1
|
Krajka-Kuźniak V, Belka M, Papierska K. Targeting STAT3 and NF-κB Signaling Pathways in Cancer Prevention and Treatment: The Role of Chalcones. Cancers (Basel) 2024; 16:1092. [PMID: 38539427 PMCID: PMC10969505 DOI: 10.3390/cancers16061092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
Chalcones are a type of natural flavonoid compound that have been found to possess promising anticancer properties. Studies have shown that chalcones can inhibit the growth and proliferation of cancer cells, induce apoptosis, and suppress tumor angiogenesis. In addition to their potential therapeutic applications, chalcones have also been studied for their chemopreventive effects, which involve reducing the risk of cancer development in healthy individuals. Overall, the anticancer properties of chalcones make them a promising area of research for developing new cancer treatments and preventative strategies. This review aims to provide a thorough overview of the central studies reported in the literature concerning cancer prevention and the treatment of chalcones. Although chalcones target many different mechanisms, the STAT and NF-κB signaling pathways are the ones this review will focus on, highlighting the existing crosstalk between these two pathways and considering the potential therapeutic opportunities for chalcone combinations.
Collapse
Affiliation(s)
- Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.B.); (K.P.)
| | | | | |
Collapse
|
2
|
Pastena P, Perera H, Martinino A, Kartsonis W, Giovinazzo F. Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches. Int J Mol Sci 2024; 25:2559. [PMID: 38473804 PMCID: PMC10931553 DOI: 10.3390/ijms25052559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, marked by poor outcomes and dismal prognosis. Due to the absence of targetable receptors, chemotherapy still represents the main therapeutic option. Therefore, current research is now focusing on understanding the specific molecular pathways implicated in TNBC, in order to identify novel biomarker signatures and develop targeted therapies able to improve its clinical management. With the aim of identifying novel molecular features characterizing TNBC, elucidating the mechanisms by which these molecular biomarkers are implicated in the tumor development and progression, and assessing the impact on cancerous cells following their inhibition or modulation, we conducted a literature search from the earliest works to December 2023 on PubMed, Scopus, and Web Of Science. A total of 146 studies were selected. The results obtained demonstrated that TNBC is characterized by a heterogeneous molecular profile. Several biomarkers have proven not only to be characteristic of TNBC but also to serve as potential effective therapeutic targets, holding the promise of a new era of personalized treatments able to improve its prognosis. The pre-clinical findings that have emerged from our systematic review set the stage for further investigation in forthcoming clinical trials.
Collapse
Affiliation(s)
- Paola Pastena
- Department of Medicine, Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Hiran Perera
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | | | - William Kartsonis
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Francesco Giovinazzo
- Department of Surgery, Saint Camillus Hospital, 31100 Treviso, Italy
- Department of Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
- Department of Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
Yin F, Zhao R, Gorja DR, Fu X, Lu N, Huang H, Xu B, Chen H, Shim JH, Liu K, Li Z, Laster KV, Dong Z, Lee MH. Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo. Acta Pharm Sin B 2022; 12:4122-4137. [PMID: 36386480 PMCID: PMC9643289 DOI: 10.1016/j.apsb.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death in the world. The pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) is a proto-oncogene and belongs to the serine/threonine kinase family, which are involved in cell proliferation, migration, and apoptosis. Fibroblast growth factor receptor 1 (FGFR1) is a tyrosine kinase that has been implicated in cell proliferation, differentiation and migration. Small molecule HCI-48 is a derivative of chalcone, a class of compounds known to possess anti-tumor, anti-inflammatory and antibacterial effects. However, the underlying mechanism of chalcones against colorectal cancer remains unclear. This study reports that HCI-48 mainly targets PIM1 and FGFR1 kinases, thereby eliciting antitumor effects on colorectal cancer growth in vitro and in vivo. HCI-48 inhibited the activity of both PIM1 and FGFR1 kinases in an ATP-dependent manner, as revealed by computational docking models. Cell-based assays showed that HCI-48 inhibited cell proliferation in CRC cells (HCT-15, DLD1, HCT-116 and SW620), and induced cell cycle arrest in the G2/M phase through modulation of cyclin A2. HCI-48 also induced cellular apoptosis, as evidenced by an increase in the expression of apoptosis biomarkers such as cleaved PARP, cleaved caspase 3 and cleaved caspase 7. Moreover, HCI-48 attenuated the activation of downstream components of the PIM1 and FGFR1 signaling pathways. Using patient-derived xenograft (PDX) murine tumor models, we found that treatment with HCI-48 diminished the PDX tumor growth of implanted CRC tissue expressing high protein levels of PIM1 and FGFR1. This study suggests that the inhibitory effect of HCI-48 on colorectal tumor growth is mainly mediated through the dual-targeting of PIM1 and FGFR1 kinases. This work provides a theoretical basis for the future application of HCI-48 in the treatment of clinical CRC.
