1
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Meng X, Liu Z, Zhang L, He Y. Plac1 Remodels the Tumor Immune Evasion Microenvironment and Predicts Therapeutic Response in Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 12:919436. [PMID: 35814442 PMCID: PMC9263085 DOI: 10.3389/fonc.2022.919436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC or HNSC) is the sixth most common cancer worldwide. Placenta-specific 1 (Plac1) belongs to the cancer testis antigen family and is highly expressed in malignant cells in HNSC. However, the biological function and prognostic value of plac1 in HNSC are still unclear. In the current research, we performed a comprehensive analysis of plac1 using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) bulk RNA sequencing databases as well as a single-cell sequencing dataset. We constructed a 15-gene prognostic signature through screening plac1-related immunomodulators and validated its efficiency and accuracy in immunotherapy cohorts and a pancancer database. We found that plac1 expression level is a prognostic predictor of poor overall survival in patients with HNSC. Plac1 is associated with epithelial–mesenchymal transition and tumor invasion. Plac1 has a “dual immunosuppressive function” on tumor microenvironment. On one hand, plac1-positive cells promote extracellular matrix formation and suppress immune cell infiltration. On the other hand, plac1-positive cells enhance the interaction between dendritic cells and macrophages, which further suppresses antitumor immunity. Finally, we constructed a 15-gene prognostic signature, the efficiency and accuracy of which were validated in immunotherapy cohorts and a pancancer database. In conclusion, plac1 is a promising candidate biomarker for prognosis, a potential target for immunotherapy, and a novel point for studying the immunosuppressive mechanisms of the tumor microenvironment in HNSC.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Oral Maxllofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhonglong Liu
- Department of Oral Maxllofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lingfang Zhang
- R&D Department, Suzhou Lingdian Biotechnology Co., Ltd., Suzhou, China
| | - Yue He
- Department of Oral Maxllofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- *Correspondence: Yue He,
| |
Collapse
|
3
|
Devor EJ, Schickling BM, Lapierre JR, Bender DP, Gonzalez-Bosquet J, Leslie KK. The Synthetic Curcumin Analog HO-3867 Rescues Suppression of PLAC1 Expression in Ovarian Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090942. [PMID: 34577642 PMCID: PMC8465575 DOI: 10.3390/ph14090942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Elevated expression of placenta-specific protein 1 (PLAC1) is associated with the increased proliferation and invasiveness of a variety of human cancers, including ovarian cancer. Recent studies have shown that the tumor suppressor p53 directly suppresses PLAC1 transcription. However, mutations in p53 lead to the loss of PLAC1 transcriptional suppression. Small molecules that structurally convert mutant p53 proteins to wild-type conformations are emerging. Our objective was to determine whether the restoration of the wild-type function of mutated p53 could rescue PLAC1 transcriptional suppression in tumors harboring certain TP53 mutations. Ovarian cancer cells OVCAR3 and ES-2, both harboring TP53 missense mutations, were treated with the p53 reactivator HO-3867. Treatment with HO-3867 successfully rescued PLAC1 transcriptional suppression. In addition, cell proliferation was inhibited and cell death through apoptosis was increased in both cell lines. We conclude that the use of HO-3867 as an adjuvant to conventional therapeutics in ovarian cancers harboring TP53 missense mutations could improve patient outcomes. Validation of this conclusion must, however, come from an appropriately designed clinical trial.
