Drug Discovery of DKK1 Inhibitors. Front Pharmacol 2022; 13:847387. [PMID: 35355709 PMCID: PMC8959454 DOI: 10.3389/fphar.2022.847387] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Dickkopf-1 (DKK1) is a well-characterized Wnt inhibitor and component of the Wnt/β-catenin signaling pathway, whose dysregulation is associated with multiple abnormal pathologies including osteoporosis, Alzheimer's disease, diabetes, and various cancers. The Wnt signaling pathway has fundamental roles in cell fate determination, cell proliferation, and survival; thus, its mis-regulation can lead to disease. Although DKK1 is involved in other signaling pathways, including the β-catenin-independent Wnt pathway and the DKK1/CKAP4 pathway, the inhibition of DKK1 to propagate Wnt/β-catenin signals has been validated as an effective way to treat related diseases. In fact, strategies for developing DKK1 inhibitors have produced encouraging clinical results in different pathological models, and many publications provide detailed information about these inhibitors, which include small molecules, antibodies, and nucleic acids, and may function at the protein or mRNA level. However, no systematic review has yet provided an overview of the various aspects of their development and prospects. Therefore, we review the DKK1 inhibitors currently available or under study and provide an outlook on future studies involving DKK1 and drug discovery.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hang Yin Chu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Sifan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Yao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
14
|
Long J, Liu B, Yao Z, Weng H, Li H, Jiang C, Fang S. miR-500a-3p is a Potential Prognostic Biomarker in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:1891-1899. [PMID: 35221718 PMCID: PMC8881010 DOI: 10.2147/ijgm.s340629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose miR-500a-3p has been extensively reported to be implicated in the development and progression in several human cancer types. This study aimed to investigate the diagnostic and prognostic significance of miR-500a-3p as a biomarker in hepatocellular carcinoma (HCC). Methods miR-500a-3p expression was evaluated by in situ hybridization (ISH) and real-time PCR in 10 adjacent normal tissues (ANT), 21 liver fibrosis tissues, and 110 HCC tissues. Statistical analysis was used to investigate the correlation of miR-500a-3p expression with clinicopathological features in HCC patients. Kaplan–Meier survival analysis was performed to evaluate the prognostic significance of miR-500a-3p in overall survival and recurrence-free survival in HCC patients. Results In this study, we found that expression levels of miR-500a-3p were enhanced in HCC tissues. High miR-500a-3p levels were positively correlated with multiple clinicopathological features, including advanced clinical stage, distant metastatic status, increased AFP levels and poor tumor differentiation degree. More importantly, high miR-500a-3p levels predicted poor overall survival and early recurrence in HCC patients. Finally, a strong and positive correlation of miR-500a-3p mRNA expression with ISH staining scores was observed in clinical HCC tissues. Conclusion Our findings suggest that miR-500a-3p might be used as a novel biomarker to facilitate early diagnosis and predict prognosis in HCC patients.
Collapse
Affiliation(s)
- Jianting Long
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Baoxian Liu
- Department of Medical Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Zhijia Yao
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Huiwen Weng
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Heping Li
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Chunlin Jiang
- Department of General Surgery, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, People’s Republic of China
- Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, People’s Republic of China
- Correspondence: Chunlin Jiang, Email
| | - Shi Fang
- Department of Clinical Nutrition, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
15
|
ZHANG L, CHEN B, GUAN P, ZHANG Z. Serum level of miR-217 predicts prognostic outcome for osteosarcoma patients in China. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Hamidi AA, Zangoue M, Kashani D, Zangouei AS, Rahimi HR, Abbaszadegan MR, Moghbeli M. MicroRNA-217: a therapeutic and diagnostic tumor marker. Expert Rev Mol Diagn 2021; 22:61-76. [PMID: 34883033 DOI: 10.1080/14737159.2022.2017284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer as one of the most common causes of death has always been one of the major health challenges globally. Since, the identification of tumors in the early tumor stages can significantly reduce mortality rates; it is required to introduce novel early detection tumor markers. MicroRNAs (miRNAs) have pivotal roles in regulation of cell proliferation, migration, apoptosis, and tumor progression. Moreover, due to the higher stability of miRNAs than mRNAs in body fluids, they can be considered as non-invasive diagnostic or prognostic markers in cancer patients. AREAS COVERED In the present review we have summarized the role of miR-217 during tumor progressions. The miR-217 functions were categorized based on its target molecular mechanisms and signaling pathways. EXPERT OPINION It was observed that miR-217 mainly exerts its function by regulation of the transcription factors during tumor progressions. The WNT, MAPK, and PI3K/AKT signaling pathways were also important molecular targets of miR-217 in different cancers. The present review clarifies the molecular biology of miR-217 and paves the way of introducing miR-217 as a non-invasive diagnostic marker and therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Daniel Kashani
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Papukashvili D, Rcheulishvili N, Liu C, Xie F, Tyagi D, He Y, Wang PG. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021; 10:2957. [PMID: 34831180 PMCID: PMC8616136 DOI: 10.3390/cells10112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA. The Wnt/β-catenin signaling pathway is critical in hair restoration. Thus, AGA treatment via modulating this pathway is rational, although challenging. Dickkopf-related protein 1 (DKK1) is distinctly identified as an inhibitor of canonical Wnt/β-catenin signaling. Thus, in order to stimulate the Wnt/β-catenin signaling pathway, inhibition of DKK1 is greatly demanding. Studying DKK1-targeting microRNAs (miRNAs) involved in the Wnt/β-catenin signaling pathway may lay the groundwork for the promotion of hair growth. Bearing in mind that DKK1 inhibition in the balding scalp of AGA certainly makes sense, this review sheds light on the perspectives of miRNA-mediated hair growth for treating AGA via regulating DKK1 and, eventually, modulating Wnt/β-catenin signaling. Consequently, certain miRNAs regulating the Wnt/β-catenin signaling pathway via DKK1 inhibition might represent attractive candidates for further studies focusing on promoting hair growth and AGA therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| |
Collapse
|
18
|