Collapse
|
4
|
Jin XX, Mei YN, Shen Z, Zhu JF, Xing SH, Yang HM, Liang G, Zheng XH. A chalcone-syringaldehyde hybrid inhibits triple-negative breast cancer cell proliferation and migration by inhibiting CKAP2-mediated FAK and STAT3 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154087. [PMID: 35429924 DOI: 10.1016/j.phymed.2022.154087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although triple-negative breast cancer (TNBC) accounts for only 15% of breast cancer cases, it is associated with a high relapse rate and poor outcome after standard treatment. Currently, the effective drugs and treatment strategies for TNBC remain limited, and thus, developing effective treatments for TNBC is pressing. Several studies have demonstrated that both chalcone and syringaldehyde have anticancer effect, but their potential anti-TNBC bioactivity are still unknown. PURPOSE The present study aimed to synthesize a chalcone-syringaldehyde hybrid (CSH1) and explore its potential anti-TNBC effects and the underlying molecular mechanism. METHODS Cell cytotoxicity was determined by 3-(4,5-dimethythiazol)-2,5-diphenyltetrazolium bromide (MTT). The activity of cell proliferation was measured by colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) staining assay. Cell cycle distribution and cell apoptosis were determined by fluorescence-activated cell sorter (FACS). The situation of DNA damage was observed using fluorescence microscopy. The ability of cell-matrix adhesion, migration and invasion was detected using cell adhesion assay and transwell assay. Transcriptome sequencing was performed to find out the changed genes. Levels of various signaling proteins were assessed by western blotting. RESULTS CSH1 treatment triggered DNA damage and inhibited DNA replication, cell cycle arrest, and cell apoptosis via suppressing signal transducer and activator of transcription 3 (STAT3) phosphorylation. Whole genome RNA-seq analysis suggested that 4% of changed genes were correlated to DNA damage and repair, and nearly 18% of changed genes were functionally related to cell adhesion and migration. Experimental evidence indicated that CSH1 treatment significantly affected the distribution of focal adhesion kinase (FAK) and its phosphorylation, resulting in cell-matrix-adhesion reduction and migration inhibition of TNBC cells. Further mechanistic studies indicated that CSH1 inhibited TNBC cell proliferation, adhesion, and migration by inhibiting cytoskeleton-associated protein 2 (CKAP2)-mediated FAK and STAT3 phosphorylation signaling. CONCLUSION These results suggest that CKAP2-mediated FAK and STAT3 phosphorylation signaling is a valuable target for TNBC treatment, and these findings also reveal the potential of CSH1 as a prospective TNBC drug.
Collapse
Affiliation(s)
- Xiang-Xiang Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Ya-Nan Mei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Zhe Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Ju-Fan Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Sun-Hui Xing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Hua-Mao Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People's Republic of China.
| | - Xiao-Hui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Batista AS, Oliveira SDS, Pomel S, Commere PH, Mazan V, Lee M, Loiseau PM, Rossi-Bergmann B, Prina E, Duval R. Targeting chalcone binding sites in living Leishmania using a reversible fluorogenic benzochalcone probe. Biomed Pharmacother 2022; 149:112784. [PMID: 35299122 DOI: 10.1016/j.biopha.2022.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Chalcones (1,3-diphenyl-2-propen-1-ones) either natural or synthetic have a plethora of biological properties including antileishmanial activities, but their development as drugs is hampered by their largely unknown mechanisms of action. We demonstrate herein that our previously described benzochalcone fluorogenic probe (HAB) could be imaged by fluorescence microscopy in live Leishmania amazonensis promastigotes where it targeted the parasite acidocalcisomes, lysosomes and the mitochondrion. As in the live zebrafish model, HAB formed yellow-emitting fluorescent complexes when associated with biological targets in Leishmania. Further, we used HAB as a reversible probe to study the binding of a portfolio of diverse chalcones and analogues in live promastigotes, using a combination of competitive flow cytometry analysis and cell microscopy. This pharmacological evaluation suggested that the binding of HAB in promastigotes was representative of chalcone pharmacology in Leishmania, with certain exogenous chalcones exhibiting competitive inhibition (ca. 20-30%) towards HAB whereas non-chalconic inhibitors showed weak capacity (ca. 3-5%) to block the probe intracellular binding. However, this methodology was restricted by the strong toxicity of several competing chalcones at high concentration, in conjunction with the limited sensitivity of the HAB fluorophore. This advocates for further optimization of this undirect target detection strategy using pharmacophore-derived reversible fluorescent probes.
