1
|
Cao M, Shi E, Wang H, Mao L, Wu Q, Li X, Liang Y, Yang X, Wang Y, Li C. Personalized Targeted Therapeutic Strategies against Oral Squamous Cell Carcinoma. An Evidence-Based Review of Literature. Int J Nanomedicine 2022; 17:4293-4306. [PMID: 36134201 PMCID: PMC9484769 DOI: 10.2147/ijn.s377816] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumor in the head and neck, with a poor prognosis mainly due to recurrence and metastasis. Classical treatment modalities for OSCC like surgery and radiotherapy have difficulties in dealing with metastatic tumors, and together with chemotherapy, they have major problems related to non-specific cell death. Molecular targeted therapies offer solutions to these problems through not only potentially maximizing the anticancer efficacy but also minimizing the treatment-related toxicity. Among them, the receptor-mediated targeted delivery of anticancer therapeutics remains the most promising one. As OSCC exhibits a heterogeneous nature, selecting the appropriate receptors for targeting is the prerequisite. Hence, we reviewed the OSCC-associated receptors previously used in targeted therapy, focused on their biochemical characteristics and expression patterns, and discussed the application potential in personalized targeted therapy of OSCC. We hope that a better comprehension of this subject will help to provide the fundamental information for OSCC personalized therapeutic planning.
Collapse
Affiliation(s)
- Mingxin Cao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Enyu Shi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hanping Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Lujia Mao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Qiqi Wu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xinming Li
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People's Republic of China
| | - Yanjie Liang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiaoying Yang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yinsong Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China.,Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Changyi Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| |
Collapse
|
2
|
He X, Chen S, Tang Y, Zhao X, Yan L, Wu L, Wu Z, Liu W, Chen X, Wang X. Hepatocyte Growth Factor Overexpression Slows the Progression of 4NQO-Induced Oral Tumorigenesis. Front Oncol 2022; 11:756479. [PMID: 34970484 PMCID: PMC8712676 DOI: 10.3389/fonc.2021.756479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives To investigate the role of hepatocyte growth factor (HGF)/c-Met signaling in oral malignant transformation. Methods We used immunohistochemistry to investigate HGF and c-Met expression in 53 oral squamous cell carcinoma (OSCC) specimens and 21 adjacent nontumor specimens and evaluated the associations between HGF and c-Met expression and clinicopathological parameters. Additionally, HGF-overexpression transgenic (HGF-Tg) and wild-type (Wt) mice were treated with 4-nitroquinoline-1-oxide (4NQO) to induce oral carcinogenesis for 16 weeks. At 16, 20, and 24 weeks, tongue lesions were collected for clinical observation; estimation of HGF, c-Met, and PCNA expression; apoptosis (TUNEL) assays; and RNA sequencing (RNA-seq). Results HGF and c-Met were positively expressed in 92.5% and 64% of OSCC samples, respectively. High HGF expression was significantly associated with smaller tumor size (p = 0.006) and inferior TNM stage (p = 0.032). No correlation between HGF and c-Met levels and other clinical parameters or prognosis was noted. In addition, HGF and c-Met expression was elevated in 4NQO-induced lesions of Wt mice. Compared with Wt mice, HGF-Tg mice have lower tumor incidence, number, volume, and lesion grade. In addition, the percentage of PCNA-positive cells in Wt mice was significantly higher than that in HGF-Tg mice at different time points. At 16 weeks, HGF-Tg mice exhibited less apoptotic cells compared with Wt mice (p < 0.000), and these levels gradually increased until the levels were greater than that of Wt mice at 24 weeks (p < 0.000). RNA-seq data revealed that 140 genes were upregulated and 137 genes were downregulated in HGF-Tg mice. KEGG enrichment analysis showed that upregulated differentially expressed genes (DEGs) are highly correlated with oxidative and metabolic signaling and that downregulated DEGs are related to MAPK and PI3K-AKT signaling. Conclusions HGF and c-Met expression is upregulated in OSCC tissues and is associated with the occurrence and development of OSCC. HGF overexpression in normal oral epithelial tissue can inhibit 4NQO-induced tumorigenesis potentially through inhibiting proliferation and accelerating apoptosis via MAPK and PI3K-AKT signaling.