Ghafouri-Fard S, Hajiesmaeili M, Shoorei H, Bahroudi Z, Taheri M, Sharifi G. The Impact of lncRNAs and miRNAs in Regulation of Function of Cancer Stem Cells and Progression of Cancer. Front Cell Dev Biol 2021; 9:696820. [PMID: 34368145 PMCID: PMC8339916 DOI: 10.3389/fcell.2021.696820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cells have two important features, namely the ability for self-renewal and the capacity to differentiate into some cell kinds with specialized functions. These two features are also present in cancer stem cells (CSCs). These cells have been detected in almost all kinds of cancers facilitating their tumorigenicity. Molecular cascades that control self-renewal of stem cells, namely the Wnt, Notch, and Hedgehog pathways have been suggested to influence CSCs functions as well. Moreover, non-coding RNAs can regulate function of CSCs. Function of miRNAs in the regulation of CSCs has been mostly assessed in breast cancer and hepatocellular carcinoma. miR-130a-3p, miR-600, miR-590-5p, miR-142-3p, miR-221, miR-222, miR-638, miR-375, miR-31, and miR-210 are among those regulating this feature in breast cancer. Moreover, miR-206, miR-192-5p, miR-500a-3p, miR-125, miR-125b, miR-613, miR-217, miR-194, and miR-494 regulate function of CSCs in hepatocellular carcinoma. DILC, lncTCF7, MUF, HAND2-AS1, MALAT1, DLX6-AS1, HOTAIR, and XIST are among lncRNAs that regulate function of CSCs. In the present paper, we explain the effects of these two classes of non-coding RNAs in the regulation of activity of CSCs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wang Y, Wang X, Huang X, Zhang J, Hu J, Qi Y, Xiang B, Wang Q. Integrated Genomic and Transcriptomic Analysis reveals key genes for predicting dual-phenotype Hepatocellular Carcinoma Prognosis. J Cancer 2021; 12:2993-3010. [PMID: 33854600 PMCID: PMC8040886 DOI: 10.7150/jca.56005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Dual-phenotype hepatocellular carcinoma (DPHCC) expresses both hepatocyte and cholangiocyte markers, and is characterized by high recurrence and low survival rates. The underlying molecular mechanisms of DPHCC pathogenesis are unclear. We performed whole exome sequencing and RNA sequencing of three subtypes of HCC (10 DPHCC, 10 CK19-positive HCC, and 14 CK19-negative HCC), followed by integrated bioinformatics analysis, including somatic mutation analysis, mutation signal analysis, differential gene expression analysis, and pathway enrichment analysis. Cox proportional hazard regression analyses were applied for exploring survival related characteristics. We found that mutated genes in DPHCC patients were associated with carcinogenesis and immunity, and the up-regulated genes were mainly enriched in transcription-related and cancer-related pathways, and the down-regulated genes were mainly enriched in immune-related pathways. CXCL9 was selected as the hub gene, which is associated with immune cells and survival prognosis. Our results showed that low CXCL9 expression was significantly associated with poor prognosis, and its expression was significantly reduced in DPHCC samples. In conclusion, we explored the molecular mechanisms governing DPHCC development and progression and identified CXCL9, which influences the immune microenvironment and prognosis of DPHCC and might be new clinically significant biomarkers for predicting prognosis.
Collapse
Affiliation(s)
- Yaobang Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Clinical Laboratory. First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xi Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoliang Huang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Junwen Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Yapeng Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Qiuyan Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
20
|
Yang X, Meng L, Zhong Y, Hu F, Wang L, Wang M. The long intergenic noncoding RNA GAS5 reduces cisplatin-resistance in non-small cell lung cancer through the miR-217/LHPP axis. Aging (Albany NY) 2021; 13:2864-2884. [PMID: 33418541 PMCID: PMC7880381 DOI: 10.18632/aging.202352] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to exert their effects to tumor progression. In this study, the role of the lncRNA GAS5 (growth arrest specific 5) was confirmed in reducing non-small cell lung cancer (NSCLC) cisplatin (DDP) resistance. In NSCLC tissue samples, GAS5 expression decreased significantly. Low GAS5 levels were positively correlated with NSCLC characteristics including TNM, tumor size and lymphatic metastasis. Functionally, GAS5 significantly reduced NSCLC/DDP cell migration, invasion and epithelial-mesenchymal transition (EMT) progression in vitro. In vivo, GAS5 upregulation inhibited remarkably NSCLC/DDP cell tumor growth. Mechanism analysis suggested that GAS5 was a molecular sponge of miR-217, inhibiting the expression of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP). In conclusion, this study reveals that the GAS5/miR-217/LHPP pathway reduces NSCLC cisplatin resistance and that LHPP may serve as a potential therapeutic target for NSCLC cisplatin resistance.
Collapse
Affiliation(s)
- Xuhui Yang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lifei Meng
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yuang Zhong
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Huang DP, Zeng YH, Yuan WQ, Huang XF, Chen SQ, Wang MY, Qiu YJ, Tong GD. Bioinformatics Analyses of Potential miRNA-mRNA Regulatory Axis in HBV-related Hepatocellular Carcinoma. Int J Med Sci 2021; 18:335-346. [PMID: 33390802 PMCID: PMC7757140 DOI: 10.7150/ijms.50126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aims: We aimed to explore the crucial miRNA-mRNA axis through bioinformatics analysis and provide evidences for the development of pathophysiological mechanisms and new therapies for HBV-related HCC. Methods: MiRNA (GSE76903) and mRNA (GSE77509) dataset were used to screen differentially expressed miRNAs (DE-miRNAs) and differentially expressed mRNAs (DE-mRNAs) using R software. Overlapping genes between DE-mRNAs and target genes of DE-miRNAs were identified as candidate genes. Hub genes were obtained via cytohubba analysis. The expression at protein and mRNA levels and prognostic value of hub genes were evaluated based on The Cancer Genome Atlas (TCGA) data. Key miRNA-mRNA axes were constructed according to predicted miRNA-mRNA pairs. MiRNA expression and prognostic role were respectively identified using starBase v3.0 and Kaplan-Meier plotter database. Real-time PCR was performed to verify the expression of crucial miRNAs and mRNAs. Coexpression of crucial miRNA and mRNA were analyzed using starBase v3.0. Results: CDK1, CCNB1, CKS2 and CCNE1 were screened as hub genes, which were significantly upregulated at protein and mRNA levels. These up-regulated hub genes were also significantly associated with poor prognosis. Hsa-mir-195-5p/CDK1, hsa-mir-5589-3p/CCNB1 and hsa-let-7c-3p/CKS2 were screened as critical miRNA-mRNA axes. Critical miRNAs were decreased in HCC, which indicates unfavourable prognosis. QPCR results showed that crucial miRNAs were decreased, whereas critical mRNAs were increased in HBV-related HCC. A reverse relationship between miRNA and mRNA in crucial axis was further verified. Conclusion: This study identified several miRNA-mRNA axes in HBV-related HCC. Hsa-mir-195-5p/CDK1, hsa-mir-5589-3p/CCNB1 and hsa-let-7c-3p/CKS2 might serve as potential prognostic biomarkers and therapeutic targets for HBV-related HCC.