Collapse
Affiliation(s)
- Ariane S Batista
- Nanotechnology Engineering Program, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia - COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil
| | | | - Sébastien Pomel
- Université Paris-Saclay, CNRS, BioCIS, 92296 Châtenay-Malabry, France
| | | | - Valérie Mazan
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Moses Lee
- Department of Chemistry, Georgia State University, Atlanta 30303, USA
| | | | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Eric Prina
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France
| | - Romain Duval
- Université de Paris, IRD, MERIT, F-75006 Paris, France.
| |
Collapse
|
6
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
8
|
Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, Bouyahya A, Akram M, Iqbal M, Docea AO, Caruntu C, Leyva-Gómez G, Dey A, Martorell M, Calina D, López V, Les F. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front Pharmacol 2021; 11:592654. [PMID: 33536909 PMCID: PMC7849684 DOI: 10.3389/fphar.2020.592654] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Chalcones are among the leading bioactive flavonoids with a therapeutic potential implicated to an array of bioactivities investigated by a series of preclinical and clinical studies. In this article, different scientific databases were searched to retrieve studies depicting the biological activities of chalcones and their derivatives. This review comprehensively describes preclinical studies on chalcones and their derivatives describing their immense significance as antidiabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, psychoactive, and neuroprotective agents. Besides, clinical trials revealed their use in the treatment of chronic venous insufficiency, skin conditions, and cancer. Bioavailability studies on chalcones and derivatives indicate possible hindrance and improvement in relation to its nutraceutical and pharmaceutical applications. Multifaceted and complex underlying mechanisms of chalcone actions demonstrated their ability to modulate a number of cancer cell lines, to inhibit a number of pathological microorganisms and parasites, and to control a number of signaling molecules and cascades related to disease modification. Clinical studies on chalcones revealed general absence of adverse effects besides reducing the clinical signs and symptoms with decent bioavailability. Further studies are needed to elucidate their structure activity, toxicity concerns, cellular basis of mode of action, and interactions with other molecules.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Imane Chamkhi
- Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco.,Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Rabat, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition, and Metabolic Diseases, Bucharest, Romania
| | - Gerardo Leyva-Gómez
- Departamento De Farmacia, Facultad De Química, Universidad Nacional Autónoma De México, Ciudad De México, Mexico
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.,Unidad De Desarrollo Tecnológico, UDT, Universidad De Concepción, Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Islam R, Lam KW. Recent progress in small molecule agents for the targeted therapy of triple-negative breast cancer. Eur J Med Chem 2020; 207:112812. [DOI: 10.1016/j.ejmech.2020.112812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
|
10
|
Legeay S, Trân K, Abatuci Y, Faure S, Helesbeux JJ. Novel Insights into the Mode of Action of Vasorelaxant Synthetic Polyoxygenated Chalcones. Int J Mol Sci 2020; 21:ijms21051609. [PMID: 32111098 PMCID: PMC7084244 DOI: 10.3390/ijms21051609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Polyphenols consumption has been associated with a lower risk of cardiovascular diseases (CVDs) notably through nitric oxide (NO)- and estrogen receptor α (ERα)-dependent pathways. Among polyphenolic compounds, chalcones have been suggested to prevent endothelial dysfunction and hypertension. However, the involvement of both the NO and the ERα pathways for the beneficial vascular effects of chalcones has never been demonstrated. In this study, we aimed to identify chalcones with high vasorelaxation potential and to characterize the signaling pathways in relation to ERα signaling and NO involvement. The evaluation of vasorelaxation potential was performed by myography on wild-type (WT) and ERα knock-out (ERα-KO) mice aorta in the presence or in absence of the eNOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME). Among the set of chalcones that were synthesized, four (3, 8, 13 and 15) exhibited a strong vasorelaxant effect (more than 80% vasorelaxation) while five compounds (6, 10, 11, 16, 17) have shown a 60% relief of the pre-contraction and four compounds (12, 14, 18, 20) led to a lower vasorelaxation. We were able to demonstrate that the vasorelaxant effect of two highly active chalcones was either ERα-dependent and NO-independent or ERα-independent and NO-dependent. Thus some structure-activity relationships (SAR) were discussed for an optimized vasorelaxant effect.