Collapse
Affiliation(s)
- Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Correspondence:
| | - Brandon M. Schickling
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
| | - Jace R. Lapierre
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
| | - David P. Bender
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Jesus Gonzalez-Bosquet
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kimberly K. Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Oliveira MDMS, Salgado CDM, Viana LR, Gomes-Marcondes MCC. Pregnancy and Cancer: Cellular Biology and Mechanisms Affecting the Placenta. Cancers (Basel) 2021; 13:1667. [PMID: 33916290 PMCID: PMC8037654 DOI: 10.3390/cancers13071667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer during pregnancy is rarely studied due to its low incidence (1:1000). However, as a result of different sociocultural and economic changes, women are postponing pregnancy, so the number of pregnant women with cancer has been increasing in recent years. The importance of studying cancer during pregnancy is not only based on maternal and foetal prognosis, but also on the evolutionary mechanisms of the cell biology of trophoblasts and neoplastic cells, which point out similarities between and suggest new fields for the study of cancer. Moreover, the magnitude of how cancer factors can affect trophoblastic cells, and vice versa, in altering the foetus's nutrition and health is still a subject to be understood. In this context, the objective of this narrative review was to show that some researchers point out the importance of supplementing branched-chain amino acids, especially leucine, in experimental models of pregnancy associated with women with cancer. A leucine-rich diet may be an interesting strategy to preserve physiological placenta metabolism for protecting the mother and foetus from the harmful effects of cancer during pregnancy.
Collapse
Affiliation(s)
| | | | - Lais Rosa Viana
- Nutrition and Cancer Laboratory, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Sao Paulo 13083-862, Brazil; (M.d.M.S.O.); (C.d.M.S.)
| | - Maria Cristina Cintra Gomes-Marcondes
- Nutrition and Cancer Laboratory, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Sao Paulo 13083-862, Brazil; (M.d.M.S.O.); (C.d.M.S.)
| |
Collapse
|
5
|
Hayashi R, Nagato T, Kumai T, Ohara K, Ohara M, Ohkuri T, Hirata-Nozaki Y, Harabuchi S, Kosaka A, Nagata M, Yajima Y, Yasuda S, Oikawa K, Kono M, Kishibe K, Takahara M, Katada A, Hayashi T, Celis E, Harabuchi Y, Kobayashi H. Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncoimmunology 2020; 10:1856545. [PMID: 33457076 PMCID: PMC7781841 DOI: 10.1080/2162402x.2020.1856545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Placenta-specific 1 (PLAC1) is expressed primarily in placental trophoblasts but not in normal tissues and is a targetable candidate for cancer immunotherapy because it is a cancer testis antigen known to be up-regulated in various tumors. Although peptide epitopes capable of stimulating CD8 T cells have been previously described, there have been no reports of PLAC1 CD4 helper T lymphocyte (HTL) epitopes and the expression of this antigen in head and neck squamous cell carcinoma (HNSCC). Here, we show that PLAC1 is highly expressed in 74.5% of oropharyngeal and 51.9% of oral cavity tumors from HNSCC patients and in several HNSCC established cell lines. We also identified an HTL peptide epitope (PLAC131-50) capable of eliciting effective antigen-specific and tumor-reactive T cell responses. Notably, this peptide behaves as a promiscuous epitope capable of stimulating T cells in the context of more than one human leukocyte antigen (HLA)-DR allele and induces PLAC1-specific CD4 T cells that kill PLAC1-positive HNSCC cell lines in an HLA-DR-restricted manner. Furthermore, T-cells reactive to PLAC131-50 peptide were detected in the peripheral blood of HNSCC patients. These findings suggest that PLAC1 represents a potential target antigen for HTL based immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Hirata-Nozaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Syunsuke Yasuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA, USA
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
6
|