Collapse
Affiliation(s)
- Xiaoxi He
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Si Chen
- Key Laboratory for Oral Biomedical Engineering of the Ministry of Education, Department of Oral Implantology, School and Hospital of Stomatology of Wuhan University, Wuhan, China
| | - Yinghua Tang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xiaomin Zhao
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liting Yan
- Department of Periodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Lihong Wu
- Department of Basic Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Zhicong Wu
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Weijia Liu
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinming Chen
- Department of Pathology, School and Hospital of Stomatology of Wuhan University, Wuhan, China
| | - Xinhong Wang
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
3
|
Wang HC, Chan LP, Wu CC, Hsiao HH, Liu YC, Cho SF, Du JS, Liu TC, Yang CH, Pan MR, Moi SH. Progression Risk Score Estimation Based on Immunostaining Data in Oral Cancer Using Unsupervised Hierarchical Clustering Analysis: A Retrospective Study in Taiwan. J Pers Med 2021; 11:jpm11090908. [PMID: 34575686 PMCID: PMC8466609 DOI: 10.3390/jpm11090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate whether the progression risk score (PRS) developed from cytoplasmic immunohistochemistry (IHC) biomarkers is available and applicable for assessing risk and prognosis in oral cancer patients. Participants in this retrospective case-control study were diagnosed between 2012 and 2014 and subsequently underwent surgical intervention. The specimens from surgery were stained by IHC for 16 cytoplasmic target markers. We evaluated the results of IHC staining, clinical and pathological features, progression-free survival (PFS), and overall survival (OS) of 102 oral cancer patients using a novel estimation approach with unsupervised hierarchical clustering analysis. Patients were stratified into high-risk (52) and low-risk (50) groups, according to their PRS; a metric consisting of cytoplasmic PLK1, PhosphoMet, SGK2, and SHC1 expression. Moreover, PRS could be extended for use in the Cox proportional hazard regression model to estimate survival outcomes with associated clinical parameters. Our study findings revealed that the high-risk patients had a significantly increased risk in cancer progression compared with low-risk patients (hazard ratio (HR) = 2.20, 95% confidence interval (CI) = 1.10-2.42, p = 0.026). After considering the influences of demographics, risk behaviors, and tumor characteristics, risk estimation with PRS provided distinct PFS groups for patients with oral cancer (p = 0.017, p = 0.019, and p = 0.020). Our findings support that PRS could serve as an ideal biomarker for clinical use in risk stratification and progression assessment in oral cancer.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (J.-S.D.); (M.-R.P.)
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Leong-Perng Chan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hui-Hua Hsiao
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yi-Chang Liu
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Feng Cho
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jeng-Shiun Du
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (J.-S.D.); (M.-R.P.)
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ta-Chih Liu
- Department of Hematology-Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan;
| | - Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan;
- Ph.D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (J.-S.D.); (M.-R.P.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-6150022 (ext. 6135); Fax: +886-7-6150940
| |
Collapse
|
4
|
Shuai Y, Duan Y, Zhou M, Yue K, Liu D, Fang Y, Wang Y, Wu Y, Zhang Z, Wang X. Development and Validation of a Nomogram based on cell growth-related Biomarkers for Oral Squamous Cell Carcinoma. J Cancer 2021; 12:5153-5163. [PMID: 34335932 PMCID: PMC8317514 DOI: 10.7150/jca.54475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose: We aimed to develop a prognostic nomogram based on immunohistochemistry (IHC) biomarkers of patients with oral squamous cell carcinoma (OSCC). Methods: A total of 294 patients were enrolled in the study. The least absolute shrinkage and selection operator (LASSO) Cox regression model was performed to develop a combined IHC score (IHCs) classifier. Results: Five biomarkers, specifically c-Met, Vimentin, HIF-2α, VEGF-c, and Bcl-2 were extracted. Then, an IHCs classifier was developed, and patients were stratified into high- and low-IHCs groups. In the training cohort, the 5-year overall survival (OS) was 62.1% in low-IHCs group and 28.2% in high-IHCs group (P<0.001). The 5-year OS was 68.6% for the low-IHCs group and 28.4% for the high-IHCs group in the validation cohort (P<0.001). The area under the ROC curve (AUROC) of the combination of the IHCs classifier and TNM stage was 0.746 (95% CI: 0.658-0.833) in the training cohort and 0.735 (95% CI: 0.651-0.818) in the validation cohort, respectively. Conclusions: The nomogram could effectively predict the prognosis for patients with OSCC and may be employed as a potential tool to guide the individual decision-making process.