Collapse
Affiliation(s)
- Dan-Ping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Yi-Hao Zeng
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei-Qu Yuan
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong Province, China
| | - Sheng-Qian Chen
- Traditional Chinese Medicine Hospital of Haifeng County, Shanwei 516400, Guangdong Province, China
| | - Mu-Yao Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong Province, China
| | - Yi-Jun Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong Province, China
| | - Guang-Dong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
22
|
Zhou S, Zhu C, Pang Q, Liu HC. MicroRNA-217: A regulator of human cancer. Biomed Pharmacother 2020; 133:110943. [PMID: 33254014 DOI: 10.1016/j.biopha.2020.110943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
As highly conserved non-coding RNAs of approximately 18-24 nucleotides, microRNAs (miRNAs) regulate the expression of target genes. Multiple studies have demonstrated that miRNAs participate in the regulation of human cancer. MircoRNA-217 (miR-217) participates in the regulation of various tumors by specifically binding target genes and post-transcriptional regulation. In recent years, there have been numerous reports about miR-217 in tumor progression. MiR-217 is known mainly as a tumor suppressor, although some studies have shown that it functions as an oncomiR. Here, we review the current research related to miR-217, including its role in tumor progression and the molecular mechanisms.
Collapse
Affiliation(s)
- Shuai Zhou
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| | - Chao Zhu
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| | - Qing Pang
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| | - Hui Chun Liu
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| |
Collapse
|
23
|
Therachiyil L, Haroon J, Sahir F, Siveen KS, Uddin S, Kulinski M, Buddenkotte J, Steinhoff M, Krishnankutty R. Dysregulated Phosphorylation of p53, Autophagy and Stemness Attributes the Mutant p53 Harboring Colon Cancer Cells Impaired Sensitivity to Oxaliplatin. Front Oncol 2020; 10:1744. [PMID: 32984059 PMCID: PMC7485421 DOI: 10.3389/fonc.2020.01744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) forms one of the highest ranked cancer types in the world with its increasing incidence and mortality rates despite the advancement in cancer therapeutics. About 50% of human CRCs are reported to have defective p53 expression resultant of TP53 gene mutation often contributing to drug resistance. The current study was aimed to investigate the response of wild-type TP53 harboring HCT 116 and mutant TP53 harboring HT 29 colon cancer cells to chemotherapeutic drug oxaliplatin (OX) and to elucidate the underlying molecular mechanisms of sensitivity/resistance in correlation to their p53 status. OX inhibited growth of wild-type p53-harboring colon cancer cells via p53/p21-Bax mediated apoptosis. Our study revealed that dysregulated phosphorylation of p53, autophagy as well as cancer stemness attributes the mutant p53-harboring colon cancer cells impaired sensitivity to OX.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| | - Javeria Haroon
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fairooz Sahir
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- College of Medicine, Qatar University, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
24
|
Alemohammad H, Asadzadeh Z, Motafakker Azad R, Hemmat N, Najafzadeh B, Vasefifar P, Najafi S, Baradaran B. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci 2020; 260:118337. [PMID: 32841661 DOI: 10.1016/j.lfs.2020.118337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a small part of cancer cells inside the tumor that have similar characteristics to normal stem cells. CSCs stimulate tumor initiation and progression in a variety of cancers. Several transcription factors such as NANOG, SOX2, and OCT4 maintain the characteristics of CSCs and their upregulation is seen in many malignancies resulting in increased metastasis, invasion, and recurrence. Among these factors, NANOG plays an important role in regulating the self-renewal and pluripotency of CSCs and the clinical significance of NANOG has been suggested as a marker of CSCs in many cancers. The up and down-regulation of NANOG is associated with several important signaling pathways, including JAK/STAT, Wnt/β-catenin, Notch, TGF-β, Hedgehog, and several microRNAs (miRNAs). In this review, we will investigate the function of NANOG in CSCs and the molecular mechanism of its regulation by signaling pathways and miRNAs. We will also investigate targeting NANOG with different techniques, which is a promising treatment strategy for cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
26
|
Wang Y, Li CF, Sun LB, Li YC. microRNA-4270-5p inhibits cancer cell proliferation and metastasis in hepatocellular carcinoma by targeting SATB2. Hum Cell 2020; 33:1155-1164. [PMID: 32504285 DOI: 10.1007/s13577-020-00384-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a lethal cancer type for both males and females. MicroRNAs (miRNAs) contribute to the initiation, development and metastasis of cancer. Although several miRNAs have been identified as drivers or suppressors of HCC, the molecular mechanisms of many miRNAs have not been investigated. Currently, we discovered that miR-4270-5p was a significantly downregulated miRNA in HCC. We revealed that miR-4270-5p overexpression inhibited cell proliferation and invasion of HCC cells. The data manifested that miR-4270-5p directly targeted SATB2, a key regulator of epithelial mesenchymal transition (EMT), in HCC cells and reversed the EMT process. The rescue experiments suggested that SATB2 overexpression reversed the biological function of miR-4270-5p in HCC cells. Clinical data indicated that SATB2 expression was negatively correlated with miR-4270-5p levels in HCC patients. Our findings provided potential targets for prognosis and treatment of patients with HCC.
Collapse
Affiliation(s)
- Yun Wang
- Department of Internal Medicine, Liver and Biliary Disease Hospital of Jilin Province, Changchun, Jilin, China
| | - Chang-Feng Li
- Department of Endoscopy Center, The China-Japan Union Hospital of Jilin University Hospital, Changchun, Jilin, China
| | - Li-Bo Sun
- Department of Gastrointestinal Colorectal Surgery, The China-Japan Union Hospital of Jilin University, Xiantai Road No.126, Changchun, 130033, Jilin, China
| | - Yong-Chao Li
- Department of Gastrointestinal Colorectal Surgery, The China-Japan Union Hospital of Jilin University, Xiantai Road No.126, Changchun, 130033, Jilin, China.