Intermittent fasting from dawn to sunset for four consecutive weeks induces anticancer serum proteome response and improves metabolic syndrome. Sci Rep 2020; 10:18341. [PMID: 33110154 PMCID: PMC7592042 DOI: 10.1038/s41598-020-73767-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome is characterized by central obesity, insulin resistance, elevated blood pressure, and dyslipidemia. Metabolic syndrome is a significant risk factor for several common cancers (e.g., liver, colorectal, breast, pancreas). Pharmacologic treatments used for the components of the metabolic syndrome appear to be insufficient to control cancer development in subjects with metabolic syndrome. Murine models showed that cancer has the slowest progression when there is no food consumption during the daily activity phase. Intermittent fasting from dawn to sunset is a form of fasting practiced during human activity hours. To test the anticancer effect of intermittent fasting from dawn to sunset in metabolic syndrome, we conducted a pilot study in 14 subjects with metabolic syndrome who fasted (no eating or drinking) from dawn to sunset for more than 14 h daily for four consecutive weeks. We collected serum samples before 4-week intermittent fasting, at the end of 4th week during 4-week intermittent fasting and 1 week after 4-week intermittent fasting. We performed serum proteomic analysis using nano ultra-high performance liquid chromatography-tandem mass spectrometry. We found a significant fold increase in the levels of several tumor suppressor and DNA repair gene protein products (GP)s at the end of 4th week during 4-week intermittent fasting (CALU, INTS6, KIT, CROCC, PIGR), and 1 week after 4-week intermittent fasting (CALU, CALR, IGFBP4, SEMA4B) compared with the levels before 4-week intermittent fasting. We also found a significant reduction in the levels of tumor promoter GPs at the end of 4th week during 4-week intermittent fasting (POLK, CD109, CAMP, NIFK, SRGN), and 1 week after 4-week intermittent fasting (CAMP, PLAC1) compared with the levels before 4-week intermittent fasting. Fasting from dawn to sunset for four weeks also induced an anti-diabetes proteome response by upregulating the key regulatory proteins of insulin signaling at the end of 4th week during 4-week intermittent fasting (VPS8, POLRMT, IGFBP-5) and 1 week after 4-week intermittent fasting (PRKCSH), and an anti-aging proteome response by upregulating H2B histone proteins 1 week after 4-week intermittent fasting. Subjects had a significant reduction in body mass index, waist circumference, and improvement in blood pressure that co-occurred with the anticancer, anti-diabetes, and anti-aging serum proteome response. These findings suggest that intermittent fasting from dawn to sunset actively modulates the respective genes and can be an adjunct treatment in metabolic syndrome. Further studies are needed to test the intermittent fasting from dawn to sunset in the prevention and treatment of metabolic syndrome-induced cancers.
Collapse
|
7
|
de Aguiar Greca SC, Kyrou I, Pink R, Randeva H, Grammatopoulos D, Silva E, Karteris E. Involvement of the Endocrine-Disrupting Chemical Bisphenol A (BPA) in Human Placentation. J Clin Med 2020; 9:jcm9020405. [PMID: 32028606 PMCID: PMC7074564 DOI: 10.3390/jcm9020405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Endocrine-disrupting chemicals (EDCs) are environmental chemicals/toxicants that humans are exposed to, interfering with the action of multiple hormones. Bisphenol A (BPA) is classified as an EDC with xenoestrogenic activity with potentially adverse effects in reproduction. Currently, a significant knowledge gap remains regarding the complete spectrum of BPA-induced effects on the human placenta. As such, the present study examined the effects of physiologically relevant doses of BPA in vitro. Methods: qRT-PCR, Western blotting, immunofluorescence, ELISA, microarray analyses, and bioinformatics have been employed to study the effects of BPA using nonsyncytialised (non-ST) and syncytialised (ST) BeWo cells. Results: Treatment with 3 nM BPA led to an increase in cell number and altered the phosphorylation status of p38, an effect mediated primarily via the membrane-bound estrogen receptor (GPR30). Nonbiased microarray analysis identified 1195 and 477 genes that were differentially regulated in non-ST BeWo cells, whereas in ST BeWo cells, 309 and 158 genes had altered expression when treated with 3 and 10 nM, respectively. Enriched pathway analyses in non-ST BeWo identified a leptin and insulin overlap (3 nM), methylation pathways (10 nM), and differentiation of white and brown adipocytes (common). In the ST model, most significantly enriched were the nuclear factor erythroid 2-related factor 2 (NRF2) pathway (3 nM) and mir-124 predicted interactions with cell cycle and differentiation (10 nM). Conclusion: Collectively, our data offer a new insight regarding BPA effects at the placental level, and provide a potential link with metabolic changes that can have an impact on the developing fetus.