Collapse
Affiliation(s)
- Yanjie Shuai
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Yuansheng Duan
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Mengqian Zhou
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Kai Yue
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Dandan Liu
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Yan Fang
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Yuxuan Wang
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Yansheng Wu
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Ze Zhang
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xudong Wang
- Department of Maxillofacial & E.N.T oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
5
|
Buckle T, van Alphen M, van Oosterom MN, van Beurden F, Heimburger N, van der Wal JE, van den Brekel M, van Leeuwen FWB, Karakullukcu B. Translation of c-Met Targeted Image-Guided Surgery Solutions in Oral Cavity Cancer-Initial Proof of Concept Data. Cancers (Basel) 2021; 13:cancers13112674. [PMID: 34071623 PMCID: PMC8198422 DOI: 10.3390/cancers13112674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Translation of tumor-specific fluorescent tracers is crucial in the realization intraoperative of tumor identification during fluorescence-guided surgery. Ex vivo assessment of surgical specimens after topical tracer application has the potential to reveal the suitability of a potential surgical target prior to in vivo use in patients. In this study, the c-Met receptor was identified as a possible candidate for fluorescence-guided surgery in oral cavity cancer. Freshly excised tumor specimens obtained from ten patients with squamous cell carcinoma of the tongue were incubated with EMI-137 and imaged with a clinical-grade Cy5 prototype fluorescence camera. In total, 9/10 tumors were fluorescently illuminated, while non-visualization could be linked to non-superficial tumor localization. Immunohistochemistry revealed c-Met expression in all ten specimens. Tumor assessment was improved via video representation of the tumor-to-background ratio. Abstract Intraoperative tumor identification (extension/margins/metastases) via receptor-specific targeting is one of the ultimate promises of fluorescence-guided surgery. The translation of fluorescent tracers that enable tumor visualization forms a critical component in the realization of this approach. Ex vivo assessment of surgical specimens after topical tracer application could help provide an intermediate step between preclinical evaluation and first-in-human trials. Here, the suitability of the c-Met receptor as a potential surgical target in oral cavity cancer was explored via topical ex vivo application of the fluorescent tracer EMI-137. Freshly excised tumor specimens obtained from ten patients with squamous cell carcinoma of the tongue were incubated with EMI-137 and imaged with a clinical-grade Cy5 prototype fluorescence camera. In-house developed image processing software allowed video-rate assessment of the tumor-to-background ratio (TBR). Fluorescence imaging results were related to standard pathological evaluation and c-MET immunohistochemistry. After incubation with EMI-137, 9/10 tumors were fluorescently illuminated. Immunohistochemistry revealed c-Met expression in all ten specimens. Non-visualization could be linked to a more deeply situated lesion. Tumor assessment was improved via video representation of the TBR (median TBR: 2.5 (range 1.8–3.1)). Ex vivo evaluation of tumor specimens suggests that c-Met is a possible candidate for fluorescence-guided surgery in oral cavity cancer.
Collapse
Affiliation(s)
- Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
- Correspondence:
| | - Maarten van Alphen
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| | - Florian van Beurden
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
| | - Nina Heimburger
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
| | - Jaqueline E. van der Wal
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands;
| | - Michiel van den Brekel
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| | - Baris Karakullukcu
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| |
Collapse
|
6
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Genetic alterations and clinical dimensions of oral cancer: a review. Mol Biol Rep 2020; 47:9135-9148. [DOI: 10.1007/s11033-020-05927-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022]
|
8
|
Wu J, Wang X, Shang A, Vella G, Sun Z, Ji P, Yang D, Wan A, Yao Y, Li D. PLAC8 inhibits oral squamous cell carcinogenesis and epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt/GSK3β signaling pathways. Oncol Lett 2020; 20:128. [PMID: 32934697 PMCID: PMC7471733 DOI: 10.3892/ol.2020.11989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Placenta-specific 8 (PLAC8) is closely associated with the proliferation, apoptosis and autophagy of several tumor cells. However, the expression and function of PLAC8 in oral squamous cell carcinoma (OSCC) remain unknown. Therefore, the present study investigated the function and mechanism of PLAC8 in OSCC. Reverse transcription-quantitative PCR and western blot analyses were performed to quantify the expression of PLAC8 in OSCC cell lines. The function of PLAC8 in OSCC was investigated via transfection, the Transwell and Cell Counting Kit-8 assays, immunofluorescence staining and western blotting. The results demonstrated that PLAC8 exspression was downregulated in OSCC cell lines. PLAC8 inhibited the cell proliferation in OSCC. In addition, PLAC8 restrained invasion and epithelial-mesenchymal transition of OSCC cells. Furthermore, β-catenin helped to repress PLAC8 expression by regulating the Wnt/β-catenin and PI3K/Akt/GSK3β signaling pathways in OSCC cells. Collectively, the results of the present study suggest that PLAC8 acts as a tumor suppressor in OSCC by downregulating β-catenin.