Collapse
Affiliation(s)
- Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 Rue Larrey, 49100 Angers, France;
- Correspondence: ; Tel.: +33-(0)2-44-68-85-32
| | - Kien Trân
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers CEDEX 01, France; (K.T.); (Y.A.); (J.-J.H.)
| | - Yannick Abatuci
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers CEDEX 01, France; (K.T.); (Y.A.); (J.-J.H.)
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 Rue Larrey, 49100 Angers, France;
| | - Jean-Jacques Helesbeux
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers CEDEX 01, France; (K.T.); (Y.A.); (J.-J.H.)
| |
Collapse
|
11
|
Menezes JC, Diederich MF. Natural dimers of coumarin, chalcones, and resveratrol and the link between structure and pharmacology. Eur J Med Chem 2019; 182:111637. [DOI: 10.1016/j.ejmech.2019.111637] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
|
12
|
Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther 2019; 199:30-57. [PMID: 30825473 DOI: 10.1016/j.pharmthera.2019.02.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Breast cancer accounts for 25% of all types of cancer in women, and triple negative breast cancer (TNBC) comprises around 15~20% of breast cancers. Conventional chemotherapy and radiation are the primary systemic therapeutic strategies; no other FDA-approved targeted therapies are yet available as for TNBC. TNBC is generally characterized by a poor prognosis and high rates of proliferation and metastases. Due to these aggressive features and lack of targeted therapies, numerous attempts have been made to discover viable molecular targets for TNBC. Massive cohort studies, clinical trials, and in-depth analyses have revealed diverse molecular alterations in TNBC; however, controversy exists as to whether many of these changes are beneficial or detrimental in caner progression. Here we review the complicated tumorigenic processes and discuss critical findings and therapeutic trends in TNBC with a focus on promising therapeutic approaches, the clinical trials currently underway, and potent experimental compounds under preclinical and evaluation.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
13
|
Varghese E, Samuel SM, Abotaleb M, Cheema S, Mamtani R, Büsselberg D. The "Yin and Yang" of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers (Basel) 2018; 10:E346. [PMID: 30248941 PMCID: PMC6209965 DOI: 10.3390/cancers10100346] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early recurrence, metastasize, tend to be more invasive in nature, and develop drug resistance. The global burden of TNBCs is increasing regardless of the number of cytotoxic drugs being introduced into the market each year as they have only moderate efficacy and/or unforeseen side effects. Therefore, the demand for more efficient therapeutic interventions, with reduced side effects, for the treatment of TNBCs is rising. While some plant metabolites/derivatives actually induce the risk of cancers, many plant-derived active principles have gained attention as efficient anticancer agents against TNBCs, with fewer adverse side effects. Here we discuss the possible oncogenic molecular pathways in TNBCs and how the purified plant-derived natural compounds specifically target and modulate the genes and/or proteins involved in these aberrant pathways to exhibit their anticancer potential. We have linked the anticancer potential of plant-derived natural compounds (luteolin, chalcones, piperine, deguelin, quercetin, rutin, fisetin, curcumin, resveratrol, and others) to their ability to target multiple dysregulated signaling pathways (such as the Wnt/β-catenin, Notch, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Hedgehog) leading to suppression of cell growth, proliferation, migration, inflammation, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and activation of apoptosis in TNBCs. Plant-derived compounds in combination with classical chemotherapeutic agents were more efficient in the treatment of TNBCs, possibly with lesser side effects.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Sohaila Cheema
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Ravinder Mamtani
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|