Collapse
Affiliation(s)
| | - Ioannis Kyrou
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK;
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ryan Pink
- Dept of Bio. & Med. Sci., Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Harpal Randeva
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Dimitris Grammatopoulos
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Elisabete Silva
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| | - Emmanouil Karteris
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| |
Collapse
|
8
|
Mahmoudian J, Nazari M, Ghods R, Jeddi-Tehrani M, Ostad SN, Ghahremani MH, Vafaei S, Amiri MM, Zarnani AH. Expression of Human Placenta-specific 1 (PLAC1) in CHO-K1 Cells. Avicenna J Med Biotechnol 2020; 12:24-31. [PMID: 32153735 PMCID: PMC7035464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Placenta-specific 1 (PLAC1), as a new Cancer/Testis Antigen (CTA), is frequently expressed in a variety of cancers and localized to cytoplasm and plasma membrane. Surface expression of cancer target antigens is of great importance that enables antibody-mediated cancer immunotherapy. The aim of the current study was to express the intact human PLAC1 protein on plasma membrane of a eukaryotic cell as a model for future anti-PLAC1-based cancer immunotherapy. METHODS In the first approach, entire human PLAC1 gene including its own Signal Peptide (SP) was cloned into pIRES2-EGFP and LeGO-iG2 vectors and expressed in CHO-K1 cells. In the second approach, cytosolic and Signal-Anchor (SA) sequence of Transferrin Receptor Protein 1 (TFR1) were fused to extracellular portion of PLAC1 and expressed as above. Expression of PLAC1 was then assessed using Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western Blot (WB), Immunocytochemistry (ICC), Immunofluorescence (IF) and Flow Cytometry (FC). RESULTS The first approach resulted in the expression of PLAC1 in submembranous but not in the surface of transfected CHO-K1 cells. Using the chimeric human PLAC1 construct, the same intracellular expression pattern was observed. CONCLUSION These results indicated that there are some yet unknown PLAC1 localization signals employed by cancer cells for surface expression of PLAC1.
Collapse
Affiliation(s)
- Jafar Mahmoudian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran, Monoclonal Antibody Research Center, Avicenna Research Institute (ACECR), Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute (ACECR), Tehran, Iran,Corresponding authors: Amir-Hassan Zarnani, Ph.D., Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Mahboobeh Nazari, Ph.D., Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Tel: +98 21 22432020, Fax: +98 21 22432021, E-mail: ;, ,
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran, Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute (ACECR), Tehran, Iran
| | - Seyed Nasser Ostad
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Vafaei
- Reproductive Immunology Research Center, Avicenna Research Institute, (ACECR), Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, (ACECR), Tehran, Iran, Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran, Immunology Research Center (IRC), Iran University of Medical Sciences (IUMS), Tehran, Iran,Corresponding authors: Amir-Hassan Zarnani, Ph.D., Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Mahboobeh Nazari, Ph.D., Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Tel: +98 21 22432020, Fax: +98 21 22432021, E-mail: ;, ,
| |
Collapse
|
9
|
Zhang Q, Yin X, Pan Z, Cao Y, Han S, Gao G, Gao Z, Pan Z, Feng W. Identification of potential diagnostic and prognostic biomarkers for prostate cancer. Oncol Lett 2019; 18:4237-4245. [PMID: 31579071 PMCID: PMC6757266 DOI: 10.3892/ol.2019.10765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors worldwide. The aim of the present study was to determine potential diagnostic and prognostic biomarkers for PCa. The GSE103512 dataset was downloaded, and the differentially expressed genes (DEGs) were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) analyses of DEGs were performed. The result of GO analysis suggested that the DEGs were mostly enriched in ‘carboxylic acid catabolic process’, ‘cell apoptosis’, ‘cell proliferation’ and ‘cell migration’. KEGG analysis results indicated that the DEGs were mostly concentrated in ‘metabolic pathways’, ‘ECM-receptor interaction’, the ‘PI3K-Akt pathway’ and ‘focal adhesion’. The PPI analysis results showed that Golgi membrane protein 1 (GOLM1), melanoma inhibitory activity member 3 (MIA3), ATP citrate lyase (ACLY) and G protein subunit β2 (GNB2) were the key genes in PCa, and the Module analysis revealed that they were associated with ‘ECM-receptor interaction’, ‘focal adhesion’, the ‘PI3K-Akt pathway’ and the ‘metabolic pathway’. Subsequently, the gene expression was confirmed using Gene Expression Profiling Interactive Analysis and the Human Protein Atlas. The results demonstrated that GOLM1 and ACLY expression was significantly upregulated (P<0.05) in PCa compared with that in normal tissues. Receiver operating characteristic and survival analyses were performed. The results showed that area under the curve values of these genes all exceeded 0.85, and high expression of these genes was associated with poor survival in patients with PCa. In conclusion, this study identified GOLM1 and ACLY in PCa, which may be potential diagnostic and prognostic biomarker of PCa.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiujuan Yin