Collapse
Affiliation(s)
- Junlu Wu
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xuetao Wang
- Department of Radiology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Anquan Shang
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Giovanna Vella
- Department of Internal Medicine V Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg D-66421, Germany
| | - Zujun Sun
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ping Ji
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Dianyu Yang
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Aiming Wan
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yiwen Yao
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Dong Li
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
9
|
Wang X, Shao QH, Zhou H, Wu JL, Quan WQ, Ji P, Yao YW, Li D, Sun ZJ. Ginkgolide B inhibits lung cancer cells promotion via beclin-1-dependent autophagy. BMC Complement Med Ther 2020; 20:194. [PMID: 32576183 PMCID: PMC7310550 DOI: 10.1186/s12906-020-02980-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Ginkgolide B (GKB) is a major active component of the extracts of Ginkgo biloba leaves, and it has been used as an anti-cancer agent. However, it is unknown whether GKB has the therapeutic effects on lung cancer. Here, we studied the effects of GKB on lung cancer cells. METHODS The effects of GKB on lung cancer cell proliferation and invasion were analyzed by cell counting kit (CCK-8) and cell invasion assays, respectively. Apoptosis was detected by flow cytometry. Western blot analysis was used to confirm the expression of autophagy-associated proteins in GKB-treated cells. Immunofluorescence analysis was used to analyze the level of light chain 3B (LC3B). RESULTS Treatment with GKB time-dependently inhibited the proliferation and decreased the invasive capacity of A549 and H1975 cells. GKB induced apoptosis of these cells, but there was no significant effect on apoptosis compared to the control treatment. GKB-induced inhibition of cell proliferation and GKB-induced cell death were due to autophagy rather than apoptosis. GKB-induced autophagy of lung cancer cells was dependent on beclin-1, and autophagy-induced inhibition of the NLRP3 inflammasome contributed to the anti-tumor effect of GKB. CONCLUSIONS GKB-mediated autophagy of lung cancer cells is beclin-1-dependent and results in inhibition of the NLRP3 inflammasome. Therefore, GKB might be a potential therapeutic candidate for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pharmacy, Putuo People’s Hospital, Shanghai, 200060 China
| | - Qi-Hui Shao
- grid.24516.340000000123704535Department of Traditional Chinese Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Hao Zhou
- Department of Pharmacy, Putuo People’s Hospital, Shanghai, 200060 China
| | - Jun-Lu Wu
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Wen-Qiang Quan
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Ping Ji
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Yi-Wen Yao
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Dong Li
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Zu-Jun Sun
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| |
Collapse
|
10
|
Ma Y, Zhang M, Wang J, Huang X, Kuai X, Zhu X, Chen Y, Jia L, Feng Z, Tang Q, Liu Z. High-Affinity Human Anti-c-Met IgG Conjugated to Oxaliplatin as Targeted Chemotherapy for Hepatocellular Carcinoma. Front Oncol 2019; 9:717. [PMID: 31428584 PMCID: PMC6688309 DOI: 10.3389/fonc.2019.00717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/18/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most mortality-causing solid cancers globally and the second largest cause of death among malignancies. Oxaliplatin, a platinum-based drug, has been widely utilized in the treatment of malignancies such as colorectal cancer and hepatocellular carcinoma, yet its usage is limited because of severe side effects of cytotoxicity to normal tissues. c-Met, a receptor tyrosine kinase, is expressed aberrantly on the surface of HCC. The purpose of this study was to synthesise a humanized antibody against c-Met (anti-c-Met IgG) and conjugate it to oxaliplatin to develop a novel antibody-drug conjugate (ADC). Anti-c-Met IgG was detected to be loaded with ~4.35 moles oxaliplatin per mole of antibody. ELISA and FCM confirmed that ADC retained a high and selective binding affinity for c-Met protein and c-Met-positive HepG2 cells. In vitro, the cytotoxicity tests and biological function assay indicated that ADC showed much higher cytotoxicity and functioning in c-Met-positive HepG2 cells, compared with shMet-HepG2 cells expressing lower levels of c-Met. Furthermore, compared with free oxaliplatin, ADC significantly improved cytotoxicity to c-Met-positive tumours and avoided off-target cell toxicity in vivo. In conclusion, by targeting c-Met-expressing hepatoma cells, ADC can provide a platform to reduce drug toxicity and improve drug efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Yilan Ma