| |
Collapse
|
27
|
Ectopic Expression of miR-532-3p Suppresses Bone Metastasis of Prostate Cancer Cells via Inactivating NF-κB Signaling. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:267-277. [PMID: 32368615 PMCID: PMC7191128 DOI: 10.1016/j.omto.2020.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022]
Abstract
miR-532-3p is a widely documented microRNA (miRNA) involved in multifaceted processes of cancer tumorigenesis and metastasis. However, the clinical significance and biological functions of miR-532-3p in bone metastasis of prostate cancer (PCa) remain largely unknown. Herein, we report that miR-532-3p was downregulated in PCa tissues with bone metastasis, and downexpression of miR-532-3p was significantly associated with Gleason grade and serum prostate-specific antigen (PSA) levels and predicted poor bone metastasis-free survival in PCa patients. Upregulating miR-532-3p inhibited invasion and migration abilities of PCa cells in vitro, while silencing miR-532-3p yielded an opposite effect on invasion and migration abilities of PCa cells. Importantly, upregulating miR-532-3p repressed bone metastasis of PCa cells in vivo. Our results further demonstrated that overexpression of miR-532-3p inhibited activation of nuclear facto κB (NF-κB) signaling via simultaneously targeting tumor necrosis factor receptor-associated factor 1 (TRAF1), TRAF2, and TRAF4, which further promoted invasion, migration, and bone metastasis of PCa cells. Therefore, our findings reveal a novel mechanism contributing to the sustained activity of NF-κB signaling underlying the bone metastasis of PCa.
Collapse
|
28
|
Zhang Z, Zhang Y, Qin X, Wang Y, Fu J. FGF9 promotes cisplatin resistance in colorectal cancer via regulation of Wnt/β-catenin signaling pathway. Exp Ther Med 2019; 19:1711-1718. [PMID: 32104224 PMCID: PMC7026987 DOI: 10.3892/etm.2019.8399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Development of cisplatin resistance in colorectal cancer is largely caused by dysregulation of signaling pathways, including the Wnt/β-catenin signaling pathway, in cancer cells. Further investigation into the molecular mechanism of chemoresistance could improve outcomes for patients with colorectal cancer. The present study determined that fibroblast growth factor 9 (FGF9) was overexpressed in tumor tissues compared with normal tissues from patients with colorectal cancer. Using the colorectal cancer cell line LoVo, transfection of recombinant FGF9 decreased cisplatin-induced cell apoptosis whilst FGF9 silencing increased cisplatin-induced apoptosis. Western blot analysis and reverse transcription-quantitative polymerase chain reaction demonstrated that FGF9 decreased adenomatous polyposis coli (APC) mRNA and protein expression and contributed to activation of the Wnt/β-catenin signaling pathway. Notably, an increase in FGF9 and β-catenin protein expression and a decrease in APC protein expression was observed in the established LoVo cisplatin resistant cell line (LoVo/cisplatin). Silencing of FGF9 reversed cisplatin resistance of LoVo/cisplatin cells. In conclusion, the present findings suggested that FGF9 activated the Wnt signaling pathway and was a mediator of cisplatin resistance in colorectal cancer.
Collapse
Affiliation(s)
- Zhijin Zhang
- Department of Gastroenterological Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Yuhao Zhang
- Department of Gastroenterological Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Xinju Qin
- Department of Gastroenterological Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Yuexia Wang
- Department of Gastroenterological Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Jun Fu
- Department of Gastroenterological Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| |
Collapse
|
29
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
30
|
Song S, Sun K, Dong J, Zhao Y, Liu F, Liu H, Sha Z, Mao J, Ding G, Guo W, Fu Z. microRNA-29a regulates liver tumor-initiating cells expansion via Bcl-2 pathway. Exp Cell Res 2019; 387:111781. [PMID: 31857112 DOI: 10.1016/j.yexcr.2019.111781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) participate in tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, few miRNAs have been identified and entered clinical practice. Herein, we report that miR-29a is downregulated in tumor-initiating cells (T-ICs) and has an important function in liver T-ICs. Functional studies revealed that miR-29a knockdown promotes liver T-ICs self-renewal and tumorigenesis. Conversely, a forced miR-29a expression inhibits liver T-ICs self-renewal and tumorigenesis. Mechanistically, we find that miR-29a downregulates Bcl-2 via binding its mRNA 3'UTR in liver T-ICs. The correlation between miR-29a and Bcl-2 is validated in human HCC tissues. Furthermore, the miR-29a expression determines the responses of hepatoma cells to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-29a high patients are more sensitive to sorafenib treatment. In conclusion, our findings revealed the crucial role of the miR-29a in liver T-ICs expansion and sorafenib response, rendering miR-29a as an optimal target for the prevention and intervention of HCC.
Collapse
Affiliation(s)
- Shaohua Song
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Keyan Sun
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Junfeng Dong
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yuanyu Zhao
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Fang Liu
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Hao Liu
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Zhilin Sha
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jiaxi Mao
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Guoshan Ding
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Wenyuan Guo
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Zhiren Fu
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
31
|
Si A, Wang L, Miao K, Zhang R, Ji H, Lei Z, Cheng Z, Fang X, Hao B. miR-219 regulates liver cancer stem cell expansion via E-cadherin pathway. Cell Cycle 2019; 18:3550-3561. [PMID: 31724462 PMCID: PMC6927721 DOI: 10.1080/15384101.2019.1691762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer stem cells contribute to tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liverCSCs is not fully understood yet. Here we show that miR-219 is upregulated in liver CSCs. Knockdown of miR-219 attenuates the self-renewal and tumorigenicity of liver CSCs. Conversely, miR-219 overexpressing enhances the self-renewal and tumorigenicity of liver CSCs.Mechanistically,miR-219 downregulates E-cadherin via itsmRNA 3'UTR in liver CSCs. The correlation between miR-219 and E-cadherin is validated in human HCC tissues. Furthermore, the miR-219 expression determines the responses of hepatoma cells to sorafenib treatment. Our findings indicate that miR-219 plays a critical role in liver CSCs expansion and sorafenib response, rendering miR-219 as an optimal target for the prevention and intervention of HCC.Abbreviations: HCC: Hepatocellular carcinoma; CSCs: cancer stem cells; DMEM: Dulbecco's modified Eagle's medium; FBS: fetal bovine serum; OS: overall survival.