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiwei Pan
- Department of Medicine, Laizhou Development Zone Hospital, Yantai, Shandong 261400, P.R. China
| | - Yingying Cao
- College of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Shaojie Han
- Changle County Bureau of Animal Health and Production, Weifang, Shandong 261053, P.R. China
| | - Guojun Gao
- Urology Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiqin Gao
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhifang Pan
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weiguo Feng
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
10
|
Mahmoudian J, Ghods R, Nazari M, Jeddi-Tehrani M, Ghahremani MH, Ghaffari-Tabrizi-Wizsy N, Ostad SN, Zarnani AH. PLAC1: biology and potential application in cancer immunotherapy. Cancer Immunol Immunother 2019; 68:1039-1058. [PMID: 31165204 PMCID: PMC11028298 DOI: 10.1007/s00262-019-02350-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
The emergence of immunotherapy has revolutionized medical oncology with unprecedented advances in cancer treatment over the past two decades. However, a major obstacle in cancer immunotherapy is identifying appropriate tumor-specific antigens to make targeted therapy achievable with fewer normal cells being impaired. The similarity between placentation and tumor development and growth has inspired many investigators to discover antigens for effective immunotherapy of cancers. Placenta-specific 1 (PLAC1) is one of the recently discovered placental antigens with limited normal tissue expression and fundamental roles in placental function and development. There is a growing body of evidence showing that PLAC1 is frequently activated in a wide variety of cancer types and promotes cancer progression. Based on the restricted expression of PLAC1 in testis, placenta and a wide variety of cancers, we have designated this molecule with new terminology, cancer-testis-placenta (CTP) antigen, a feature that PLAC1 shares with many other cancer testis antigens. Recent reports from our lab provide compelling evidence on the preferential expression of PLAC1 in prostate cancer and its potential utility in prostate cancer immunotherapy. PLAC1 may be regarded as a potential CTP antigen for targeted cancer immunotherapy based on the available data on its promoting function in cancer development and also its expression in cancers of different histological origin. In this review, we will summarize current data on PLAC1 with emphasis on its association with cancer development and immunotherapy.
Collapse
Affiliation(s)
- Jafar Mahmoudian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran
| | | | - Seyed Nasser Ostad
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Nafisi Building, Enghelab St., Tehran, 1417613151, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Induction of Apoptosis and Inhibition of Epithelial Mesenchymal Transition by α-Mangostin in MG-63 Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3985082. [PMID: 29853951 PMCID: PMC5944198 DOI: 10.1155/2018/3985082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
Osteosarcoma is the most common bone primary malignant tumor and nearly 30% of patients still die from osteosarcoma due to metastasis or recurrence. Thus, it is necessary to develop effective new chemotherapeutic agents for osteosarcoma treatment. α-Mangostin is a xanthone derivative shown to have antioxidant and anticarcinogen properties. However, the molecular mechanisms underlying the antimetastatic effects of osteosarcoma remain unclear. In metastasis progression, epithelial mesenchymal transition (EMT) is a process that plays important roles in development, cell polarity, and increased invasion and migration. This study focused on the induction of apoptosis and inhibition of EMT process by α-mangostin in human osteosarcoma cell line MG63. α-Mangostin treatments on MG63 cells not only showed the several lines of evidence of apoptotic cell death but also inhibited cell migration, invasion, and EMT-inducing transcription factor. In conclusion, we demonstrate that the α-mangostin induces apoptosis via mitochondrial pathway and suppresses metastasis of osteosarcoma cells by inhibiting EMT.
Collapse
|