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjiong Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayan Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaochen Huang
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xingwang Kuai
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xiaojuan Zhu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Chen
- Otorhinolaryngological Department, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lizhou Jia
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Zhenqing Feng
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Tang
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Zheng Liu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
The Oncogenic Activity of miR-29b-1-5p Induces the Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma. J Clin Med 2019; 8:jcm8020273. [PMID: 30813466 PMCID: PMC6406827 DOI: 10.3390/jcm8020273] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The relationship between miR-29b-1-5p and c-Met proto-oncogene in oral squamous cell carcinoma (OSCC) remains to be investigated. This study aimed to reveal the role of miR-29b-1-5p in the pathogenesis of OSCC using molecular and biological analyses. Methods: We investigated the expression of miR-29b-1-5p, c-Met, and markers of the epithelial-mesenchymal transition (EMT) in the tissues of 49 patients with OSCC and in human OSCC cells with different tumorigenicity. Further, we determined the effects of miR-29b-1-5p on the phenotypes of OSCC cell lines. Results: The expression levels of miR-29b-1-5p in most patients with OSCC were higher than those of the normal oral epithelium. In OSCC, upregulation of miR-29b-1-5p significantly correlated with histological grade, the EMT, and the immunohistochemical grade, indicated by c-Met expression. The prognosis was poor for patients with miR-29b-1-5p expression and coexpression of miR-29b-1-5p and c-Met. In OSCC cells exhibiting the EMT phenotype, knockdown of miR-29b-1-5p suppressed the EMT, which was recovered by enforced expression of c-Met. Further, the mRNA encoding cadherin 1 (CDH1) was a direct target of miR-29b-1-5p. Conclusions: Our results suggest that miR-29b-1-5p acts as an oncogenic miRNA that synergizes with c-Met to induce the EMT of OSCC cells.
Collapse
|
12
|
Cai Y, Wang F, Liu Q, Li Z, Li D, Sun Z. A novel humanized anti-PD-1 monoclonal antibody potentiates therapy in oral squamous cell carcinoma. Invest New Drugs 2018; 37:799-809. [PMID: 30368626 DOI: 10.1007/s10637-018-0678-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022]
Abstract
Currently, immune checkpoint inhibitors have been shown to extend the survival of many cancer patients. However, few studies have focused on immune checkpoint inhibition for the treatment of patients with oral squamous cell carcinoma (OSCC). Here, by screening at an early stage, we obtained a strain of anti-PD-1 monoclonal antibody (mAb) that targets programmed cell death-1 (PD-1) does not contain the CH1 and CL fragment. In this study, the role of our novel mAb was tested in the treatment of OSCC in vitro and in vivo. We found that our novel mAb can significantly augment T cell mediated cytokine secretion, target cellular lytic and apoptotic abilities, and inhibit tumor growth and inflammation in vivo. The PD-L1 blockade was accompanied by the inhibition of AKT and ERK1/2, thus suggesting that the PD-L1/PD-1 signaling pathway may play an important immunopreventive role in the tumorigenic properties of OSCC cells by modulating the AKT and ERK1/2 pathways. Additionally, PD-L1 staining was observed both in human OSCC tissues and normal oral mucous tissue adjacent to the tumor, which occurred at different rates. Taken together, these results indicated that our novel anti-PD-1 mAb may be used as a clinical therapy in human OSCC development and progression.
Collapse
Affiliation(s)
- Y Cai
- Department of Stomatology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200127, China
| | - Fei Wang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University, School of Medicine, Shanghai, 200065, China
| | - Q Liu
- Department of Clinical Laboratory, Baoshan Traditional Chinese and Western Medicine Hospital, Shanghai, 201900, China
| | - Z Li
- Putuo District Mental Health Center, Shanghai, 200065, China
| | - D Li
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University, School of Medicine, Shanghai, 200065, China.
| | - Z Sun
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University, School of Medicine, Shanghai, 200065, China.
| |
Collapse
|