Collapse
Affiliation(s)
- Anfeng Si
- Department of Surgical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Longqi Wang
- Department of General Surgery I, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Kun Miao
- Oncology Department Ward, Tianchang People’s Hospital, Anhui, China
| | - Rongrong Zhang
- Department of General Surgery III, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Huiyu Ji
- Department of Surgical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhengqing Lei
- Department of General Surgery, the Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhangjun Cheng
- Department of General Surgery, the Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiangchun Fang
- Department of Surgical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Baobing Hao
- Department of Surgical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Liu X, Fu Y, Zhang G, Zhang D, Liang N, Li F, Li C, Sui C, Jiang J, Lu H, Zhao Z, Dionigi G, Sun H. miR-424-5p Promotes Anoikis Resistance and Lung Metastasis by Inactivating Hippo Signaling in Thyroid Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:248-260. [PMID: 31890869 PMCID: PMC6921161 DOI: 10.1016/j.omto.2019.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022]
Abstract
miR-424-5p has been widely identified to function as an oncomiR in multiple human cancer types. However, the biological function of miR-424-5p in distant metastasis of thyroid cancer, as well as the underlying mechanism, remains not clarified yet. In the current study, miR-424-5p expression was elucidated in 10 paired fresh thyroid cancer tissues and the thyroid cancer dataset from The Cancer Genome Atlas (TCGA). Lung metastasis colonization models in vivo and functional assays in vitro were used to determine the role of miR-424-5p in thyroid cancer. Bioinformatics analysis, western blot, luciferase reporter, and immunofluorescence assays were applied to identify the potential targets and underlying mechanism involved in the functional role of miR-424-5p in lung metastasis of thyroid cancer. Here, we reported that miR-424-5p was upregulated in thyroid cancer, and overexpression of miR-424-5p significantly correlated with distant metastasis of thyroid cancer. Upregulating miR-424-5p promoted, whereas silencing miR-424-5p inhibited, anoikis resistance in vitro and lung metastasis in vivo. Mechanistic investigation further revealed that miR-424-5p promoted anoikis resistance and lung metastasis by inactivating Hippo signaling via simultaneously targeting WWC1, SAV1, and LAST2. Therefore, our results support the idea that miR-424-5p may serve as a potential therapeutic target in lung metastasis of thyroid cancer.
Collapse
Affiliation(s)
- Xiaoli Liu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Yantao Fu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Guang Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Daqi Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Nan Liang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Fang Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Changlin Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Chengqiu Sui
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Jinxi Jiang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Hongzhi Lu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Zihan Zhao
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Gianlorenzo Dionigi
- Division for Endocrine and Minimally Invasive Surgery, Department of Human Pathology in Adulthood and Childhood "G. Barresi," University Hospital "G. Martino," University of Messina, Messina, Italy
| | - Hui Sun
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| |
Collapse
|
33
|
Liu J, Li W, Zhang J, Ma Z, Wu X, Tang L. Identification of key genes and long non-coding RNA associated ceRNA networks in hepatocellular carcinoma. PeerJ 2019; 7:e8021. [PMID: 31695969 PMCID: PMC6827457 DOI: 10.7717/peerj.8021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although multiple efforts have been made to understand the development of HCC, morbidity, and mortality rates remain high. In this study, we aimed to discover the mRNAs and long non-coding RNAs (lncRNAs) that contribute to the progression of HCC. We constructed a lncRNA-related competitive endogenous RNA (ceRNA) network to elucidate the molecular regulatory mechanism underlying HCC. Methods A microarray dataset (GSE54238) containing information about both mRNAs and lncRNAs was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) in tumor tissues and non-cancerous tissues were identified using the limma package of the R software. The miRNAs that are targeted by DElncRNAs were predicted using miRcode, while the target mRNAs of miRNAs were retrieved from miRDB, miRTarBas, and TargetScan. Functional annotation and pathway enrichment of DEGs were performed using the EnrichNet website. We constructed a protein–protein interaction (PPI) network of DEGs using STRING, and identified the hub genes using Cytoscape. Survival analysis of the hub genes and DElncRNAs was performed using the gene expression profiling interactive analysis database. The expression of molecules with prognostic values was validated on the UALCAN database. The hepatic expression of hub genes was examined using the Human Protein Atlas. The hub genes and DElncRNAs with prognostic values as well as the predictive miRNAs were selected to construct the ceRNA networks. Results We found that 10 hub genes (KPNA2, MCM7, CKS2, KIF23, HMGB2, ZWINT, E2F1, MCM4, H2AFX, and EZH2) and four lncRNAs (FAM182B, SNHG6, SNHG1, and SNHG3) with prognostic values were overexpressed in the hepatic tumor samples. We also constructed a network containing 10 lncRNA–miRNA–mRNA pathways, which might be responsible for regulating the biological mechanisms underlying HCC. Conclusion We found that the 10 significantly overexpressed hub genes and four lncRNAs were negatively correlated with the prognosis of HCC. Further, we suggest that lncRNA SNHG1 and the SNHG3-related ceRNAs can be potential research targets for exploring the molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Yue Bei People's Hospital, Shaoguan, Guangdong, China.,Morning Star Academic Cooperation, Shanghai, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Jian Zhang
- Department of Clinical Laboratory, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Zhanzhong Ma
- Department of Clinical Laboratory, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Xiaoyan Wu
- Community Healthcare Center, Shanghai, Shanghai, China
| | - Lirui Tang
- Morning Star Academic Cooperation, Shanghai, China.,Shanghai JiaoTong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| |
Collapse
|
34
|
The Emerging Roles of Cancer Stem Cells and Wnt/Beta-Catenin Signaling in Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11101406. [PMID: 31547062 PMCID: PMC6826653 DOI: 10.3390/cancers11101406] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common form of primary liver malignancy found in pediatric populations. HB is considered to be clonal and arises from hepatoblasts, or embryonic liver progenitor cells. These less differentiated tumor-initiating progenitor cells, or cancer stem cells (CSCs), may contribute to tumor recurrence and resistance to therapies, and have high metastatic abilities. Phenotypic heterogeneity, undesired genetic and epigenetic alterations, and dysregulated signaling pathways provide CSCs with a survival advantage over current therapies. The molecular and cellular basis of HB and the mechanism of CSC induction are not fully understood. The Wnt/beta-catenin pathway is one of the major developmental pathways and is believed to play an important role in the pathogenesis of HB and CSC formation. This review summarizes the cellular and molecular characteristics of HB with a specific emphasis on CSCs and Wnt/beta-catenin signaling.
Collapse
|
35
|
Wa Q, Huang S, Pan J, Tang Y, He S, Fu X, Peng X, Chen X, Yang C, Ren D, Huang Y, Liao Z, Huang S, Zou C. miR-204-5p Represses Bone Metastasis via Inactivating NF-κB Signaling in Prostate Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:567-579. [PMID: 31678733 PMCID: PMC6838892 DOI: 10.1016/j.omtn.2019.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/13/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
Abstract
The prime issue derived from prostate cancer (PCa) is its high prevalence to metastasize to bone. MicroRNA-204-5p (miR-204-5p) has been reported to be involved in the development and metastasis in a variety of cancers. However, the clinical significance and biological functions of miR-204-5p in bone metastasis of PCa are still not reported yet. In this study, we find that miR-204-5p expression is reduced in PCa tissues and serum sample with bone metastasis compared with that in PCa tissues and serum sample without bone metastasis, which is associated with advanced clinicopathological characteristics and poor bone metastasis-free survival in PCa patients. Moreover, upregulation of miR-204-5p inhibits the migration and invasion of PCa cells in vitro, and importantly, upregulating miR-204-5p represses bone metastasis of PCa cells in vivo. Our results further demonstrated that miR-204-5p suppresses invasion, migration, and bone metastasis of PCa cells via inactivating nuclear factor κB (NF-κB) signaling by simultaneously targeting TRAF1, TAB3, and MAP3K3. In clinical PCa samples, miR-204-5p expression negatively correlates with TRAF1, TAB3, and MAP3K3 expression and NF-κB signaling activity. Therefore, our findings reveal a new mechanism underpinning the bone metastasis of PCa, as well as provide evidence that miR-204-5p might serve as a novel serum biomarker in bone metastasis of PCa. This study identifies a novel functional role of miR-204-5p in bone metastasis of prostate cancer and supports the potential clinical value of miR-204-5p as a serum biomarker in bone metastasis of PCa.
Collapse
Affiliation(s)
- Qingde Wa
- Department of Orthopaedic Surgery, The Affiliated Hospital of Zunyi Medical College, 563003 Zunyi, China
| | - Sheng Huang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Nanchang University, 563003 Zunyi, China
| | - Jincheng Pan
- Department of Urology Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 510080 Guangzhou, China
| | - Shaofu He
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Xiaodong Fu
- School of Basic Sciences, Guangzhou Medical University, Guangzhou, 510182 Guangzhou, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 510080 Guangzhou, China
| | - Chunxiao Yang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dong Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Yan Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Zhuangwen Liao
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.
| | - Changye Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China.
| |
Collapse
|
36
|
Zhu L, Yang S, Wang J. miR-217 inhibits the migration and invasion of HeLa cells through modulating MAPK1. Int J Mol Med 2019; 44:1824-1832. [PMID: 31485607 PMCID: PMC6777686 DOI: 10.3892/ijmm.2019.4328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miR)-217 serves a pivotal role in the progression of colorectal cancer, renal cell carcinoma and glioma, however, the role of miR-217 in cervical cancer (CC) remains unclear. In the present study, the mechanism of miR-217 in cervical cancer was explored. The mRNA expression of miR-217 and mitogen-activated protein kinase 1 (MAPK1) were assessed using reverse transcription-quantitative polymerase chain reaction analysis. Cell Counting-Kit 8, wound-healing and Transwell assays were performed to detect cell viability, migration and invasion, respectively. Apoptosis and cell cycle were determined by flow cytometry. TargetScan 7.2 and dual-luciferase reporter assays were respectively used to determine miR-217 target genes and their binding capacities. The protein expression levels of MAPK1, phosphorylated (p)-extracellular signal-regulated kinase 1/2 (ERK1/2)/ERK1/2, Bcl-2, Bax and cleaved caspase-3 were quantified by western blotting. It was found that miR-217 was downregulated in patients with CC and in CC cells. The viability, migration and invasion of cells were suppressed by a miR-217 mimic. It was also found that apoptosis was increased and cell cycle was inhibited by the miR-217mimic, which was supported by changes in Bcl-2, Bax and cleaved caspase-3. MAPK1 was upregulated in patients with CC and was a target gene of miR-217. MAPK1 reversed the inhibition of miR-217 on cell viability, migration, invasion and apoptosis. The protein levels of MAPK1 and p-ERK1/2, which were higher in the mimic MAPK1 group than those in the control or mimic groups, were ameliorated by PD98059. The results of the present study demonstrated that miR-217 had an anti-CC effect and may be effectively used in the treatment of CC.
Collapse
Affiliation(s)
- Lihong Zhu
- The Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Shumei Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jianfeng Wang
- Clinical Laboratory, People's Hospital of Tongchuan, Tongchuan, Shaanxi 727031, P.R. China
| |
Collapse
|
37
|
Dai Y, Wu Z, Lang C, Zhang X, He S, Yang Q, Guo W, Lai Y, Du H, Peng X, Ren D. Copy number gain of ZEB1 mediates a double-negative feedback loop with miR-33a-5p that regulates EMT and bone metastasis of prostate cancer dependent on TGF-β signaling. Am J Cancer Res 2019; 9:6063-6079. [PMID: 31534537 PMCID: PMC6735523 DOI: 10.7150/thno.36735] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/28/2019] [Indexed: 01/17/2023] Open
Abstract
Background: The reciprocal repressive loop between ZEB1 and miRNAs has been extensively reported to play an important role in tumor progression and metastasis of various human tumor types. The aim of this study was to elucidate the role and the underlying mechanism of the double-negative feedback loop between ZEB1and miR-33a-5p in bone metastasis of prostate cancer (PCa). Methods: miR-33a-5p expression was examined in 40 bone metastatic and 165 non-bone metastatic PCa tissues by real-time PCR. Statistical analysis was performed to evaluate the clinical correlation between miR-33a-5p expression and clinicopathological characteristics, and overall and bone metastasis-free survival in PCa patients. The biological roles of miR-33a-5p in bone metastasis of PCa were investigated both by EMT and the Transwell assay in vitro, and by a mouse model of left cardiac ventricle inoculation in vivo. siRNA library, real-time PCR and chromatin immunoprecipitation (ChIP) were used to identify the underlying mechanism responsible for the decreased expression of miR-33a-5p in PCa. Bioinformatics analysis, Western blotting and luciferase reporter analysis were employed to examine the relationship between miR-33a-5p and its potential targets. Clinical correlation of miR-33a-5p with its targets was examined in human PCa tissues and primary PCa cells. Results: miR-33a-5p expression was downregulated in PCa tissues with bone metastasis and bone-derived cells, and low expression of miR-33a-5p strongly and positively correlated with advanced clinicopathological characteristics, and shorter overall and bone metastasis-free survival in PCa patients. Upregulating miR-33a-5p inhibited, while silencing miR-33a-5p promoted EMT, invasion and migration of PCa cells. Importantly, upregulating miR-33a-5p significantly repressed bone metastasis of PC-3 cells in vivo. Our results further revealed that recurrent ZEB1 upregulation induced by copy number gains transcriptionally inhibited miR-33a-5p expression, contributing to the reduced expression of miR-33a-5p in bone metastatic PCa tissues. In turn, miR-33a-5p formed a double negative feedback loop with ZEB1 in target-independent manner, which was dependent on TGF-β signaling. Finally, the clinical negative correlations of miR-33a-5p with ZEB1 expression and TGF-β signaling activity were demonstrated in PCa tissues and primary PCa cells. Conclusion: Our findings elucidated that copy number gains of ZEB1-triggered a TGF-β signaling-dependent miR-33a-5p-mediated negative feedback loop was highly relevant to the bone metastasis of PCa.
Collapse
|
38
|
Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells 2019; 8:cells8080840. [PMID: 31530793 PMCID: PMC6721829 DOI: 10.3390/cells8080840] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Recent biomedical discoveries have revolutionized the concept and understanding of carcinogenesis, a complex and multistep phenomenon which involves accretion of genetic, epigenetic, biochemical, and histological changes, with special reference to MicroRNAs (miRNAs) and cancer stem cells (CSCs). miRNAs are small noncoding molecules known to regulate expression of more than 60% of the human genes, and their aberrant expression has been associated with the pathogenesis of human cancers and the regulation of stemness features of CSCs. CSCs are the small population of cells present in human malignancies well-known for cancer resistance, relapse, tumorigenesis, and poor clinical outcome which compels the development of novel and effective therapeutic protocols for better clinical outcome. Interestingly, the role of miRNAs in maintaining and regulating the functioning of CSCs through targeting various oncogenic signaling pathways, such as Notch, wingless (WNT)/β-Catenin, janus kinases/ signal transducer and activator of transcription (JAK/STAT), phosphatidylinositol 3-kinase/ protein kinase B (PI3/AKT), and nuclear factor kappa-light-chain-enhancer of activated B (NF-kB), is critical and poses a huge challenge to cancer treatment. Based on recent findings, here, we have documented the regulatory action or the underlying mechanisms of how miRNAs affect the signaling pathways attributed to stemness features of CSCs, such as self-renewal, differentiation, epithelial to mesenchymal transition (EMT), metastasis, resistance and recurrence etc., associated with the pathogenesis of various types of human malignancies including colorectal cancer, lung cancer, breast cancer, head and neck cancer, prostate cancer, liver cancer, etc. We also shed light on the fact that the targeted attenuation of deregulated functioning of miRNA related to stemness in human carcinogenesis could be a viable approach for cancer treatment.
Collapse
|
39
|
Tang L, Wang Y, Wang H, Xu B, Ji H, Xu G, Ge X, Li Q, Miao L. Long noncoding-RNA component of mitochondrial RNA processing endoribonuclease is involved in the progression of cholangiocarcinoma by regulating microRNA-217. Cancer Sci 2019; 110:2166-2179. [PMID: 31111617 PMCID: PMC6609814 DOI: 10.1111/cas.14074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating from bile duct epithelium and its incidence is increasing year by year. In recent years, long noncoding RNAs (lncRNAs) have been found to play an important role in the occurrence and progression of malignant tumors. In the present study, for the first time, abnormal expression of lnc‐RNA component of mitochondrial RNA processing endoribonuclease (RMRP) and its possible role in CCA were found. We explored the effects of RMRP on various behaviors of CCA cells in vitro and in vivo. In addition, by second‐generation sequencing, we explored the microRNA expression profiles that RMRP may affect in the HCCC‐9810 cell line. We also validated and explored the role of microRNA‐217 (miR‐217) with high differential expression by in vitro experiments. Our findings indicated that RMRP can play a part in promoting cancer by regulating the expression of miR‐217. RMRP is involved in the progression of CCA and can be a novel indicator of poor prognosis in patients with CCA.
Collapse
Affiliation(s)
- Lingyu Tang
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuting Wang
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Huishan Wang
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Boming Xu
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Hao Ji
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guolong Xu
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xianxiu Ge
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Quanpeng Li
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Digestive Diseases Kizilsu Kirghiz, The People's Hospital of Kizilsu Kirghiz Autonomous Prefecture, Xinjiang, China
| | - Lin Miao
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
The Role of MicroRNAs in the Regulation of Gastric Cancer Stem Cells: A Meta-Analysis of the Current Status. J Clin Med 2019; 8:jcm8050639. [PMID: 31075910 PMCID: PMC6572052 DOI: 10.3390/jcm8050639] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains one of the major causes of cancer-related mortality worldwide. As for other types of cancers, several limitations to the success of current therapeutic GC treatments may be due to cancer drug resistance that leads to tumor recurrence and metastasis. Increasing evidence suggests that cancer stem cells (CSCs) are among the major causative factors of cancer treatment failure. The research of molecular CSC mechanisms and the regulation of their properties have been intensively studied. To date, molecular gastric cancer stem cell (GCSC) characterization remains largely incomplete. Among the GCSC-targeting approaches to overcome tumor progression, recent studies have focused their attention on microRNA (miRNA). The miRNAs are short non-coding RNAs which play an important role in the regulation of numerous cellular processes through the modulation of their target gene expression. In this review, we summarize and discuss recent findings on the role of miRNAs in GCSC regulation. In addition, we perform a meta-analysis aimed to identify novel miRNAs involved in GCSC homeostasis.
Collapse
|
41
|
Jiang W, Wang Q, Yu X, Lu T, Zhang P. MicroRNA-217 relieved neuropathic pain through targeting toll-like receptor 5 expression. J Cell Biochem 2018; 120:3009-3017. [PMID: 30548304 DOI: 10.1002/jcb.27269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Neuropathic pain is the most common chronic pain that is caused by nerve injury or disease that influences the nervous system. Increasing evidence suggested that microRNAs (miRNAs) play a crucial role in neuropathic pain and neuroinflammation development. However, the functional role of miR-217 in the development of neuropathic pain remains unknown. In this study, we used rats to establish a neuropathic pain model and showed that the miR-217 expression level was upregulated in the spinal dorsal horn of bilateral sciatic nerve chronic constriction injury (bCCI). However, the expression of miR-217 was not changed in the anterior cingulated cortex (ACC), hippocampus, and dorsal root ganglion (DRG) of bCCI rats. Ectopic expression of miR-217 attenuated neuropathic pain and suppressed neuroinflammation expression in vivo. We identified toll-like receptor 5 (TLR5) as a direct target gene of miR-217 in the PC12 cell. In addition, we demonstrated that the expression level of TLR5 was upregulated in bCCI rats. Moreover, restoration of TLR5 rescued the inhibitory roles induced by miR-217 overexpression on neuropathic pain and neuroinflammation development. These data suggested that miR-217 played a pivotal role in the development of neuropathic pain partly through regulating TLR5 expression.
Collapse
Affiliation(s)
- Wanwei Jiang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qinghui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuemei Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Lu
- The Second Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
42
|
Asadzadeh Z, Mansoori B, Mohammadi A, Aghajani M, Haji‐Asgarzadeh K, Safarzadeh E, Mokhtarzadeh A, Duijf PHG, Baradaran B. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol 2018; 234:10002-10017. [DOI: 10.1002/jcp.27885] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Elham Safarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Microbiology & Immunology Faculty of Medicine, Ardabil University of Medical Sciences Ardabil Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Pascal H. G. Duijf
- Translational Research Institute, University of Queensland Diamantina Institute, The University of Queensland Brisbane Queensland Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
43
|
Dai Z, Jin Y, Zheng J, Liu K, Zhao J, Zhang S, Wu F, Sun Z. MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis. Biomed Pharmacother 2018; 109:1112-1119. [PMID: 30551361 DOI: 10.1016/j.biopha.2018.10.166] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) have recently been recognized to play an important role in bone-associated diseases. This study aims to explore the expression profile and biological function of miR-217, which is known to be related to tumor cell proliferation and migration, to the proliferation and osteogenic differentiation of MSCs from the patients with steroid-associated osteonecrosis (ONFH). Bone marrow was obtained from the proximal femur of 10 patients with ONFH and 10 patients with femoral neck fractures. Bone marrow-derived mesenchymal stem cells (MSCs) were isolated and cultured. The expression profile, biological function of miR-217 and the interaction between miR-217 and DKK1 were assayed using cell viability measurement, western blot, Real-time PCR, luciferase reporter assay, Alizarin Red S (ARS) staining. We noted that the expression level of miR-217 was significantly decreased in the ONFH samples compared to the control samples (P < 0.0001). By targeting DKK1, miR-217 promoted nuclear translocation of β-catenin, increased expression of RUNX2, COL1A1 and obviously promoted the proliferation and differentiation of MSCs. Restoring the expression of DKK1 in the MSCs partially reversed the role of miR-217. These findings suggest that miR-217 promotes cell proliferation and osteogenic differentiation by inhibiting DKK1 during the development of steroid-associated osteonecrosis.
Collapse
Affiliation(s)
- Zhipeng Dai
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yi Jin
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ke Liu
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jiajun Zhao
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shanfeng Zhang
- Department of Orthopedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Wu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhibo Sun
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China; Department of Orthopedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Huang W, Lu Y, Wang F, Huang X, Yu Z. Downregulation of circular RNA hsa_circ_0000144 inhibits bladder cancer progression via stimulating miR-217 and suppressing RUNX2 expression. Gene 2018; 678:337-342. [PMID: 30098434 DOI: 10.1016/j.gene.2018.08.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/08/2018] [Accepted: 08/07/2018] [Indexed: 01/11/2023]
Abstract
Although increasing aberrantly expressed circular RNAs (circRNAs) have been identified among many human cancer tissues, their roles in tumor progression still remain largely unknown. In bladder cancer, the function of hsa_circ_0000144 has not been reported. In our study, we found hsa_circ_0000144 as a novel oncogene in bladder cancer by bioinformatics analysis. We found that hsa_circ_0000144 expression was significantly upregulated in bladder cancer tissues compared with adjacent normal tissues, and its high expression was related with poor prognosis. Additionally, knockdown of hsa_circ_0000144 remarkably suppressed the proliferation and invasion of bladder cancer cells in vitro. Hsa_circ_0000144 silence also led to reduced tumor volumes in vivo. In mechanism, we found that hsa_circ_0000144 was a sponge of miR-217 while miR-217 targeted RUNX2. Our results indicated that the expression of miR-217 was inversely correlated with that of both hsa_circ_0000144 and RUNX2 in bladder cancer tissues. Rescue assays showed that either inhibition of miR-217 or restoration of RUNX2 reversed the suppressive effects of hsa_circ_0000144 knockdown on bladder cancer cell proliferation and invasion. Taken together, these findings demonstrated that hsa_circ_0000144 exerts oncogenic roles in bladder cancer via repressing miR-217 to facilitate RUNX2 expression.
Collapse
Affiliation(s)
- Weiping Huang
- Department of Urinary Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Yongyong Lu
- Department of Urinary Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Feng Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Xixi Huang
- Department of Urinary Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Zhixian Yu
- Department of Urinary Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China.
| |
Collapse
|
45
|
Ding W, Tan H, Li X, Zhang Y, Fang F, Tian Y, Li J, Pan X. MicroRNA-493 suppresses cell proliferation and invasion by targeting ZFX in human hepatocellular carcinoma. Cancer Biomark 2018; 22:427-434. [PMID: 29758928 DOI: 10.3233/cbm-171036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wei Ding
- Department of Clinical Laboratory, Kunming General Hospital, Chinese People’s Liberation Army, Kunming 650032, Yunnan, China
- College of Medicine, Yunnan Economic Management College, Kunming 650106, Yunnan, China
- Department of Clinical Laboratory, Kunming General Hospital, Chinese People’s Liberation Army, Kunming 650032, Yunnan, China
| | - Hongbo Tan
- Department of Orthopedics, Kunming General Hospital of Chinese People’s Liberation Army, Kunming 650032, Yunnan, China
- Department of Clinical Laboratory, Kunming General Hospital, Chinese People’s Liberation Army, Kunming 650032, Yunnan, China
| | - Xuemei Li
- Department of Clinical Laboratory, Kunming General Hospital, Chinese People’s Liberation Army, Kunming 650032, Yunnan, China
| | - Yue Zhang
- Department of Clinical Laboratory, Kunming General Hospital, Chinese People’s Liberation Army, Kunming 650032, Yunnan, China
| | - Fang Fang
- College of Medicine, Yunnan Economic Management College, Kunming 650106, Yunnan, China
| | - Yuanyuan Tian
- Department of Clinical Laboratory, Kunming General Hospital, Chinese People’s Liberation Army, Kunming 650032, Yunnan, China
| | - Jin Li
- Department of Clinical Laboratory, Kunming General Hospital, Chinese People’s Liberation Army, Kunming 650032, Yunnan, China
| | - Xinghua Pan
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital, Chinese People’s Liberation Army, Kunming 650032, Yunnan, China
| |
Collapse
|